ei ole muita välikuntia.
|
|
- Veikko Siitonen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 ALGEBRA II 41 Lause F q m on polynomin x qm x hajoamiskunta kunnan F q suhteen. Todistus. Olkoon α kunnan F q m primitiivialkio. Nyt F qm =< α > muodostuu täsmälleen polynomin x qm 1 1nollakohdistajatäten F q m muodostuu täsmälleen polynomin x qm x nollakohdista <α> {0}. Seuraus 1. Kertalukua q m olevat äärelliset kunnat ovat F q -isomorfiset. Todistus. Polynomin x qm x hajoamiskunnat kunnan F q suhteen ovat F q -isomorfiset. Seuraus 2. Olkoon β F q m. Silloin polynomi m β,fq (x) hajoaa lineaarisiin tekijöihin renkaassa F q m[x] ja sen nollakohdat ovat yksinkertaiset. Todistus. Koska β on polynomin g(x) :=x qm x nollakohta, niin g(x) =m β,fq (x)h(x) jollakin h(x) F q [x]. Täten renkaassa F q m[x] x(x α) (x α qm 1 )=g(x) =m β,fq (x)h(x), missä α on kunnan F q m primitiivialkio. Väite seuraa, sillä F q m[x] onufd. Määritelmä Olkoon K/F kuntalaajennus. Ehdon F M K täyttävä kunta M on laajennuksen K/F välikunta. Lause Olkoon m N. Jokaista luvun m tekijää d kohti on olemassa täsmälleen yksi laajennuksen F q m/f q välikunta F q d.lisäksi kaikille luvun m tekijöille d pätee β F q d β qd = β. Laajennuksella F q m/f q d ei ole muita välikuntia. Todistus. Olkoon d m ja olkoon F q d polynomin x qd x hajoamiskunta kunnan F q suhteen. Olkoon g(x) F q d[x] jaoton polynomi jonka aste on m/d. Nyt F q d[x]/(g(x)) on äärellinen kunta jonka kertaluku on q m ja täten F q d/(g(x)) F q m. Koska F q d F q d[x]/(g(x)), niin kunnassa F q m on isomorfinen kopio kunnasta F q d, joka Lauseen 4.15 nojalla muodostuu täsmälleen polynomin x qd x nollakohdista kunnassa F q m. Astelukulauseen nojalla kunnalla F q m ei ole muita alikuntia. Esimerkki 4.8. Laajennuksen F 16 /F 2 välikunnat ovat F 2, F 4 ja F 16. Laajennuksen F 16 /F 4 välikunnat ovat F 4 ja F 16.
2 42 ALGEBRA II Voimme täsmentää vielä hivenen Lausetta Ensin kuitenkin pieni lukuteorian tulos: Lemma 4.6. Olkoot n, i, j N. Silloin syt(n i 1,n j 1) = n syt(i,j) 1. Todistus. Käytetään induktiota luvun max(i, j) suhteen. Jos max(i, j) = 1, niin syt(i, j) =1javäite seuraa. Olkoon i<j.koskan j 1=n j i (n i 1) + n j i 1, niin syt(n i 1,n j 1) = syt(n i 1,n j i 1). Induktio-oletuksen nojalla syt(n i 1,n j i 1) = n syt(i,j i) 1, ja koska syt(i, j i) =syt(i, j), niin väite seuraa. Lause Olkoon β F q m ja j Z 0. Silloin β qj = β d j, missä d on alkion β aste kunnan F q suhteen. Todistus. Koska alkion β aste on d, niin β F q d ja täten ord(β) q d 1. Jos β qj = β, niin β qj 1 =1janäin ollen ord(β) syt(q d 1,q j 1) = q syt(d,j) 1. Täten β qsyt(d,j) = β. Jos nyt syt(d, j) d, niin syt(d, j) on jokin luvun d aito tekijä, ja nyt Lauseen 4.16 nojalla β kuuluu johonkin kunnan F q d aitoon alikuntaan. Tämä on kuitenkin mahdotonta sillä alkion β aste on d. Siispä syt(d, j) =d ja täten d j. Jos taas j = nd, niin β qj =(β qd ) q(n 1)d = β q(n 1)d = = β, jälleen Lauseen 4.16 nojalla. Lause Olkoon β F q m. Silloin m β,fq (x) =(x β)(x β q )(x β q2 ) (x β qd 1 ), missä d on pienin positiivinen kokonaisluku jolle β qd = β.
