14A.1 14A.2 14A.3 14A.4 14A.5 14A.6 14A.7 14A.8 14A.9 14A.10 14A.11 14A.12 14A.13 1 / 28
14A.1 14A.1 14A.2 14A.3 14A.4 14A.5 14A.6 14A.7 14A.8 14A.9 14A.10 14A.11 14A.12 14A.13 Tehtävä: Määrää ryhmän karakteritaulu, ja todista sen avulla, että se on yksinkertainen ryhmä. Ratkaisu: Palautetaan ensin mieleen konjugaattiluokat. Permutaation σ sentralisoija C A5 (σ) = C S5 (σ). Konjugaattiluokan koko on yhtä suuri kuin sentralisoijan indeksi. Näin ollen konjugaattiluokka [σ] A5 = [σ] S5 sjvsk sentralisoijassa C S5 (σ) on jokin pariton permutaatio. Koska 2-sykli (45) kommutoi 3-syklin (123) kanssa, niin 3-syklit muodostavat yhden konjugaattiluokan myös aliryhmässä. Näin ollen #[(123)] = 20. Samoin koska 4-sykli (1324) kommutoi neliönsä (12)(34) kanssa, niin tyypin (2, 2) permutaatiot muodostavat yhden konjugaattiluokan myös ryhmässä. 2 / 28
14A.2 14A.1 14A.2 14A.3 14A.4 14A.5 14A.6 14A.7 14A.8 14A.9 14A.10 14A.11 14A.12 14A.13 Siis #[(12)(34)] A5 = #[(12)(34)] S5 = 15. Sitä vastoin 5-syklit (joita on 24 kpl sekä :ssä että S 5 :ssä) generoivat oman sentralisoijansa (24 = #S 5 /5), joten ne jakautuvat kahteen konjugaattiluokkaan aliryhmässä. Pohdimme tätä tarkemmin Sylow-teorian kautta. Mainitut 24 5-sykliä jakautuvat kuuteen Sylow 5-aliryhmään. Jos siis α = (12345), P = α on niistä yksi, niin sillä on kuusi konjugaattialiryhmää. Näin ollen sen normalisoijan N = N A5 (P) indeksi [ : N] = 6. Koska # = 60, on siis #N = 10. Koska ryhmässä ei ole kertalukua kymmenen olevia alkioita, tiedämme demotehtävän Dem.III/7 perusteella, että N = D 5. Sama seuraa myös siitä, että alkiot β = (25)(34) ja α toteuttavat relaation βαβ 1 = α 1. 3 / 28
14A.3 14A.1 14A.2 14A.3 14A.4 14A.5 14A.6 14A.7 14A.8 14A.9 14A.10 14A.11 14A.12 14A.13 Jos τ on permutaatio, jolle τατ 1 = α k P, niin τ N. Tietomme ryhmän D 5 konjugaattiluokista kertovat tällöin, että k ±1 (mod 5). Näin ollen [α] A5 P = {α, α 1. Sama päättely voidaan toistaa kaikille 5-sykleille. Näin ollen 5-syklien jakautuminen konjugaattiluokkiin menee siten, että kukin niistä on samassa konjugaattiluokassa käänteisalkionsa kanssa, mutta eri konjugaattiluokassa neliönsä kanssa. Lisäksi näimme, että normalisoija N sisältää viisi tyypin (2, 2) permutaatiota (jotka vastaavat säännöllisen 5-kulmion peilauksia). Koska tyypin (2, 2) alkioita on 15 kpl ne jakautuvat ryhmän N kuuden konjugaatin kesken siten, että jokainen kuuluu ryhmän N kahteen eri konjugaattiin. Esimerkiksi (25)(34) normalisoi Sylow 5-aliryhmät P = (12345) ja P = (12435). 4 / 28
