{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja
|
|
- Sami Karjalainen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 5. Aliryhmät Luvun 4 esimerkeissä esiintyy usein ryhmä (G, ) ja jokin vakaa osajoukko B G siten, että (B, B ) on ryhmä. Määrittelemme seuraavassa käsitteitä, jotka auttavat tällaisten tilanteiden käsittelyssä. Osajoukko A B on joukon B aito osajoukko, jos A B. Määritelmä 5.1. Olkoon G ryhmä. Olkoon B G, B, vakaaosajoukko.jos indusoidulla laskutoimituksella varustettu joukko B on ryhmä, niin se on ryhmän G aliryhmä. JosH G on ryhmän G aliryhmä, käytämme merkintää H G. Jos aliryhmä H on ryhmän G aito osajoukko, se on aito aliryhmä ja voimme käyttää merkintää H<G. Merkinnät H G ja H <Gsisältävät tietojen H, H G ja H G lisäksi siis sen, että H ja H ovat ryhmiä, joiden laskutoimitus on ryhmän G laskutoimituksen indusoima. Lemma 5.2. Olkoon G ryhmä. Jokaisen aliryhmän H G neutraalialkio on ryhmän G neutraalialkio. Todistus. Jos joillekin a, b H G pätee ab = b, niinryhmäng supistussäännön nojalla a on ryhmän G neutraalialkio. Kaikki ryhmän vakaat osajoukot eivät ole ryhmiä, esimerkiksi ryhmän Z vakaa osajoukko N ei ole ryhmä. Seuraava tulos antaa keinon tarkastaa, onko jokin ryhmän osajoukko aliryhmä: Propositio 5.3. Ryhmän G osajoukko H on aliryhmä, jos (1) kaikilla x, y H pätee xy 1 H, tai (2) kaikilla x, y H pätee xy H ja y 1 H. Todistus. Olkoon e G neutraalialkio. Tarkastellaan ehtoa (1): Olkoon h H. Oletuksen mukaan hh 1 H, jotene H. Samoiny 1 = ey 1 H kaikilla y H. Kaikki on siis kunnossa, jos H on vakaa osajoukko. Edellisen nojalla kaikille x, y H pätee xy = x(y 1 ) 1 H, jotenh on vakaa. Ehdosta (2) seuraa ehto (1), joten väite seuraa kohdasta (1). Esimerkki 5.4. (a) Jokaisella ryhmällä on aliryhmiä: ryhmä itse, ja neutraalialkion muodostama yhden alkion ryhmä. (b) ({0}, +) < (Z, +) < (Q, +) < (R, +) < (C, +). (c) {1} < { 1, 1} < Q < R < C. (d) Neliömatriiseista koostuville ryhmille pätee muunmuassa kaikilla n 2 ja {I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) {I n } < { I n,i n } < SL n (Z) < SL n (Q) < SL n (R) < GL n (R) < GL n (C), kun n on parillinen. Aliryhmillä on monia ominaisuuksia, jotka muistuttavat kursseilta Lineaarinen algebra 1 ja 2 tuttuja vektoriavaruuksien aliavaruuksien ominaisuuksia. Tämä ei ole yllättävää: Esimerkki 5.5. Reaalinen vektoriavaruus (eli R-vektoriavaruus) muodostuu kommutatiivisesta ryhmästä (V,+), jossa on määritelty alkioiden kertominen reaaliluvulla. Reaaliluvulla kertominen tarkoittaa kuvausta R V V, (λ, v) λv. Laskutoimitukselta ja reaaliluvulla kertomiselta oletetaan 29
2 (1) λ(v + w) =λw + λw kaikille λ R ja v, w V, (2) (λ + µ)v = λv + µv kaikille λ, µ R ja v V, (3) µ(λv) =(µλ)v kaikille λ, µ R ja v V ja (4) 1 v = v. Määritelmän mukaan reaalisen vektoriavaruuden V aliavaruus on osajoukko H V, joka on vakaa vektoriavaruuden V yhteenlaskun ja reaaliluvulla kertomisen suhteen, ja on näillä operaatioilla varustettuna reaalinen vektoriavaruus. Erityisesti (H, +) on additiivisen ryhmän (V,+) aliryhmä. Kaikki additiivisen ryhmän (V,+) aliryhmät eivät ole R-vektoriavaruuden V vektorialiavaruuksia. Esimerkiksi R-vektoriavaruudella R on vain kaksi aliavaruutta {0} ja R mutta reaalilukujen additiivisella ryhmällä on paljon enemmän aliryhmiä: Esimerkiksi joukot αz = {αk : k Z} R ja αq = {αq : q Q} R ovat ryhmän (R, +) vakaita osajoukkoja kaikilla α R ja on helppo tarkastaa, että (αz, +) < (αq, +) < (R, +) kaikilla α R {0}. Jos W on toinen R-vektoriavaruus, niin kuvaus L: V W on (R-)lineaarikuvaus, jos se on homomorfismi kommutatiivisesta ryhmästä (V,+) kommutatiiviseen ryhmään (W, +), joka on lisäksi yhteensopiva reaaliluvulla kertomisen kanssa: Kaikille λ R ja v V pätee