3 ALGEBRA II 43 Todistus. Olkoon m β,fq (x) =m 0 +m 1 x+ +m d 1 x d 1, jolloin siis [F q (β) :F q ]=d. Jos m β,fq (β) = 0, niin Lemman 4.4 ja Lauseen 4.16 nojalla 0=(m 0 + m 1 β + + m d β d 1 ) qj = m 0 + m 1 β qj + + m d β (d 1)qj. = m qj 0 + m qj 1 β qj + + m qj d β(d 1)qj Täten m β,fq (β qj ) = 0 kaikilla j Z 0. Osoitetaan, että alkiot β qj, j =0,...,d 1, ovat pareittain erisuuria. Jos β qi = β qj, joillakin 0 i<j d 1, niin korottamalla puolittain potenssiin q d i saadaan yhtälö β = β qd+j i. Nyt Lauseen 4.17 nojalla d d + j i ja täten d j i. Tämä on mahdotonta sillä 1 j i d 1. Koska polynomin m β,fq (x) asteond, niin sillä ei voi olla muita nollakohtia kuin alkiot β,β q,...,β qd 1. Koska alkion β aste on d, niin d on pienin positiivinen kokonaisluku jolle β qd = β (jälleen Lause 4.17). Esimerkki 4.9. Olkoon jälleen F 16 = {a 0 + a 1 α + a 2 α 2 + a 3 α 3 α 4 =1+α, a i F 2 } (ks. esimerkki 4.7). Lasketaan m β,f2 (x) kunβ = α 3. Nyt β 2 = α 6, β 4 = α 12 ja β 8 = α 24 = α 9.Täten m β,f2 (x) =(x + α 3 )(x + α 6 )(x + α 12 )(x + α 9 ) =(x 2 +(α 3 + α 6 )x + α 9 )(x 2 +(α 9 + α 12 )x + α 21 ) =(x 2 + α 2 x + α 9 )(x 2 + α 8 x + α 6 ) = x 4 +(α 2 + α 8 )x 3 +(α 6 + α 10 + α 9 )x 2 +(α 8 + α 17 )x + α 15 = x 4 + x 3 + x 2 + x +1. Huomautus. On olemassa myös laskennallisesti tehokkaampia menetelmiä minimipolynomin laskemiseksi perustuen esim. lineaarialgebraan Automorfismit. Määritelmä Olkoon K/F mikä tahansa kuntalaajennus. Laajennuksen K/F automorfismi on F -isomorfismi K K. Kaikkien automorfismien muodostama ryhmä kuvausten yhdistämisen suhteen on laajennuksen K/F automorfismiryhmä, merkitään Aut(K/F). Olkoon S Aut(K/F). Alikuntakriteerin nojalla joukko K S := {a K φ(a) =a, φ S}
4 44 ALGEBRA II on laajennuksen K/F välikunta, nk. joukon S kiintokunta kunnassa K. Lemma 4.7. Olkoot S T Aut(K/F). Silloin K T K S. Todistus. Triviaali. Lause Frobenius-kuvaus σ : F q m F q m, x x q on laajennuksen F q m/f q automorfismi jonka kertaluku on m. Lisäksi Aut(F q m/f q )=<σ>. Todistus. Lemman 4.4 nojalla σ(a + b) = σ(a) +σ(b). Lisäksi σ(ab) = σ(a)σ(b) ja σ(1) = 1, joten σ on homomorfismi F q m F q m.koskaσ ei ole nollakuvaus, niin se on injektio ja täten myös surjektio. Lauseen 4.16 nojalla β q = β kaikilla β F q ts. σ(β) =β kaikilla β F q.täten σ Aut(F q m/f q ). Lasketaan σ:n kertaluku. Olkoon α kunnan F q m primitiivialkio. Selvästikin σ d (a) =a a F q m σ d (α) =α. Täten σ d = id Fq m α qd = α. Nyt Lauseen 4.16 nojalla d = m. Olkoon φ Aut(F q m/f q ). Koska m α,fq (α) = 0, niin m α,fq (φ(α)) = 0. Nyt Lauseen 4.18 nojalla φ(α) =α qj jollakin j =0,...,m 1. Siispä φ(α i )=α iqj = σ j (α i ) i ja näin ollen φ = σ j. Siispä Aut(F q m/f q )=<σ>. Lause Olkoon H Aut(F q m/f q )=<σ>. Silloin H =< σ d > jollakin d m ja F H q = F m q d. Lisäksi kuvaus H F H q on bijektio ryhmän Aut(F m q m/f q) kaikkien aliryhmien joukolta laajennuksen F q m/f q kaikkien välikuntien joukolle. Todistus. Lauseen 4.19 ja syklisten ryhmien peruslauseen nojalla H =< σ d > jollakin d m. Nyt Lemman 4.7 ja Lauseen 4.16 nojalla F H q {β F m q m σd (β) =β} = F q d.