14A.4 14A.1 14A.2 14A.3 14A.4 14A.5 14A.6 14A.7 14A.8 14A.9 14A.10 14A.11 14A.12 14A.13 Konjugaattiluokkien edustajina voidaan siis käyttää alkioita 1, (123), (12)(34), (12345), (13524). Vastaavat konjugaattiluokkien koot ovat 1, 20, 15, 12, 12. Sitten voimme alkaa jaottomien karakterien etsimisen. Ryhmä operoi 2-transitiivisesti joukossa {1, 2, 3, 4, 5}. Näin ollen siihen liittyvä permutaatiokarakteri ψ 1 on triviaalin karakterin χ 1 ja 4-asteisen jaottoman karakterin χ 2 summa, ψ 1 = χ 1 + χ 2. Tässä ψ 1 laskee permutaation kiintopisteitä, joten χ 2 (1) = 5 1 = 4, χ 2 ((123)) = 2 1 = 1, χ 2 ((12)(34)) = 1 1 = 0, χ 2 ((12345)) = 0 1 = 1, χ 2 ((13524)) = 0 1 = 1. 5 / 28
14A.5 14A.1 14A.2 14A.3 14A.4 14A.5 14A.6 14A.7 14A.8 14A.9 14A.10 14A.11 14A.12 14A.13 Ryhmä operoi myös Sylow 5-aliryhmiensä joukossa X konjugoimalla. Sylowin lauseen perusteella operointi on transitiivista. Tutkitaan tarkemmin 5-syklin α konjugointioperointia. Se tietenkin pitää paikallaan generoimansa Sylow 5-aliryhmän P. Se ei kuitenkaan normalisoi mitään muuta Sylow 5-aliryhmää P P, sillä näimme, että N A5 (P ) = D 5 ei sisällä P :n ulkopuolisia 5-syklejä. Koska ord(α) = 5, sen toisessa radassa on viisi alkiota, eli kaikki muut Sylow 5-aliryhmät P:tä lukuun ottamatta. Väite: operoi Sylow 5-aliryhmiensä joukossa X 2-transitiivisesti. Todistus: Olkoot P 1 P 2 ja P 1 P 2 5-aliryhmiä. mielivaltaisia Sylow 6 / 28
14A.6 14A.1 14A.2 14A.3 14A.4 14A.5 14A.6 14A.7 14A.8 14A.9 14A.10 14A.11 14A.12 14A.13 Koska operoi joukossa X transitiivisesti, niin on olemassa sellainen σ, että σp 1 σ 1 = P 1. Tällöin σp 2 σ 1 σp1 1 = P 1. Olkoon sitten τ P 1 jokin 5-sykli. Yllä näimme, että τ = P 1 operoi joukossa X \ {P 1 } transitiivisesti. Näin ollen jokin potensseista τ k, k = 0, 1, 2, 3, 4, toteuttaa ehdon Koska väite on todistettu. τ k (σp 2 σ 1 )τ k = P 2. τ k (σp 1 σ 1 )τ k = τ k P 1τ k = P 1, 7 / 28
14A.7 14A.1 14A.2 14A.3 14A.4 14A.5 14A.6 14A.7 14A.8 14A.9 14A.10 14A.11 14A.12 14A.13 Jos siis ψ 2 on tähän operointiin liittyvä 6-asteinen karakteri, niin tiedämme, että ψ 2 = χ 1 + χ 3 jollekin redusoitumattomalle karakterille χ 3. Näimme, että kukin 5-sykli normalisoi tasan yhden Sylow 5-aliryhmän, kukin tyypin (2, 2) permutaatio kaksi, kun taas mikään 3-sykli ei normalisoi yhtään Sylow 5-aliryhmää. Normalisointi tässä vastaa permutaatiokarakterin ψ 2 kiintopisteitä, joten χ 3 (1) = 6 1 = 5, χ 3 ((123)) = 0 1 = 1, χ 3 ((12)(34)) = 2 1 = 1, χ 3 ((12345)) = 1 1 = 0, χ 3 ((13524)) = 1 1 = 0. 8 / 28