L(λv) =λl(v). Sen todistaminen, että kaikki homomorfismit reaalilukujen additiiviselta ryhmältä itselleen eivät ole lineaarikuvauksia on hieman monimutkaisempaa. G. Hamel todisti tämän tuloksen valinta-aksiooman avulla vuonna Käyttämällä edellä olevassa määritelmässä reaalilukujen sijaan rationaalilukuja tai kompleksilukuja saadaan Q-vektoriavaruuden ja C-vektoriavaruuden ja vastaavien Q- ja C-lineaarikuvausten käsitteet. Propositio 5.6. Aliryhmien leikkaus on aliryhmä. Todistus. Harjoitustehtävä 58. Määritelmä 5.7. Olkoot G ja G ryhmiä ja olkoon e ryhmän G neutraalialkio. Ryhmähomomorfismin φ: G G ydin on ker φ = φ 1 (e ) ja sen kuva on Im φ = φ(g). Propositio 5.8. Olkoon φ: G G ryhmähomomorfismi. Olkoot H G, H G aliryhmiä. Tällöin φ(h) G ja φ 1 (H ) G ovat aliryhmiä. Erityisesti ker φ G ja Im φ G. Todistus. Olkoot φ(g),φ(h) φ(h). Tällöin φ(g)(φ(h)) 1 = φ(g)φ(h 1 )=φ(gh 1 ) φ(h), koska gh 1 H. Siisφ(H) on aliryhmä Proposition 5.3(1) nojalla. Toinen väite todistetaan harjoitustehtävässä 59. Esimerkki 5.9. (a) Olkoon φ q :(Z, +) (Z/qZ, +) luonnollinen homomorfismi, φ q (k) =[k] Z/qZ. Homomorfisminφ q ydin on qz. (b) Lineaarialgebrassa osoitettiin, että kaikille neliömatriiseille A, B M n (R) pätee det(ab) =deta det B. 30
3 Kun rajoitetaan determinantti nollajoukkonsa komplementtiin saadaan siis ryhmähomomorfismi det: GL n (R) R.DeterminantinydinonSL n (R). Determinantti voidaan määritellä samalla lausekkeella myös kompleksikertoimisille neliömatriiseille, jolloin saadaan ryhmähomomorfismi det: GL n (C) C,jonkaydinonSL n (C). Tarkastelemme ydintä ja kuvaa lähemmin luvussa 7. Seuraava ytimen ominaisuus on hyvä todeta jo tässä vaiheessa: Propositio Ryhmähomomorfismi on injektio, jos ja vain jos sen ydin on neutraalialkion muodostama ryhmä. Todistus. Olkoon φ: G G ryhmähomomorfismi. Aiemmin osoitettiin (harjoitustehtävä 44), että ryhmän G neutraalialkio e kuvautuu ryhmän G neutraalialkioksi e,jotenjosφ on injektio, sen ydin on {e}. Oletetaan, että ker φ = {e}. Olkootx, y G siten, että φ(x) =φ(y). Tällöin joten xy 1 = e eli x = y. φ(xy 1 )=φ(x)(φ(y)) 1 = e, Proposition 5.10 mukaan ryhmähomomorfismin injektiivisyyden toteamiseksi riittää tarkastella neutraalialkion alkukuvaa. Määritelmä Olkoon G ryhmä, ja olkoon B G, B. JoukonB virittämä aliryhmä B on pienin aliryhmä, joka sisältää joukon B. JoukonB alkiot ovat ryhmän B virittäjiä. Joukon B virittämä aliryhmän aliryhmän määritelmässä voi todellakin puhua pienimmästä joukon B sisältävästä aliryhmästä sillä Proposition 5.6 nojalla B = {H G : B H} G. Ryhmä B voidaan esittää konkreettisesti virittäjiensä avulla: Propositio Olkoon G ryhmä ja olkoon e G neutraalialkio. Olkoon B G, B. JoukonB virittämä aliryhmä on { (6) b ±1 1 b ±1 2 b ±1 k : b 1,b 2,...,b k B,k N {0} } {e}. Todistus. Lausekkeen (6) antama osajoukko B on ryhmän G aliryhmä Propositioiden 4.3(4) ja 5.3 nojalla. Erityisesti se on ryhmä, joka sisältää joukon B, joten B B. Toisaalta B on ryhmän G aliryhmä, joten erityisesti se on vakaa osajoukko. Koska B B, niininduktiollaonhelpponähdä,ettävakaudestaseuraa,että B sisältää kaikki muotoa b ±1 1 b ±1 2 b ±1 k olevat alkiot. Siis B B. Esimerkki (a) (Z, +) = 1 = 1 ja kaikilla q Z { 1, 1} pätee q < Z. Toisaalta Z = 2, 3 = 6, 10, 15 koska 1=3 2= , muttaaliryhmät 2, 3, 6, 10 = 2, 6, 15 = 3 ja 10, 15 = 5 ovat ryhmän (Z, +) aitoja aliryhmiä. (b) Kokeilemalla kaikki tapaukset on helppo nähdä, että jokainen nollasta poikkeava alkio virittää ryhmän (Z/5Z, +): (Z/5Z, +) = [1] = [2] = [3] = [4]. Toisaalta (Z/4Z, +) = [1] = [3] mutta [2] < (Z/4Z, +). Seuraava tulos osoittaa, että ryhmässä G määritelty ryhmähomomorfismi määräytyy yksikäsitteisesti, jos sen arvot tunnetaan virittäjäjoukossa. 31