5 ALGEBRA II 45 Toisaalta, jos β F q d, niin σ d (β) =β ja täten σ dj (β) =β kaikilla j Z 0. Täten F H q = F m q d. Koska syklisten ryhmien peruslauseen nojalla ryhmällä <σ>on vain yksi kertalukua m/d oleva ryhmä, nimittäin < σ d >, niin kuvaus H F H qm on injektio. Koska Lauseen 4.16 ja syklisten ryhmien peruslauseen nojalla laajennuksen F q m/f q välikuntien ja ryhmän <σ>aliryhmien lukumäärä onyhtäsuuri niin kuvaus H F H qm on myös bijektio. Huomautus. Lauseen 4.20 tulos on esimerkki nk. Galois n vastavuudesta. Määritelmä Polynomi f(x) F [x] onseparoituva jos f(x):n kunkin jaottoman tekijän nollakohdat ovat yksinkertaiset f(x):n hajoamiskunnassa. Lause 4.21 (Galois n vastaavuus). Olkoon K/F kuntalaajennus missä K on jonkin renkaaseen F [x] kuuluvan separoituvan polynomin hajoamiskunta. Silloin kuvaus Ψ:{H H Aut(K/F)} {M M laajennuksen K/F välikunta}, H K H, on bijektio, käänteiskuvauksena Φ:{M MonK/F:n välikunta} {H H Aut(K/F)}, M Aut(K/M). Todistus. Emme todista tätä lausetta.
[E : F ]=[E : K][K : F ].
ALGEBRA II 35 Lause 4.4 (Astelukulause). Olkoot E/K/Fäärellisiä kuntalaajennuksia. Silloin [E : F ]=[E : K][K : F ]. Todistus. Olkoon {α 1,...,α n } kanta laajennukselle E/K ja {β 1,...,β m } kanta laajennukselle
Lisätiedot15. Laajennosten väliset homomorfismit
15. Laajennosten väliset homomorfismit Rakenteiden väliset homomorfismit auttavat selvittämään rakenteiden suhteita toisiinsa. Rakenteen sisäiset isomorfismit niin sanotut automorfismit auttavat vastaavasti
Lisätiedot15. Laajennosten väliset homomorfismit
15. Laajennosten väliset homomorfismit Rakenteiden väliset homomorfismit auttavat selvittämään rakenteiden suhteita toisiinsa. Rakenteen sisäiset isomorfismit eli niin sanotut automorfismit auttavat vastaavasti
LisätiedotKoodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 4.7 Syklisen koodin jälkiesitys Olkoon F = F q ja K = F q m kunnan F laajennuskunta. Määritelmä 4.7.1. Kuntalaajennuksen K/F jälkifunktioksi
Lisätiedot7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi
7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi Z p [x]/(m), missä m on polynomirenkaan Z p [x] jaoton polynomi (ks. määritelmä 3.19).
LisätiedotKoodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos Koodausteoria 10 op Kontaktiopetusta 50 h, 26.5. - 26.6. ma 10-14, ti 10-13, to 10-13 Aloitusviikolla poikkeuksellisesti ke 10-13 torstain
Lisätiedotkoska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan
4. Äärellisten kuntien yleisiä ominaisuuksia 4.1. Laajenuskunnat. Tarkastellaan aluksi yleistä kuntaparia F ja K, missä F on kunnan K alikunta. Tällöin sanotaan, että kunta K on kunnan F laajennuskunta
Lisätiedoton Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään
5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}
LisätiedotAlgebra I, harjoitus 8,
Algebra I, harjoitus 8, 4.-5.11.2014. 1. Olkoon G ryhmä ja H sen normaali aliryhmä. Todista, että tällöin G/H on ryhmä, kun määritellään laskutoimitus joukossa G/H asettamalla aina, kun x, y G (lauseen
Lisätiedot14. Juurikunnat Määritelmä ja olemassaolo.
14. Juurikunnat Mielivaltaisella polynomilla ei välttämättä ole juuria tarkasteltavassa kunnassa. Tässä luvussa tutkitaan sellaisia algebrallisia laajennoksia, jotka saadaan lisäämällä polynomeille juuria.