14A.8 14A.1 14A.2 14A.3 14A.4 14A.5 14A.6 14A.7 14A.8 14A.9 14A.10 14A.11 14A.12 14A.13 Huomautus 1: Yo. väite yleistyy seuraavasti. Jos G operoi transitiivisesti joukossa X, x X, ja G x operoi transitiivisesti joukossa X \ {x X}, niin G:n operointi joukossa X on 2-transitiivista. Huomautus 2: Transitiivisen permutaatioesityksen karakteri saadaan indusoimalla stabilisoijan triviaali karakteri (moniste), joten karakteri ψ 2 saadaan myös induktiolla ψ 2 = Ind D 5 (θ 1 ), missä θ 1 on aliryhmän D 5 triviaali karakteri. 9 / 28
14A.9 14A.1 14A.2 14A.3 14A.4 14A.5 14A.6 14A.7 14A.8 14A.9 14A.10 14A.11 14A.12 14A.13 Olemme löytäneet ryhmän viidestä jaottomasta karakterista kolme. Olkoot χ 4 ja χ 5 puuttuvat kaksi karakteria. Huomaamme, että mikään annetuista kolmesta karakterista ei tee eroa kahden 5-sykleistä muodostuvan konjugaattiluokan välillä. Karakteritaulun sarakkeiden ortogonaalisuuden perusteella ko. sarakkeet eivät voi olla identtiset, joten rajoituksetta voimme olettaa, että χ 4 ((12345)) = a b = χ 4 ((13524)). Käytämme hyväksi tietoa siitä, että alkiot α = (12345) ja α 2 = (13524) ovat konjugaatteja ryhmässä S 5. Normaaliin tapaan näemme, että 4-sykli γ = (2354) toteuttaa ehdon γαγ 1 = α 2. Konjugointi permutaatiolla γ on automorfismi φ :, x γxγ 1. 10 / 28
14A.10 14A.1 14A.2 14A.3 14A.4 14A.5 14A.6 14A.7 14A.8 14A.9 14A.10 14A.11 14A.12 14A.13 Jos χ on mikä tahansa ryhmän jaoton karakteri, niin myös χ φ on jaoton karakteri (esityksissä ovat samat matriisit, tosin liitettynä ryhmän eri alkioihin, mutta jaottomuus säilyy tällöin). Automorfismi kuvaa muut ryhmän konjugaattiluokat itselleen, mutta vaihtaa siis 5-syklien konjugaattiluokat päittäin. Näin ollen karakteri χ 4 φ χ 4. Edelleen myös karakteri χ 4 φ erottelee kyseiset 5-syklien konjugaattiluokat toisistaan, joten χ 4 φ ei ole mikään karaktereista χ 1, χ 2, χ 3. Jäljelle jää vaihtoehto χ 4 φ = χ 5. Siis χ 4 (1) = n = χ 5 (1). Yhtälöstä ratkeaa tällöin n = 3. 60 = 1 2 + 4 2 + 5 2 + n 2 + n 2 11 / 28
14A.11 14A.1 14A.2 14A.3 14A.4 14A.5 14A.6 14A.7 14A.8 14A.9 14A.10 14A.11 14A.12 14A.13 Yhteenvetona opitusta tiedämme, että karakteritaulu näyttää seuraavalta 1 (123) (12)(34) (12345) (13524) χ 1 1 1 1 1 1 χ 2 4 1 0 1 1 χ 3 5 1 1 0 0 χ 4 3 x y a b χ 5 3 x y b a Sarakkeiden 1 ja 2 ortogonaalisuus antaa nyt x = 0. Vastaavasti sarakkeiden 1 ja 3 ortogonaalisuus antaa y = 1. Kaikille ryhmille ja karaktereille on voimassa χ(x) = χ(x 1 ). Tässä ryhmässä jokainen alkio on konjugaatti käänteisalkionsa kanssa, joten kaikki karakterit ovat reaalisia. 12 / 28