4 Propositio Olkoon G = S ryhmä. Olkoot φ, ψ : G H ryhmähomomorfismeja, joille pätee φ S = ψ S.Tällöinφ = ψ. Todistus. Harjoitustehtävä 66. Kun ryhmän alkiot kirjoitetaan virittäjien avulla on kätevä käyttäämonikertojen ja potenssien yleistyksiä ryhmille. Itse asiassa nämä käsitteet voidaan määritellä hieman yleisemmässä tapauksessa: Olkoon (A, ) assosiatiivisella laskutoimituksella varustettu joukko. Jokaiselle a A määritellään positiiviset potenssit: Asetamme a 1 = a, jakaikillen N, n 1 asetamme a n+1 = aa n.joslaskutoimituksella varustetussa joukossa (A, ) on neutraalialkio e, asetammea 0 = e, jajosalkiolla a A on käänteisalkio, määrittelemme sen 1. potenssiksikäänteisalkiona 1,ja kaikille n Z, n 2 asetamme a n =(a 1 ) n. Assosiatiivisella laskutoimituksella varustettu joukossa (A, +) määrittelemme vastaavasti alkion a positiiviset monikerrat asettamalla 1 a = a, ja(n +1)a = na + a kaikille n Z, n 1. Joslaskutoimituksellavarustetussajoukossa(A, +) on neutraalialkio 0, niinasetetaan0 a =0 A, jajosalkiollaa A on käänteisalkio a laskutoimituksen + suhteen, asetetaan ( 1) a = a, janegatiivisillen Z asetamme na =( n)( a). Tavanomaiset laskulait pätevät potensseille ja monikerroille: Lemma Olkoon (G, ) ryhmä. Tällöin (1) (a n ) m = a nm kaikilla a G, n, m Z. (2) a n a m = a n+m kaikilla a G, n, m Z. Olkoon (H, +) ryhmä. Tällöin (3) na + ma =(n + m)a kaikilla a H, n, m Z. (4) n(ma) =(nm)a kaikilla a H, n, m Z. Todistus. Harjoitustehtävä 60. Määritelmä Olkoon G multiplikatiivinen ryhmä ja olkoon H additiivinen ryhmä. Aliryhmät a = {a n : n Z} G ja b = {nb: n Z} H ovat alkioiden a G ja b H virittämät sykliset aliryhmät. RyhmäZ on syklinen ryhmä, josona Z siten, että Z = a. Kokonaislukujen additiivisella ryhmällä on sykliset aliryhmät nz = n = {kn : k Z}, n N. Itseasiassaryhmällä(Z, +) ei ole mitään muita aliryhmiä: Propositio Kokonaislukujen additiivisen ryhmän (Z, +) kaikki aliryhmät ovat syklisiä. Erityisesti Z on syklinen ryhmä. Todistus. Huomataan ensin, että {0} =0Z ja Z =1Z. OlkoonH<Z, H {0} jokin aliryhmä. Olkoon q pienin positiivinen kokonaisluku aliryhmässä H. Tällöin siis qz <H. Osoitamme, että H = qz. Josonm H qz, niinm = aq + b joillakin a, b Z siten, että 1 b<q.nytb H, jotenq ei olekaan pienin positiivinen kokonaisluku ryhmässä H, mikäonristiriita.siish = qz. 32
5 Edellä käsitellyistä esimerkeistä muun muassa ryhmät Z = 1 ja Z/qZ = [1], q 2, ovat syklisiä. Sen sijaan esimerkiksi Q ja R eivät ole syklisiä. Reaaliluvuille tämä on selvää koska syklinen ryhmä on aina numeroituva, rationaalilukujen tapaus käsitellään harjoitustehtävässä 64. Lause (1) Syklinen ryhmä, jossa on vähintään kaksi alkiota, on isomorfinen joko ryhmän (Z, +) tai jonkin ryhmän (Z/qZ, +), q 2 kanssa. (2) Syklisen ryhmän kuva ryhmähomomorfismissa on syklinen. (3) Jokainen syklisen ryhmän aliryhmä on syklinen. Todistus. (1) Olkoon C = g syklinen ryhmä ja olkoon φ: (Z, +) C, φ(n) =g n. Lemman 5.15 nojalla φ on homomorfismi ja ryhmän C määritelmän nojalla se on surjektio. Jos φ on injektio, se on isomorfismi. Jos φ ei ole injektio, niin Propositioiden 5.8, 5.10 ja 5.17 nojalla ker φ = qz jollain q 2. Olkoonψ :(Z/qZ, +) C, ψ([k]) = φ(k) =g k.kuvausψ on hyvin määritelty: jos k k mod q, niink k qz =kerφ, joteng k = g k g k k = g k. Kuvaus ψ on homomorfismi: ψ([n])ψ([m]) = g n g m = g n+m = ψ([n + m]) = ψ([n]+[m]). Homomorfismi ψ on surjektio koska φ on surjektio. Proposition 5.10 nojalla injektiivisyyden todistamiseen riittää osoittaa, että ker ψ = {[0]}. Oletetaansiis,että ψ([k]) = e G. Tällöinφ(k) =e, jotenk qz ja [k] =[q] = [0]. (2) Harjoitustehtävä 65. (3) Väite todistettiin sykliselle ryhmälle (Z, +) Propositiossa Olkoon C = g syklinen ryhmä, ja olkoon H < C.Olkoonφ: (Z, +) C (surjektiivinen) homomorfismi φ(n) =g n.tällöinproposition5.8nojallaφ 1 (H) (Z, +), joten Proposition 5.17 nojalla φ 1 (H) =NZ jollain N Z. Erityisestiφ 1 (H) on syklinen ryhmä. Koska H = φ(φ 1 (H)), väiteseuraakohdasta(2). Koska Lauseen 5.18 mukaan kaikki keskenään yhtä mahtavat sykliset ryhmät ovat isomorfisia keskenään, voimme puhua abstraktista n alkion syklisestä ryhmästä C n ja äärettömästä syklisestä ryhmästä C.Toisinaansyklisilleryhmillekäytetäänmerkintöjä Z n ja Z. Esimerkki (a) Ryhmän (R 2, +) alkiot (0, 1) ja (1, 0) virittävät aliryhmän (0, 1), (1, 0) =(Z 2, +) < (R 2, +). (Z 2, +) ei ole syklinen ryhmä: Jos a, b 0,niin( a, b) ei ole alkion (a, b) Z 2 virittämässä aliryhmässä. Lisäksi alkioiden (a, 0) ja (0,a) virittämät sykliset ryhmät sisältyvät ryhmän (Z 2, +) aitoihin aliryhmiin Z {0} ja {0} Z, jotenmyöskään tätä muotoa olevat alkiot eivät voi yksinään virittää ryhmää (Z 2, +). (b) Esimerkissä 4.10 käsitelty Kleinin neliryhmä K = f,g ja sen kanssa isomorfinen ryhmä Z/2Z Z/2Z = ([0], [1]), ([1], [0]) eivät ole syklisiä, koska jokaisen neutraalialkiosta poikkeavan alkion virittämä syklinen ryhmä on isomorfinen ryhmän Z/2Z kanssa. Erityisesti siis neljän alkion kommutativiset ryhmät Z/4Z ja Z/2Z Z/2Z eivät ole isomorfisia. Edellä esitellyn syklisten ryhmien merkinnän avulla edellinen on hieman lyhyempi ilmaista: ryhmät C 4 ja C 2 C 2 eivät ole isomorfisia. Määritelmä Ryhmän G alkioiden lukumäärä #G on ryhmän G kertaluku. Ryhmän G alkion g kertaluku ord g on sen virittämän syklisen aliryhmän kertaluku, ord g =# g. 33
6 Lemma Olkoon G ryhmä ja olkoon e ryhmän G neutraalialkio. Jos jollain k Z {0} pätee g k = e, niin Lisäksi Todistus. Harjoitustehtävä 67. ord g = min{k 1:g k = e}. g = {e, g, g 2,...,g ord g 1 }. Esimerkki (a) Ryhmien K ja C 2 C 2 kertaluku on 4 ja niiden jokaisen neutraalialkiosta poikkeavan alkion kertaluku on 2. (b) Ryhmän C 4 = (Z/4Z, +) kertaluku on 4 ja sen alkioiden [1] ja [3] kertaluku on 4. Tämäonhelppotarkastaavaikkaalkiolle[3]: 2[3] = [3] + [3] = [6] = 2, 3[3] = [6] + [3] = [2] + [3] = [5] = [1] ja 4[3] = [1] + [3] = [4] = [0]. Harjoitustehtäviä. Tehtävä 56. Osoita, että on ryhmän C aliryhmä. S 1 = {z C : z =1} Tehtävä 57. Anna esimerkki surjektiivisesta homomorfismista f :(R, +) (S 1, ). Tehtävä 58. Olkoon G ryhmä, olkoon I jokin indeksijoukko ja olkoot H i G, i I. Osoita,että H i G. i I Tehtävä 59. Olkoon φ: G G ryhmähomomorfismi. Olkoon H G.Osoita: φ 1 (H ) G. Tehtävä 60. Todista Lemman 5.15 kohtien (1) ja (2) potenssien laskusäännöt. Tehtävä 61. Määritä kaikki ryhmien (Z/6Z, +) ja (Z/7Z, +) aliryhmät. Tehtävä 62. Osoita, että ryhmät Z/6Z ja Z/2Z Z/3Z ovat isomorfisia. Tehtävä 63. Olkoon q N {0}. Osoita,ettäjoukko J q = {w C : w q =1} varustettuna kompleksilukujen kertolaskulla on ryhmän C aliryhmä. Osoita, että ryhmä J q on isomorfinen ryhmän (Z/qZ, +) kanssa. Tehtävä 64. Osoita, että rationaalilukujen additiivinen ryhmä ei ole syklinen. Tehtävä 65. Olkoon C syklinen ryhmä ja olkoon φ: C G ryhmähomomorfismi. Osoita, että φ(c) G on syklinen aliryhmä. Tehtävä 66. Olkoon G = S ryhmä. Olkoot φ, ψ : G H ryhmähomomorfismeja, joille pätee φ S = ψ S.Osoita,ettäφ = ψ. Tehtävä 67. Olkoon G ryhmä ja olkoon e ryhmän G neutraalialkio. Olkoon g G alkio, jolle pätee g k = e jollain k Z {0}. Osoita,että ord g = min{k 1:g k = e}. Tehtävä 68. Määritä matriisien A, B, C SL 2 (Z) kertaluvut, kun ( ) ( ) ( ) A =, B =, ja C = Vihje: Osoita, että Z/2Z Z/3Z on syklinen ryhmä. 34
{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja
5. Aliryhmät Luvun 4 esimerkeissä esiintyy usein ryhmä (G, ) ja jokin vakaa osajoukko B G siten, että (B, B ) on ryhmä. Määrittelemme seuraavassa käsitteitä, jotka auttavat tällaisten tilanteiden käsittelyssä.