LisätiedotÄärelliset kunnat ja polynomien jako alkutekijöihin
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Heidi Kananoja Äärelliset kunnat ja polynomien jako alkutekijöihin Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Syyskuu 2007 Tampereen yliopisto
LisätiedotÄärellisesti generoitujen Abelin ryhmien peruslause
Tero Harju (2008/2010) Äärellisesti generoitujen Abelin ryhmien peruslause Merkintä X on joukon koko ( eli #X). Vapaat Abelin ryhmät Tässä kappaleessa käytetään Abelin ryhmille additiivista merkintää.
Lisätiedotg : R R, g(a) = g i a i. Alkio g(a) R on polynomin arvo pisteessä a. Jos g(a) = 0, niin a on polynomin g(x) nollakohta.
ALGEBRA II 27 on homomorfismi. Ensinnäkin G(a + b) a + b G(a)+G(b) (f), G(ab) ab G(a)G(b) G(a) G(b) (f), ja koska kongruenssien vasempien ja oikeiden puolten asteet ovat pienempiä kuin f:n aste, niin homomorfiaehdot
LisätiedotDihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013
Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Sisältö Johdanto 2 1 Ryhmä 3 2 Symmetrinen ryhmä 6 3 Symmetriaryhmä 10 4 Dihedraalinen ryhmä 19 Lähdeluettelo
LisätiedotKoodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 5 BCH-, RS- ja Goppa-koodit Topi Törmä Matemaattisten tieteiden laitos 2 / 15 5.1 BCH-koodien määrittely Olkoon jälleen F = F q, syt(n,
Lisätiedotja jäännösluokkien joukkoa
3. Polynomien jäännösluokkarenkaat Olkoon F kunta, ja olkoon m F[x]. Polynomeille f, g F [x] määritellään kongruenssi(-relaatio) asettamalla g f mod m : m g f g = f + m h jollekin h F [x]. Kongruenssi
LisätiedotEsko Turunen MAT Algebra1(s)
Määritelmä (4.1) Olkoon G ryhmä. Olkoon H G, H. Jos joukko H varustettuna indusoidulla laskutoimituksella on ryhmä, se on ryhmän G aliryhmä. Jos H G on ryhmän G aliryhmä, merkitään usein H G, ja jos H
LisätiedotR 1 = Q 2 R 2 + R 3,. (2.1) R l 2 = Q l 1 R l 1 + R l,
2. Laajennettu Eukleideen algoritmi Määritelmä 2.1. Olkoot F kunta ja A, B, C, D F [x]. Sanotaan, että C jakaa A:n (tai C on A:n jakaja), jos on olemassa K F [x] siten, että A = K C; tällöin merkitään
Lisätiedot1 Algebralliset perusteet
1 Algebralliset perusteet 1.1 Renkaat Tämän luvun jälkeen opiskelijoiden odotetaan muistavan, mitä ovat renkaat, vaihdannaiset renkaat, alirenkaat, homomorfismit, ideaalit, tekijärenkaat, maksimaaliset
LisätiedotEsko Turunen Luku 3. Ryhmät
3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,
Lisätiedot1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
Lisätiedot802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013
802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä Sisältö 1 Kertausta kurssilta Lukuteoria ja ryhmät
Lisätiedot802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
LisätiedotAlgebran ja lukuteorian harjoitustehtäviä. 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen
Algebran ja lukuteorian harjoitustehtäviä Versio 1.0 (27.1.2006) Turun yliopisto Lukuteoria 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen joukolla: a) C D
LisätiedotKuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara
Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen
LisätiedotAlgebra 1, harjoitus 9, h = xkx 1 xhx 1. a) Käytetään molemmissa tapauksissa isomorfialausetta. Tarkastellaan kuvauksia
Algebra 1, harjoitus 9, 11.-12.11.2014. 1. Olkoon G ryhmä ja H G normaali aliryhmä. Tiedetään, että tällöin xhx 1 H kaikilla x G. Osoita, että itse asiassa xhx 1 = H kaikilla x G. Ratkaisu: Yritetään osoittaa,
LisätiedotJohdatus matematiikkaan
Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /
Lisätiedot{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja
5. Aliryhmät Luvun 4 esimerkeissä esiintyy usein ryhmä (G, ) ja jokin vakaa osajoukko B G siten, että (B, B ) on ryhmä. Määrittelemme seuraavassa käsitteitä, jotka auttavat tällaisten tilanteiden käsittelyssä.