14A.12 14A.1 14A.2 14A.3 14A.4 14A.5 14A.6 14A.7 14A.8 14A.9 14A.10 14A.11 14A.12 14A.13 Sarakkeiden 1 ja 4 (vast. 4 ja 5) ortogonaalisuus antaa meille yhtälöt 3(a + b) = 3 ja 2ab = 2, mistä ratkeaa a + b = 1 ja ab = 1. Näin ollen a ja b ovat yhtälön ratkaisut 0 = (x a)(x b) = x 2 (a + b)x + ab = x 2 x 1 a, b = 1 ± 5. 2 Yleisyyttä loukkaamatta voidaan valita a = (1 + 5)/2 = 1 + 2 cos(2π/5), b = (1 5)/2 = 1 + 2 cos 4π/5. Huomautus: Karakteria χ 4 vastaava esitys saadaan realisoimalla säännöllisen ikosaedrin rotaatioiden ryhmänä. Muistetaan, että 3-ulotteisessa avaruudessa rotaatiolla kulman θ verran on jälki 1 + 2 cos θ. 13 / 28
14A.13 14A.1 14A.2 14A.3 14A.4 14A.5 14A.6 14A.7 14A.8 14A.9 14A.10 14A.11 14A.12 14A.13 Saadusta karakteritaulusta nähdään heti ryhmän yksinkertaisuus. Jos nimittäin N olisi ryhmän ei-triviaali normaali aliryhmä, niin tekijäryhmä /N olisi jokin pienempi ei-triviaali ryhmä. Sillä olisi ei-triviaaleja jaottomia karaktereja. Niiden inflaationa ryhmän karaktereiksi saataisiin ainakin yksi ei-triviaali jaoton karakteri χ, jolla N on ytimenä. Karakteritaulusta kuitenkin näemme, että kaikille x, x 1, on voimassa χ(x) χ(1) kaikille jaottomille karaktereille χ. Näin ollen tällaista normaalia aliryhmää N ei ole olemassa. 14 / 28
Syklinen 14B.1 14B.2 14C.1 14C.2 14C.3 Filosofiaa 2x2 Matriisiryhmä 14D 14E.1 14E.2 14E.3 Kommentteja 15 / 28
Syklisen ryhmän automorfismit Syklinen 14B.1 14B.2 14C.1 14C.2 14C.3 Filosofiaa 2x2 Matriisiryhmä 14D 14E.1 14E.2 14E.3 Kommentteja Oletetaan, että G = C n = c c n = 1. Homomorfismi f : C n C n määräytyy täysin, kun tiedetään f(c) = c k. Merkitään tätä homomorfismia f k. Tässä f k on surjektio sjvsk c k generoi koko ryhmän eli on kertalukua n. PK II:n perusteella näin on sjvsk syt(k, n) = 1. Selvästi f k f l = f t, missä t kl (mod n). Ryhmän C n automorfismien ryhmä on siis Aut(C n ) = Z n. Erityisesti # Aut(C n ) = φ(n) (Eulerin φ-funktio). Erityisesti kun p on alkuluku, niin # Aut(C p ) = p 1 ja # Aut(C p 2) = p(p 1). Lisäksi (Lukuteoria/Algebra) nämä ryhmät ovat itsekin syklisiä. 16 / 28
14B.1 Syklinen 14B.1 14B.2 14C.1 14C.2 14C.3 Filosofiaa 2x2 Matriisiryhmä 14D 14E.1 14E.2 14E.3 Kommentteja Tehtävä: Oletetaan, että ryhmän G kertaluku on 20. Lisäksi tiedetään, että sen Sylow 2-aliryhmä Q on isomorfinen Kleinin neliryhmän kanssa. Osoita, että tällöin ryhmässä G on kertalukua 10 oleva alkio. Ratkaisu: Ryhmän G Sylow 5-aliryhmien lukumäärä n 5 toteuttaa ehdot n 5 1 (mod 5) ja n 5 4. Näin ollen n 5 = 1, eli Sylow 5-aliryhmä P G. Erityisesti aliryhmän Q = {1, a, b, ab} alkiot kaikki normalisoivat P:n. Näin ollen konjugointi antaa homomorfismin f : Q Aut(P) = Aut(C 5 ) = C 4. 17 / 28