Esko Turunen MAT Algebra1(s)
Määritelmä (4.1) Olkoon G ryhmä. Olkoon H G, H. Jos joukko H varustettuna indusoidulla laskutoimituksella on ryhmä, se on ryhmän G aliryhmä. Jos H G on ryhmän G aliryhmä, merkitään usein H G, ja jos H
Esko Turunen Luku 3. Ryhmät
3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,
jonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä
4. Ryhmät Tässä luvussa tarkastelemme laskutoimituksella varustettuja joukkoja, joiden laskutoimitukselta oletamme muutamia yksinkertaisia ominaisuuksia: Määritelmä 4.1. Laskutoimituksella varustettu joukko
H = H(12) = {id, (12)},
7. Normaali aliryhmä ja tekijäryhmä Tarkastelemme luvun aluksi ryhmän ja sen aliryhmien suhdetta. Olkoon G ryhmä ja olkoon H G. Alkiong G vasen sivuluokka (aliryhmän H suhteen) on gh = {gh : h H} ja sen
renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x
8. Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme näiltä kahdella laskutoimituksella varustetuilta
H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.
10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas
(xa) = (x) (a) = (x)0 = 0
11. Ideaalit ja tekijärenkaat Rengashomomorfismi : R! R 0 on erityisesti ryhmähomomorfismi :(R, +)! (R 0, +) additiivisten ryhmien välillä. Rengashomomorfismin ydin määritellään tämän ryhmähomomorfismin
Ideaalit ja tekijärenkaat Ryhmähomomorfismin φ : G G ydin on ryhmän G normaali aliryhmä. Esko Turunen Luku 7. Ideaalit ja tekijärenkaat
Ideaalit ja tekijärenkaat Ryhmähomomorfismin φ : G G ydin on ryhmän G normaali aliryhmä. Ideaalit ja tekijärenkaat Ryhmähomomorfismin φ : G G ydin on ryhmän G normaali aliryhmä. Rengashomomorfismi ψ :
[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko
3. Tekijälaskutoimitus, kokonaisluvut ja rationaaliluvut Tässä luvussa tutustumme kolmanteen tapaan muodostaa laskutoimitus joukkoon tunnettujen laskutoimitusten avulla. Tätä varten määrittelemme ensin
MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen
MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen Tehtävä 1. Onko joukon X potenssijoukon P(X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen
802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja
Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,
1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
ALGEBRA KEVÄT 2013 JOUNI PARKKONEN
ALGEBRA KEVÄT 2013 JOUNI PARKKONEN Algebra käsittelee laskemista. Osin tämä tarkoittaa numeroilla laskemista lukualueissa N, Z, Q, R, C laskutoimituksilla + ja ja niiden käänteisoperaatioilla ja / siinä
(x + I) + (y + I) = (x + y)+i. (x + I)(y + I) =xy + I. kaikille x, y R.
11. Ideaalit ja tekijärenkaat Rengashomomorfismi φ: R R on erityisesti ryhmähomomorfismi φ: (R, +) (R, +) additiivisten ryhmien välillä. Rengashomomorfismin ydin määritellään tämän ryhmähomomorfismin φ
rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.
9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat
802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) 31.1.-4.2.2011 OT 1. Määritellään kokonaisluvuille laskutoimitus n m = n + m + 5. Osoita, että (Z, ) on ryhmä.
Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.
1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:
Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.
Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin
Algebra 1, harjoitus 9, h = xkx 1 xhx 1. a) Käytetään molemmissa tapauksissa isomorfialausetta. Tarkastellaan kuvauksia
Algebra 1, harjoitus 9, 11.-12.11.2014. 1. Olkoon G ryhmä ja H G normaali aliryhmä. Tiedetään, että tällöin xhx 1 H kaikilla x G. Osoita, että itse asiassa xhx 1 = H kaikilla x G. Ratkaisu: Yritetään osoittaa,
Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden
Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen
Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen anton.mallasto@aalto.fi. 1. 2. Muista. Ryhmän G aliryhmä H on normaali aliryhmä, jos ah = Ha kaikilla a G. Toisin
a b 1 c b n c n
Algebra Syksy 2007 Harjoitukset 1. Olkoon a Z. Totea, että aina a 0, 1 a, a a ja a a. 2. Olkoot a, b, c, d Z. Todista implikaatiot: a) a b ja c d ac bd, b) a b ja b c a c. 3. Olkoon a b i kaikilla i =
k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0
1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota
HN = {hn h H, n N} on G:n aliryhmä.
Matematiikan ja tilastotieteen laitos Algebra I Ratkaisuehdoituksia harjoituksiin 8, 23.27.3.2009 5 sivua Rami Luisto 1. Osoita, että kullakin n N + lukujen n 5 ja n viimeiset numerot kymmenkantaisessa
Kuvaus. Määritelmä. LM2, Kesä /160
Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä
on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään
5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}
Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.
LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,
MAT Algebra I (s) periodeilla IV ja V/2009. Esko Turunen
MAT-41150 Algebra I (s) periodeilla IV ja V/2009. Esko Turunen Tämä tiedosto sisältää kurssin kaikki laskuharjoitukset. viikottain uusia tehtäviä. Tiedostoon lisätään To 05.02.09 pidetyt harjoitukset.
3 Ryhmäteorian peruskäsitteet ja pienet ryhmät, C 2
3 Ryhmäteorian peruskäsitteet ja pienet ryhmät, C 2 Olen valinnut kunkin luvun teemaksi yhden ryhmän. Ensimmäisen luvun teema on pienin epätriviaali ryhmä, eli ryhmä, jossa on kaksi alkiota. Merkitsen
1 Avaruuksien ja lineaarikuvausten suora summa
MAT-33500 Differentiaaliyhtälöt, kevät 2006 Luennot 27.-28.2.2006 Samuli Siltanen 1 Avaruuksien ja lineaarikuvausten suora summa Tämä asialöytyy myös Hirschin ja Smalen kirjasta, luku 3, pykälä 1F. Olkoon
Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.
Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat
Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44
Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.
Algebra 1. Jouni Parkkonen Luentoja Jyväskylän yliopistossa talvella 2019
Algebra 1 Jouni Parkkonen Luentoja Jyväskylän yliopistossa talvella 2019 Sisältö I Renkaat ja kunnat 1 1 Laskutoimitukset 3 1.1 Laskutoimitus.................................. 3 1.2 Indusoitu laskutoimitus.............................
Äärellisesti generoitujen Abelin ryhmien peruslause
Tero Harju (2008/2010) Äärellisesti generoitujen Abelin ryhmien peruslause Merkintä X on joukon koko ( eli #X). Vapaat Abelin ryhmät Tässä kappaleessa käytetään Abelin ryhmille additiivista merkintää.
9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista
29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n
Tekijäryhmät ja homomorsmit
Tekijäryhmät ja homomorsmit LuK-tutkielma Henna Isokääntä 1953004 henna.isokaanta@gmail.com Matemaattiset tieteet Oulun yliopisto Kevät 2019 Sisältö Johdanto 1 1 Tekijäryhmät 1 2 Homomorsmit 3 Lähdeluettelo
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen
802355A Algebralliset rakenteet Luentorunko Syksy 2016 Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen Sisältö 1 Kertausta kurssilta Algebran perusteet 3 2 Renkaat 8 2.1 Renkaiden teoriaa.........................
a 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle.
Harjoitus 10 (7 sivua) Ratkaisuehdotuksia/Martina Aaltonen Tehtävä 1. Mitkä seuraavista yhtälöistä pätevät mielivaltaisen renkaan alkioille a ja b? a) a 2 ba = (a b)a b) (a + b + 1)(a b) = a 2 b 2 + a
MAT Algebra 1(s)
8. maaliskuuta 2012 Esipuhe Tämä luentokalvot sisältävät kurssin keskeiset asiat. Kalvoja täydennetään luennolla esimerkein ja todistuksin. Materiaali perustuu Jyväskylän, Helsingin ja Turun yliopistojen
Liite 2. Ryhmien ja kuntien perusteet
Liite 2. Ryhmien ja kuntien perusteet 1. Ryhmät 1.1 Johdanto Erilaisissa matematiikan probleemoissa törmätään usein muotoa a + x = b tai a x = b oleviin yhtälöihin, joissa tuntematon muuttuja on x. Lukujoukkoja
Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/310 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
Avaruuden R n aliavaruus
Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla
Algebra I, harjoitus 8,
Algebra I, harjoitus 8, 4.-5.11.2014. 1. Olkoon G ryhmä ja H sen normaali aliryhmä. Todista, että tällöin G/H on ryhmä, kun määritellään laskutoimitus joukossa G/H asettamalla aina, kun x, y G (lauseen
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat:
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) 21.2.-25.2.2011 OT 1. a) Määritä seuraavat summat: [2] 4 + [3] 4, [2] 5 + [3] 5, [2] 6 + [2] 6 + [2] 6, 7 [3]
ALGEBRA KEVÄT 2011 JOUNI PARKKONEN
ALGEBRA KEVÄT 2011 JOUNI PARKKONEN Sisältö 1. Laskutoimitukset 1 2. Kompleksiluvut 8 3. Tekijälaskutoimitus, kokonaisluvut ja rationaaliluvut 15 4. Ryhmät 20 5. Aliryhmät 26 6. Aärelliset permutaatioryhmät
LUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että
LUKUTEORIA A Harjoitustehtäviä, kevät 2013 1. Olkoot a, b, c Z, p P ja k, n Z +. (a) Osoita, että jos niin Osoita, että jos niin (c) Osoita, että jos niin (d) Osoita, että (e) Osoita, että a bc ja a c,
4 Abelin ryhmät. 4.1 Suorat tulot ja summat
4 Abelin ryhmät Ensimmäisellä ryhmäteorian kurssilla käytiin läpi lähinnä syklisiä ryhmiä. Tällä kurssilla keskitymme epäkommutatiivisiin esimerkkeihin. On kuitenkin niin, että äärellisesti viritettyjen
Laitos/Institution Department Matematiikan ja tilastotieteen laitos. Aika/Datum Month and year Huhtikuu 2014
Tiedekunta/Osasto Fakultet/Sektion Faculty Matemaattis-luonnontieteellinen tiedekunta Laitos/Institution Department Matematiikan ja tilastotieteen laitos Tekijä/Författare Author Anna-Mari Pulkkinen Työn
Kantavektorien kuvavektorit määräävät lineaarikuvauksen
Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin
x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
4. Ryhmien sisäinen rakenne
4. Ryhmien sisäinen rakenne Tässä luvussa tarkastellaan joitakin tapoja päästä käsiksi ryhmien sisäiseen rakenteeseen. Useimmat tuloksista ovat erityisen käyttökelpoisia äärellisten ryhmien tapauksessa.