LisätiedotAlgebra I, harjoitus 5,
Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)
LisätiedotLUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että
LUKUTEORIA A Harjoitustehtäviä, kevät 2013 1. Olkoot a, b, c Z, p P ja k, n Z +. (a) Osoita, että jos niin Osoita, että jos niin (c) Osoita, että jos niin (d) Osoita, että (e) Osoita, että a bc ja a c,
LisätiedotMiten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 3 Joukko-oppia 4 Funktioista Funktio eli kuvaus on matematiikan
LisätiedotJOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT Tehtävä 1. (i) Olkoot n, d 1 ja d n. Osoita, että (k, n) d jos ja vain jos k ad, missä (a, n/d) 1. (ii) Osoita, että jos (m j, m k ) 1 kun
LisätiedotH = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.
10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas
LisätiedotH = H(12) = {id, (12)},
7. Normaali aliryhmä ja tekijäryhmä Tarkastelemme luvun aluksi ryhmän ja sen aliryhmien suhdetta. Olkoon G ryhmä ja olkoon H G. Alkiong G vasen sivuluokka (aliryhmän H suhteen) on gh = {gh : h H} ja sen
LisätiedotPrimitiiviset juuret: teoriaa ja sovelluksia
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Outi Sutinen Primitiiviset juuret: teoriaa ja sovelluksia Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Huhtikuu 2006 Tampereen yliopisto Matematiikan,
LisätiedotLiite 2. Ryhmien ja kuntien perusteet
Liite 2. Ryhmien ja kuntien perusteet 1. Ryhmät 1.1 Johdanto Erilaisissa matematiikan probleemoissa törmätään usein muotoa a + x = b tai a x = b oleviin yhtälöihin, joissa tuntematon muuttuja on x. Lukujoukkoja
LisätiedotViidennen asteen yhtälön ratkaisukaavan olemassaolon mahdottomuus Galois n teorian pohjalta
Viidennen asteen yhtälön ratkaisukaavan olemassaolon mahdottomuus Galois n teorian pohjalta Teppo Lahti Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2014 Tiivistelmä
LisätiedotTodistus. Eliminoidaan Euleideen algoritmissa jakojäännökset alhaaltaylöspäin.
18 ALGEBRA II missä r n (x) =syt(f(x),g(x)). Lause 2.7. Olkoot f(x),g(x) K[x]. Silloin syt(f(x),g(x)) = a(x)f(x)+b(x)g(x), joillakin a(x),b(x) K[x]. Todistus. Eliminoidaan Euleideen algoritmissa jakojäännökset
Lisätiedot4. Ryhmien sisäinen rakenne
4. Ryhmien sisäinen rakenne Tässä luvussa tarkastellaan joitakin tapoja päästä käsiksi ryhmien sisäiseen rakenteeseen. Useimmat tuloksista ovat erityisen käyttökelpoisia äärellisten ryhmien tapauksessa.
LisätiedotKoodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 5.2 BCH-koodin dekoodaus Tarkastellaan t virhettä korjaavaa n-pituista BCH-koodia. Olkoon α primitiivinen n:s ykkösen juuri, c = c(x)
LisätiedotTOOLS. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO TOOLS 1 / 28
TOOLS Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO 2018 TOOLS 1 / 28 Merkintöjä ja algebrallisia rakenteita Lukujoukkoja N = {0, 1, 2,..., GOOGOL 10,...} = {ei-negatiiviset kokonaisluvut}. TOOLS
LisätiedotBijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.
Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin
LisätiedotSeurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa
Seurauksia Seuraus Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa P(x) = a n (x x 1 )(x x 2 )... (x x n ). Seuraus Astetta n olevalla polynomilla voi olla enintään
LisätiedotRollen lause polynomeille
Rollen lause polynomeille LuK-tutkielma Anna-Helena Hietamäki 7193766 Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 015 Sisältö 1 Johdanto 1.1 Rollen lause analyysissä.......................
Lisätiedota ord 13 (a)
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 4, MALLIRATKAISUT Tehtävä 1. Etsi asteet ord p (a) luvuille a 1, 2,..., p 1 kun p = 13 ja kun p = 17. (ii) Mitkä jäännösluokat ovat primitiivisiä juuria (mod
Lisätiedotrm + sn = d. Siispä Proposition 9.5(4) nojalla e d.
9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat
Lisätiedot802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen
802355A Algebralliset rakenteet Luentorunko Syksy 2016 Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen Sisältö 1 Kertausta kurssilta Algebran perusteet 3 2 Renkaat 8 2.1 Renkaiden teoriaa.........................
LisätiedotMatriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit
Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit Antti Rasila 2016 Ominaisarvot ja ominaisvektorit 1/5 Määritelmä Skalaari λ C on matriisin A C n n ominaisarvo ja vektori v C n sitä
Lisätiedot802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä
802354A Algebran perusteet Luentorunko Kevät 2017 Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä Sisältö 1 Lukuteoriaa 3 1.1 Jakoalgoritmi ja alkuluvut.................... 3 1.2 Suurin yhteinen tekijä......................
LisätiedotMatematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto
Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,
Lisätiedot5.6 Yhdistetty kuvaus
5.6 Yhdistetty kuvaus Määritelmä 5.6.1. Oletetaan, että f : æ Y ja g : Y æ Z ovat kuvauksia. Yhdistetty kuvaus g f : æ Z määritellään asettamalla kaikilla x œ. (g f)(x) =g(f(x)) Huomaa, että yhdistetty
Lisätiedot(x + I) + (y + I) = (x + y)+i. (x + I)(y + I) =xy + I. kaikille x, y R.
11. Ideaalit ja tekijärenkaat Rengashomomorfismi φ: R R on erityisesti ryhmähomomorfismi φ: (R, +) (R, +) additiivisten ryhmien välillä. Rengashomomorfismin ydin määritellään tämän ryhmähomomorfismin φ
LisätiedotTehtävä 5 : 1. Tehtävä 5 : 2
Tehtävä 5 : 1 Merkitään kirjaimella H kuvan punaisten solmujen virittämää verkon G yhtenäistä aliverkkoa, jossa on yhteensä kolme särmää. Aliverkosta H voidaan kahdella tavalla valita kahden solmun joukko
Lisätiedotkaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja
Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,
Lisätiedotd Z + 17 Viimeksi muutettu
5. Diffien ja Hellmanin avaintenvaihto Miten on mahdollista välittää salatun viestin avaamiseen tarkoitettu avain Internetin kaltaisen avoimen liikennöintiväylän kautta? Kuka tahansahan voi (ainakin periaatteessa)
Lisätiedot4 Abelin ryhmät. 4.1 Suorat tulot ja summat
4 Abelin ryhmät Ensimmäisellä ryhmäteorian kurssilla käytiin läpi lähinnä syklisiä ryhmiä. Tällä kurssilla keskitymme epäkommutatiivisiin esimerkkeihin. On kuitenkin niin, että äärellisesti viritettyjen
LisätiedotMAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen
MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen Tehtävä 1. Onko joukon X potenssijoukon P(X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen
Lisätiedot4. Eulerin ja Fermat'n lauseet
4. Eulerin ja Fermat'n lauseet 4.1 Alkuluokka ja Eulerin φ-funktio Yleensä olemme kiinnostuneita vain niistä jäännösluokista modulo m, joiden alkiot ovat suhteellisia alkulukuja luvun m kanssa. Näiden
LisätiedotKompaktisuus ja filtterit
Kompaktisuus ja filtterit Joukkoperheellä L on äärellinen leikkausominaisuus, mikäli jokaisella äärellisellä L L on voimassa L. Nähdään helposti, että perheellä L on äärellinen leikkausominaisuus ja L
LisätiedotFermat n pieni lause. Heikki Pitkänen. Matematiikan kandidaatintutkielma
Fermat n pieni lause Heikki Pitkänen Matematiikan kandidaatintutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2009 Sisältö Johdanto 3 1. Fermat n pieni lause 3 2. Pseudoalkuluvut
Lisätiedot0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä niistä
LisätiedotProäärelliset ryhmät ja kuntalaajennukset
Proäärelliset ryhmät ja kuntalaajennukset Matti Åstrand Helsinki 25.5.2009 Pro gradu -tutkielma HELSINGIN YLIOPISTO Matematiikan ja tilastotieteen laitos HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY
LisätiedotRyhmäteoriaa. 2. Ryhmän toiminta
Ryhmäteoriaa 2. Ryhmän toiminta Permutaatiot kuvaavat jonkin perusjoukon alkioita toisikseen. Eräät permutaatiot jättävät joitain alkioita paikalleen, toiset liikuttavat kaikkia joukon alkioita. Kaikki
Lisätiedotjonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä
4. Ryhmät Tässä luvussa tarkastelemme laskutoimituksella varustettuja joukkoja, joiden laskutoimitukselta oletamme muutamia yksinkertaisia ominaisuuksia: Määritelmä 4.1. Laskutoimituksella varustettu joukko
LisätiedotTAMPEREEN YLIOPISTO Pro gradu -tutkielma. Tommi Kuusisto
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Tommi Kuusisto Äärellisistä kunnista Matematiikan ja tilastotieteen laitos Matematiikka Huhtikuu 2008 Tampereen yliopisto Matematiikan, tilastotieteen ja filosofian