14B.2 Syklinen 14B.1 14B.2 14C.1 14C.2 14C.3 Filosofiaa 2x2 Matriisiryhmä 14D 14E.1 14E.2 14E.3 Kommentteja Tässä siis #Q = 4 = # Aut(P). Koska ryhmät eivät ole isomorfisia, ei f voi olla injektio. Näin ollen Ker f ei ole triviaali. Siis jokin kertalukua kaksi oleva alkio x Q kuuluu ytimeen Ker f. Tämä tarkoittaa sitä, että xyx 1 = f(x)(y) = id P (y) = y kaikille y P. Näin ollen H = P, x on abelin ryhmä, jossa on 10 alkiota. Jos Abelin ryhmässä ord y = 5 ja ord x = 2, niin ord(xy) = pyj(2, 5) = 10. 18 / 28
14C.1 Syklinen 14B.1 14B.2 14C.1 14C.2 14C.3 Filosofiaa 2x2 Matriisiryhmä 14D 14E.1 14E.2 14E.3 Kommentteja Tehtävä: Onko kertalukua 55 oleva ryhmä G välttämättä Abelin ryhmä? Ratkaisu: Näemme, että Sylow aliryhmien lukumäärillä on vaihtoehdot n 11 = 1 ja n 5 {1, 11}. Ryhmällä G on siis välttämättä normaali Sylow 11-aliryhmä P = c = C 11. Jos sen Sylow 5-aliryhmä Q = a on myös normaali, niin tällöin PQ on suora tulo, ja siis Abelin ryhmä. Jäljelle jää vaihtoehto n 5 = 11. 19 / 28
14C.2 Syklinen 14B.1 14B.2 14C.1 14C.2 14C.3 Filosofiaa 2x2 Matriisiryhmä 14D 14E.1 14E.2 14E.3 Kommentteja Joka tapauksessa Q normalisoi P:n, joten saamme homomorfismin f : Q Aut(P). Tässä Aut(P) on syklinen 10 alkion ryhmä. Koska 2 generoi ryhmän Z 11, niin jäännösluokka 4 on kertalukua viisi. Siis säännön c c 4 määräämä P:n automorfismi on sekin kertalukua 5. Voidaan siis muodostaa epäkommutatiivinen puolisuora tulo G = C 11 C 5, jossa aca 1 = c 4. Kyseinen puolisuora tulo voidaan realisoida ryhmän S 11 aliryhmänä. Merkitään A = 10, B = 11. Tällöin c = (123456789AB), c 4 = (15926A37B48) ja a = (256A4)(39B87) toteuttavat mainitut relaatiot ja generoivat yhdessä epäkommutatiivisen ryhmän, jonka kertaluku on 55. 20 / 28
14C.3 Syklinen 14B.1 14B.2 14C.1 14C.2 14C.3 Filosofiaa 2x2 Matriisiryhmä 14D 14E.1 14E.2 14E.3 Kommentteja Tämä ryhmä saadaan myös demoissa esiintyneen affiinin ryhmän Aff 11 aliryhmänä (Dem XII/7). Voidaan ajatella G = {( x y 0 1 ) y Z 11, x (Z 11) 2 }. 21 / 28