Johdatus lineaarialgebraan
Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................
Shorin algoritmin matematiikkaa Edvard Fagerholm
Edvard Fagerholm 1 Määritelmiä Määritelmä 1 Ryhmä G on syklinen, jos a G s.e. G = a. Määritelmä 2 Olkoon G ryhmä. Tällöin alkion a G kertaluku ord(a) on pienin luku n N \ {0}, jolla a n = 1. Jos lukua
Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}.
Jaetaan ryhmä G = Z 17 n H = 4 sivuluokkiin. Ratkaisu: Koska 17 on alkuluku, #G = 16, alkiona jäännösluokat a, a = 1, 2,..., 16. Määrätään ensin n H alkiot: H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4
802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO Syksy 2017 LINEAARIALGEBRA 1 / 59 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVÄT 2019 LINEAARIALGEBRA 1 / 60 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
Lineaarikuvauksen R n R m matriisi
Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua)
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin ( sivua).... Nämä ovat kurssin Algebra I harjoitustehtävien ratkaisuehdoituksia. Ratkaisut koostuvat kahdesta osiosta,
802320A LINEAARIALGEBRA OSA III LINEAR ALGEBRA PART III
802320A LINEAARIALGEBRA OSA III LINEAR ALGEBRA PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 Contents 1 Lineaarikuvaus 2 1.1 Määritelmä............................ 2 1.2 Matriisiesitys/Matrix
x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Ratkaisuluonnoksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
Algebra I, harjoitus 5,
Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)
sitä vastaava Cliffordin algebran kannan alkio. Merkitään I = e 1 e 2 e n
Määritelmä 1.1 Algebran A keskus C on joukko C (A) = {a A ax = xa x A}. Lause 1. Olkoon Cl n Cliffordin algebra, jonka generoi joukko {e 1,..., e n }. Jos n on parillinen, niin C (Cl n ) = {λ λ R}. Jos
6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio
6 Vektoriavaruus R n 6.1 Lineaarikombinaatio Määritelmä 19. Vektori x œ R n on vektorien v 1,...,v k œ R n lineaarikombinaatio, jos on olemassa sellaiset 1,..., k œ R, että x = i v i. i=1 Esimerkki 30.
koska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan
4. Äärellisten kuntien yleisiä ominaisuuksia 4.1. Laajenuskunnat. Tarkastellaan aluksi yleistä kuntaparia F ja K, missä F on kunnan K alikunta. Tällöin sanotaan, että kunta K on kunnan F laajennuskunta
Lineaarialgebra II P
Lineaarialgebra II 89P Sisältö Vektoriavaruus Sisätuloavaruus 8 3 Lineaarikuvaus 5 4 Ominaisarvo 5 Luku Vektoriavaruus Määritelmä.. Epätyhjä joukko V on vektoriavaruus, jos seuraavat ehdot ovat voimassa:.
Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta:
MATP00 Johdatus matematiikkaan Ylimääräisten tehtävien ratkaisuehdotuksia. Osoita, että 00 002 < 000 000. Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa. Lähdetään sieventämään epäyhtälön
Algebra I. Jokke Häsä ja Johanna Rämö. Matematiikan ja tilastotieteen laitos Helsingin yliopisto
Algebra I Jokke Häsä ja Johanna Rämö Matematiikan ja tilastotieteen laitos Helsingin yliopisto Kevät 2011 Sisältö 1 Laskutoimitukset 6 1.1 Työkalu: Joukot ja kuvaukset..................... 6 1.1.1 Joukko..............................
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) 28.3.-1.4.2011 OT 1. a) Osoita, että rengas R = {[0] 10, [2] 10, [4] 10, [6] 10, [8] 10 } on kokonaisalue. Mikä
802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita
802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 25 Lukujoukkoja N = {0, 1, 2,..., GOOGOL 10,...} = {ei-negatiiviset
Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto
Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,
Lineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden
Syklinen ryhmä Pro Gradu -tutkielma Taava Kuha Matemaattisten tieteiden laitos Oulun yliopisto 2016
Syklinen ryhmä Pro Gradu -tutkielma Taava Kuha Matemaattisten tieteiden laitos Oulun yliopisto 2016 Sisältö Johdanto 2 1 Ryhmäteoriaa 4 1.1 Ryhmän määritelmä....................... 4 1.2 Kertaluku.............................
(1.1) Ae j = a k,j e k.
Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim
Determinantti 1 / 30
1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet Vektoriavaruus
Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )
Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä
Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:
8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden
(ψ + ζ)φ(a) = ψφ(a) + ζφ(a) = (ψφ + ζφ)(a), φ(ψ + ζ)(a) = φ(ψ(a) + ζ(a)) = φψ(a) + φζ(a) = (φψ + φζ)(a).
ALGEBRA 2007 15 Todistus. Mieti, miksi kuvaus on hyvin määritelty! Surjektiivisuus on selvää. Lisäksi φ(xkyk) = φ(xyk) = xyh = xhyh = φ(xk)φ(yk), joten kuvaus on homomorfismi. Jos y H, niin φ(yk) = yh
Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.
Polynomit Tarkastelemme polynomirenkaiden teoriaa ja polynomiyhtälöiden ratkaisemista. Algebrassa on tapana pitää erillään polynomin ja polynomifunktion käsitteet. Polynomit Tarkastelemme polynomirenkaiden
MS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon
Algebran ja lukuteorian harjoitustehtäviä. 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen
Algebran ja lukuteorian harjoitustehtäviä Versio 1.0 (27.1.2006) Turun yliopisto Lukuteoria 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen joukolla: a) C D
ei ole muita välikuntia.
ALGEBRA II 41 Lause 4.15. F q m on polynomin x qm x hajoamiskunta kunnan F q suhteen. Todistus. Olkoon α kunnan F q m primitiivialkio. Nyt F qm =< α > muodostuu täsmälleen polynomin x qm 1 1nollakohdistajatäten
Lineaarialgebra Kerroinrenkaat. Kevät Kerkko Luosto Informaatiotieteiden yksikkö, Tampereen yliopisto
Lineaarialgebra 2 Kevät 2014 Kerkko Luosto Informaatiotieteiden yksikkö, Tampereen yliopisto Á Ë Ð Ö Ø Ú ØÓÖ Ø 1. Kerroinrenkaat 1.1. Määritelmä. Yhden laskutoimituksen rakenne(g, + on Abelin ryhmä, jos
Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi
Lineaarikuvaukset aiheita ten ten 1 Matematiikassa sana lineaarinen liitetään kahden lineaariavaruuden väliseen kuvaukseen. ten Määritelmä Olkoon (L, +, ) ja (M, ˆ+, ˆ ) reaalisia lineaariavaruuksia, ja
Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi
Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi TKK (c) Ilkka Mellin (2007) 1 Joukko-oppi >> Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot
Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013
Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Sisältö Johdanto 2 1 Ryhmä 3 2 Symmetrinen ryhmä 6 3 Symmetriaryhmä 10 4 Dihedraalinen ryhmä 19 Lähdeluettelo
1 Tensoriavaruuksista..
1 Tensoriavaruuksista.. Käydään läpi kirjan (1) sivut 126-133. 19.02.2007 Palautetaaieleen viime kerran tärkeä määritelmä: (kirja, Määr. 5.12). Määritelmä 1.1 Olkoon T vektoriavaruus ja Φ : V 1 V 2 V m
6. Tekijäryhmät ja aliryhmät
6. Tekijäryhmät ja aliryhmät Tämän luvun tavoitteena on esitellä konstruktio, jota kutsutaan tekijäryhmän muodostamiseksi. Konstruktiossa lähdetään liikkeelle jostakin isosta ryhmästä, samastetaan alkioita,
Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32
1 / 32 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki 4B.2 Esimerkki 4B.3 Esimerkki 4C.1 Esimerkki 4C.2 Esimerkki 4C.3 2 / 32 Esimerkki 4A.1 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki
Algebra kl Tapani Kuusalo
Algebra kl. 2010 Tapani Kuusalo Sisältö Luku 1. Luonnolliset luvut 1 Luku 2. Laskutoimitukset 4 1. Laskutoimitusten yleiset ominaisuudet 4 2. Neutraali- ja käänteisalkiot 6 3. Indusoidut laskutoimitukset,
Lisää ryhmästä A 5 1 / 28. Lisää ryhmästä
14A.1 14A.2 14A.3 14A.4 14A.5 14A.6 14A.7 14A.8 14A.9 14A.10 14A.11 14A.12 14A.13 1 / 28 14A.1 14A.1 14A.2 14A.3 14A.4 14A.5 14A.6 14A.7 14A.8 14A.9 14A.10 14A.11 14A.12 14A.13 Tehtävä: Määrää ryhmän karakteritaulu,
Johdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT Tehtävä 1. (i) Olkoot n, d 1 ja d n. Osoita, että (k, n) d jos ja vain jos k ad, missä (a, n/d) 1. (ii) Osoita, että jos (m j, m k ) 1 kun
Peruskäsitteet. 0. Kertausta
Peruskäsitteet 0. Kertausta Tässä luvussa käydään läpi sellaiset peruskäsitteet ja merkinnät, joiden oletetaan olevan tuttuja aiemmalta algebran kurssilta. 0.1. Laskutoimitukset. Olkoon X joukko. Joukon
MATEMATIIKAN JA TILASTOTIETEEN LAITOS JYVÄSKYLÄN YLIOPISTO
JYVÄSKYLÄN YLIOPISTO Lineaariset Lien ryhmät MATEMATIIKAN JA TILASTOTIETEEN LAITOS 30.1.2012 / Harjoitus 2 Ratkaisut 1. Affiinit kuvaukset lineaarikuvauksina Kuvaus f A,b : R n R n : x Ax + b (Tässä A