LisätiedotLaitos/Institution Department Matematiikan ja tilastotieteen laitos. Aika/Datum Month and year Huhtikuu 2014
Tiedekunta/Osasto Fakultet/Sektion Faculty Matemaattis-luonnontieteellinen tiedekunta Laitos/Institution Department Matematiikan ja tilastotieteen laitos Tekijä/Författare Author Anna-Mari Pulkkinen Työn
LisätiedotShorin algoritmin matematiikkaa Edvard Fagerholm
Edvard Fagerholm 1 Määritelmiä Määritelmä 1 Ryhmä G on syklinen, jos a G s.e. G = a. Määritelmä 2 Olkoon G ryhmä. Tällöin alkion a G kertaluku ord(a) on pienin luku n N \ {0}, jolla a n = 1. Jos lukua
LisätiedotOminaisarvot ja ominaisvektorit 140 / 170
Ominaisarvot ja ominaisvektorit 140 / 170 Seuraavissa luvuissa matriisit ja vektori ajatellaan kompleksisiksi, ts. kertojakuntana oletetaan olevan aina kompleksilukujoukko C Huomaa, että reaalilukujoukko
LisätiedotMATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai
MATP15 Approbatur 1B Ohjaus Keskiviikko 4.11. torstai 5.11.015 1. (Opiskeluteht. 6 s. 0.) Määritä sellainen vakio a, että polynomilla x + (a 1)x 4x a on juurena luku x = 1. Mitkä ovat tällöin muut juuret?.
LisätiedotMAT Algebra I (s) periodeilla IV ja V/2009. Esko Turunen
MAT-41150 Algebra I (s) periodeilla IV ja V/2009. Esko Turunen Tämä tiedosto sisältää kurssin kaikki laskuharjoitukset. viikottain uusia tehtäviä. Tiedostoon lisätään To 05.02.09 pidetyt harjoitukset.
Lisätiedot5. Ryhmän kompositiotekijät
5. Ryhmän kompositiotekijät Jos ryhmästä löydetään normaali aliryhmä, sen suhteen voidaan muodostaa tekijäryhmä, jolla saattaa olla yksinkertaisempi rakenne kuin alkuperäisellä ryhmällä. Ryhmä voidaan
LisätiedotEräitä ratkeavuustarkasteluja
Eräitä ratkeavuustarkasteluja Pro gradu-tutkielma Milla Jantunen 2124227 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2014 Sisältö 1 Ryhmät ja aliryhmät 3 1.1 Ryhmä...............................
LisätiedotAlgebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua)
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin ( sivua).... Nämä ovat kurssin Algebra I harjoitustehtävien ratkaisuehdoituksia. Ratkaisut koostuvat kahdesta osiosta,
LisätiedotDiofantoksen yhtälön ratkaisut
Diofantoksen yhtälön ratkaisut Matias Mäkelä Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 2017 Sisältö Johdanto 2 1 Suurin yhteinen tekijä 2 2 Eukleideen algoritmi 4 3 Diofantoksen yhtälön
Lisätiedot802354A Lukuteoria ja ryhmät Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä
802354A Lukuteoria ja ryhmät Luentorunko Kevät 2014 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä Sisältö 1 Ekvivalenssirelaatio 3 2 Lukuteoriaa 4 2.1 Lukuteorian
Lisätiedot802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä
802354A Algebran perusteet Luentorunko Kevät 2018 Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä Sisältö 1 Lukuteoriaa 3 1.1 Jakoalgoritmi ja alkuluvut.................... 3 1.2 Suurin yhteinen tekijä......................
Lisätiedot16. Valikoituja aiheita
16. Valikoituja aiheita Materiaalin viimeisessä luvussa käydään läpi väliinjääneitä kuntalaajennoksiin liittyviä tuloksia ja tutustutaan vielä hieman tarkemmin Galois n teoriaan. 16.1. Isomorfismien jatkaminen.
Lisätiedot6. OMINAISARVOT JA DIAGONALISOINTI
0 6 OMINAISARVOT JA DIAGONALISOINTI 6 Ominaisarvot ja ominaisvektorit Olkoon V äärellisulotteinen vektoriavaruus, dim(v ) = n ja L : V V lineaarikuvaus Määritelmä 6 Skalaari λ R on L:n ominaisarvo, jos
Lisätiedot13.3. Transkendenttisuudesta. 14. Juurikunnat Määritelmä ja olemassaolo.