Filosofiaa Syklinen 14B.1 14B.2 14C.1 14C.2 14C.3 Filosofiaa 2x2 Matriisiryhmä 14D 14E.1 14E.2 14E.3 Kommentteja Näimme Esimerkeissä 14B ja 14C, että jos meillä on syklinen normaali Sylow aliryhmä, niin sen automorfismien tunteminen rajoitti ryhmän muiden alkioiden konjugointioperoinnilla olevia vaihtoehtoja merkittävästi. Joissakin tilanteissa pystyimme päättelemään, että jotkin alkiot väistämättä sentralisoivat kyseisen Sylow aliryhmän. Samantapaisia päättelyitä on tehtävissä aina, kun tunnemme normaalin aliryhmän automorfismiryhmän rakenteen. Yllä käsittelimme syklistä tapausta. Pienen ryhmän tapauksessa Sylow p-aliryhmä on usein kertalukua p tai p 2. Näimme, että tällainen ryhmä on aina Abelin ryhmä, joko C p 2 tai C p C p. 22 / 28
2x2 Matriisiryhmä Syklinen 14B.1 14B.2 14C.1 14C.2 14C.3 Filosofiaa 2x2 Matriisiryhmä 14D 14E.1 14E.2 14E.3 Kommentteja Oletetaan, että G = C p C p. Voidaan ajatella G:n olevan vektoriavaruuden G = Z 2 p additiivinen ryhmä. Jos f : G G on automorfismi, niin kaikille x G, n Z on tällöin f(nx) = nf(x). Lisäksi f(px) = pf(x) = 0 G, joten f on välttämättä lineaarikuvaus yli kunnan Z p. Erityisesti, jos f on automorfismi, niin f GL 2 (Z p ) (kiinnitetään jokin kanta ensin). Matriisi A M 2 2 (Z p ) on säännöllinen, joss sen vaakarivit ovat lineaarisesti riippumattomi. Ensimmäinen vaakarivi voidaan siis valita p 2 1 eri tavalla ( (0, 0)). Sen jälkeen toinen vaakarivi voidaan valita p 2 p eri tavalla: se ei saa olla 1. skalaarimonikerta, mikä rajaa pois p vaihtoehtoa. #GL 2 (Z p ) = p(p + 1)(p 1) 2. 23 / 28
14D Syklinen 14B.1 14B.2 14C.1 14C.2 14C.3 Filosofiaa 2x2 Matriisiryhmä 14D 14E.1 14E.2 14E.3 Kommentteja Osoita, että kertalukua 45 oleva ryhmä G on aina Abelin ryhmä. Ratkaisu 1: Sylowin lause pakottaa n 3 = n 5 = 1, joten Sylow 3-aliryhmä P ja Sylow 5-aliryhmä Q ovat normaaleja ja kommutatiivisia. Koska ne leikkaavat triviaalisti (Lagrange), G on niiden suora tulo. Väite seuraa, koska P ja Q ovat kommutatiivisia. Ratkaisu 2: Sylow 3-aliryhmä P on normaali (n 3 = 1). Joko P = C 9 tai P = C 3 C 3. Näin ollen Aut(P) on joko kertalukua 6 tai kertalukua 3 (3 1) 2 (3 + 1). Kummassakaan tapauksessa P:llä ei ole kertalukua viisi olevaa automorfismia, joten Sylow 5- aliryhmä Q välttämättä kommutoi P:n alkioiden kanssa. 24 / 28
14E.1 Syklinen 14B.1 14B.2 14C.1 14C.2 14C.3 Filosofiaa 2x2 Matriisiryhmä 14D 14E.1 14E.2 14E.3 Kommentteja Oletetaan, että G on kertalukua 75 oleva ryhmä, joka ei ole Abelin ryhmä. Osoita, että sillä on aliryhmä P = C 5 C 5, ja anna esimerkki tällaisesta ryhmästä. Mitä kertalukua olevia alkioita ryhmässä G tällöin on? Ratkaisu: Selvästi n 5 = 1 ja n 3 {1, 25}. Jos n 3 = 1, niin kuten yllä, näemme, että G on Sylow aliryhmien suora tulo, ja edelleen Abelin ryhmä. On siis oltava n 3 = 25. Sylow 5-aliryhmä P on kuitenkin normaali. Jos se on syklinen, niin Aut(P) = Z 25 = C 20. Tällä ei ole kertalukua kolme olevia alkioita, joten tämä johtaa Abelin ryhmään. 25 / 28
14E.2 Syklinen 14B.1 14B.2 14C.1 14C.2 14C.3 Filosofiaa 2x2 Matriisiryhmä 14D 14E.1 14E.2 14E.3 Kommentteja On siis oletettava, että P = C 5 C 5. Tällöin Aut(P) = GL 2 (Z 5 ). Tässä ryhmässä on kertalukua 3 olevia alkioita, koska sen kertaluku on 5 4 2 6 = 480. Eräs tällainen on matriisi ( ) 0 1 M =, 1 1 joka olisi kertalukua kolme jopa ryhmässä GL 2 (Q). Jos merkitsemme aliryhmän P alkioita pystyvektoreina Z 2 5, niin voimme muodostaa puolisuoran tulon G = Z 2 5 C 3, jossa jälkimmäisen tekijän generaattori c konjugoi säännön cxc 1 = Mx mukaisesti kaikkia x P. 26 / 28
14E.3 Syklinen 14B.1 14B.2 14C.1 14C.2 14C.3 Filosofiaa 2x2 Matriisiryhmä 14D 14E.1 14E.2 14E.3 Kommentteja Sylow 5-aliryhmässä P on siis 24 kappaletta kertalukua 5 olevia alkioita. Sylow 3-aliryhmiä on 25 kpl, ja niissä on siis yhteensä 50 kertalukua kolme olevaa alkiota. Identiteettialkion kera onkin sitten koko ryhmä katettu. Voimme päätellä myös, että aliryhmällä P on vain yksi 25 alkion rata Sylow 3-aliryhmien joukossa. Edelleen kaikki alkiot (x, c i ), x P, i = 1, 2, ovat siis kertalukua kolme. Huomautus: Näimme, että ryhmän GL 2 (Z 5 ) kertaluku on 480. Sen determinanttia yksi olevat matriisit muodostavat siis kertalukua 120 olevan aliryhmän SL 2 (Z 5 ). Matriisit ±I muodostavat tämän ryhmän keskuksen, ja tekijäryhmä PSL 2 (Z 5 ) = SL 2 /Z(SL 2 ) on siis kertalukua 60. Voidaan todistaa, että jos K on äärellinen kunta, niin ryhmä PSL n (K) on yksinkertainen pienin poikkeuksin. Näkemämme perusteella siis PSL 2 (Z 5 ) =. Isomorfismin konstruoiminen jätetään harjoitustehtäväksi. 27 / 28
Kommentteja Syklinen 14B.1 14B.2 14C.1 14C.2 14C.3 Filosofiaa 2x2 Matriisiryhmä 14D 14E.1 14E.2 14E.3 Kommentteja On tehty kaikenlaista pikku algebraa pienillä ryhmillä ja niide esityksillä. On nähty viitteitä siitä, miten tämä aihepiiri liittyy äärellisten kuntien teoriaan ja algebrallisten lukujen teoriaan. Ottamalla ön algebralliset kokonaisluvut työkaluna voisimme suht nopeasti todistaa seuraavat klassiset tulokset: Jos χ on äärellisen ryhmän G jaoton karakteri, niin χ(1) #G (esimerkiksi siis paritonta kertalukua olevalla ryhmällä ei ole 2-ulotteista jaotonta esitystä). Jos #G = p a q b (eli ryhmän kertaluvulla on enintään kaksi alkutekijää), niin G on ratkeava (Burnside). Yksinkertaisen äärellisten ryhmien luokittelua olemme vasta päässeet raapaisemaan, samoin symmetristen ryhmien esitysteoriaa. 28 / 28