13.3. Transkendenttisuudesta. Luvun todistamiseksi algebralliseksi riittää löytää polynomi, jonka juuri kyseinen luku on. Transkendenttisuuden todistaminen on sen sijaan työläämpää. Jotkut tapaukset ovat
Lisätiedot802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
Lisätiedot2017 = = = = = = 26 1
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 2, MALLIRATKAISUT Tehtävä 1. Sovella Eukleiden algoritmia ja (i) etsi s.y.t(2017, 753) (ii) etsi kaikki kokonaislukuratkaisut yhtälölle 405x + 141y = 12. Ratkaisu
LisätiedotAvainsanat Nyckelord Keywords Nullstellensatz, Hilbertin nollajoukkolause, algebrallinen geometria
HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto Fakultet/Sektion Faculty Laitos Institution Department Matemaattis-luonnontieteellinen Tekijä Författare Author Sampo
LisätiedotAlgebra II. Syksy 2004 Pentti Haukkanen
Algebra II Syksy 2004 Pentti Haukkanen 1 Sisällys 1 Ryhmäteoriaa 3 1.1 Ryhmän määritelmä.... 3 1.2 Aliryhmä... 3 1.3 Sivuluokat...... 4 1.4 Sykliset ryhmät... 7 1.5 Ryhmäisomorfismi..... 11 2 Polynomeista
LisätiedotMAT Algebra 1(s)
8. maaliskuuta 2012 Esipuhe Tämä luentokalvot sisältävät kurssin keskeiset asiat. Kalvoja täydennetään luennolla esimerkein ja todistuksin. Materiaali perustuu Jyväskylän, Helsingin ja Turun yliopistojen
LisätiedotAlgebra I, Harjoitus 6, , Ratkaisut
Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut (MV 6 sivua 1. Olkoot M ja M multiplikatiivisia monoideja. Kuvaus f : M M on monoidihomomorfismi jos 1 f(ab = f(af(b
LisätiedotHN = {hn h H, n N} on G:n aliryhmä.
Matematiikan ja tilastotieteen laitos Algebra I Ratkaisuehdoituksia harjoituksiin 8, 23.27.3.2009 5 sivua Rami Luisto 1. Osoita, että kullakin n N + lukujen n 5 ja n viimeiset numerot kymmenkantaisessa
LisätiedotKurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.
HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 05 Harjoitus 6 Ratkaisut palautettava viimeistään tiistaina.6.05 klo 6.5. Huom! Luennot ovat salissa CK maanantaista 5.6. lähtien. Kurssikoe on
LisätiedotTenttiin valmentavia harjoituksia
Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.
LisätiedotLisää ryhmästä A 5 1 / 28. Lisää ryhmästä
14A.1 14A.2 14A.3 14A.4 14A.5 14A.6 14A.7 14A.8 14A.9 14A.10 14A.11 14A.12 14A.13 1 / 28 14A.1 14A.1 14A.2 14A.3 14A.4 14A.5 14A.6 14A.7 14A.8 14A.9 14A.10 14A.11 14A.12 14A.13 Tehtävä: Määrää ryhmän karakteritaulu,
LisätiedotALGEBRA. Tauno Metsänkylä. K f. id K
ALGEBRA Tauno Metsänkylä K f τ K f τ 1 K(α 1 ) K(α 1 ) K id K K SISÄLTÖ 1 Sisältö 1 MODULI 4 1.1 Moduli; alimoduli................................ 4 1.2 Modulihomomorfia; tekijämoduli.......................
Lisätiedot1. Hiukan lineaarialgebraa
ÁÎ ÃÓ Ø ÐÓ ³Ò Ø ÓÖ 1. Hiukan lineaarialgebraa 1.1. Määritelmä. Olkoon K = (K, +, ) kunta (ns. kerroinkunta). Joukko V varustettuna yhteenlaskulla +:V V V ja skalaarikerronnalla :K V V on K- vektoriavaruus,
LisätiedotHY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot
Lisätiedot8. Avoimen kuvauksen lause
116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen
LisätiedotGalois'n teoria polynomien ratkeavuudesta. Wille Lehtomäki
Galois'n teoria polynomien ratkeavuudesta Wille Lehtomäki HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto Fakultet/Sektion Faculty Laitos Institution Department Matemaattis-luonnontieteellinen
LisätiedotAlgebran jatkokurssin demo 1,
Algebran jatkokurssin demo 1, 23.1.2014 0. Tätä nollatehtävää ei käsitellä demoissa, vaan jätetään jokaisen oman harrastuneisuuden varaan käydä läpi nämä kuviot, jotka ovat lähestulkoon identtisiä LAG:n
LisätiedotSalausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)
Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä
LisätiedotKantavektorien kuvavektorit määräävät lineaarikuvauksen
Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin
Lisätiedot