DEE-11110 Sähkötekniikan perusteet



Samankaltaiset tiedostot
SMG-2100: SÄHKÖTEKNIIKKA

Sinimuotoinen vaihtosähkö ja siihen liittyviä käsitteitä ja suureita. Sinimuotoisten suureiden esittäminen osoittimilla

DEE Sähkötekniikan perusteet

SMG-2100: SÄHKÖTEKNIIKKA

S Piirianalyysi 1 2. välikoe

Kolmivaihejärjestelmän perusteet. Pekka Rantala

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen

Sähkötekniikka. NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014

SMG-2100: SÄHKÖTEKNIIKKA

Sähkötekniikka ja elektroniikka

SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit

SMG-1100: PIIRIANALYYSI I

SATE1040 Piirianalyysi IB kevät /6 Laskuharjoitus 5: Symmetrinen 3-vaihejärjestelmä

SMG-2100: SÄHKÖTEKNIIKKA. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit

Kondensaattori ja vastus piirissä (RC-piiri)

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

DEE Sähkötekniikan perusteet

Pynnönen Opiskelija: Tarkastaja: Arvio:

Kondensaattori ja vastus piirissä (RC-piiri)

SMG-1100: PIIRIANALYYSI I

Aktiiviset piirikomponentit. DEE Piirianalyysi Risto Mikkonen

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi

Luento 2. DEE Piirianalyysi Risto Mikkonen

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan. cos sin.

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Luku 13. Vaihtovirrat Sinimuotoinen vaihtojännite

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

Lineaarialgebra MATH.1040 / Piirianalyysiä 2

14.1 Tasavirtapiirit ja Kirchhoffin lait R 1. I 1 I 3 liitos + - R 2. silmukka. Kuva 14.1: Liitoksen, haaran ja silmukan määrittely virtapiirissä.

VAIHTOVIRTAPIIRI. 1 Työn tavoitteet

Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä 0 jännitteen ja virran arvot ovat. 500t.

SMG-1100: PIIRIANALYYSI I

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

DEE Sähkötekniikan perusteet

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

Elektroniikan kaavoja 1 Elektroniikan Perusteet I1 I2 VAIHTOVIRROILLA. Z = R + j * X Z = R*R + X*X

( ) ( ) ( ) ( ) SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 1(3) Tehtävien ratkaisuehdotukset

Kuva 1. Vastus (R), kondensaattori (C) ja käämi (L). Sinimuotoinen vaihtojännite

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.

215.3 MW 0.0 MVR pu MW 0.0 MVR

Pynnönen Opiskelija: Tarkastaja: Arvio:

Sähkötekniikka ja elektroniikka

SMG-2100: SÄHKÖTEKNIIKKA. Kompleksilukujen hyödyntäminen vaihtosähköpiirien

ELEC-E8419 syksy 2016 Jännitteensäätö

DEE Sähkötekniikan perusteet

DEE Sähkötekniikan perusteet

2.2 Energia W saadaan, kun tehoa p(t) integroidaan ajan t suhteen. Täten akun kokonaisenergia W tot saadaan lausekkeesta ( )

Luento 2. SMG-2100 Sähkötekniikka Risto Mikkonen

SMG-1100: PIIRIANALYYSI I. Verkkojen taajuusriippuvuus: suo(dat)timet

Mitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia.

SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 7. Tehtävä 1

Elektroniikan perusteet, Radioamatööritutkintokoulutus

Luento 6. DEE Piirianalyysi Risto Mikkonen

Sinin muotoinen signaali

Passiiviset piirikomponentit. 1 DEE Piirianalyysi Risto Mikkonen

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

RCL-vihtovirtapiiri: resonanssi

SATE1050 PIIRIANALYYSI II / MAARIT VESAPUISTO: APLAC, MATLAB JA SIMULINK -HARJOITUSTYÖ / SYKSY 2015

SATE1040 PIIRIANALYYSI I / MAARIT VESAPUISTO: APLAC -HARJOITUSTYÖ / KEVÄT RYHMÄ 4: Luoma, Tervo

Magneettinen energia

Tasasähköyhteyden suuntaaj-asema. Ue j0ƒ. p,q

Luento 2. 1 DEE Piirianalyysi Risto Mikkonen

SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 2(3) Tehtävien ratkaisuehdotukset

FYS206/5 Vaihtovirtakomponentit

Elektroniikan perusteet, Radioamatööritutkintokoulutus

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

Kompleksiluvut., 15. kesäkuuta /57

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

IMPEDANSSIMITTAUKSIA. 1 Työn tavoitteet

Kirchhoffin jännitelain perusteella. U ac = U ab +U bc U ac = U ad +U dc. U ac = R 1 I 12 +R 2 I 12 U ac = R 3 I 34 +R 4 I 34, ja I 34 = U ac

1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7

Loistehon kompensointi

Scanned by CamScanner

SÄHKÖTEKNIIKKA. NTUTAS13 Tasasähköpiirit Jussi Hurri kevät 2015

Kaksi yleismittaria, tehomittari, mittausalusta 5, muistiinpanot ja oppikirjat. P = U x I

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen.

SÄHKÖTEKNIIKKA. NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015

Sähkövirran määrittelylausekkeesta

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S Suuntaajatekniikka Tentti

Katso Opetus.tv:n video: Kirchhoffin 1. laki

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

d+tv 1 S l x 2 x 1 x 3 MEI Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen

Fy06 Koe Kuopion Lyseon lukio (KK) 1/7

Pynnönen Opiskelija: Tarkastaja: Arvio:

S SÄHKÖTEKNIIKKA Kimmo Silvonen

TTY FYS-1010 Fysiikan työt I Asser Lähdemäki, S, 3. vsk. AA 5.2 Vaihtosähköpiiri Antti Vainionpää, S, 3. vsk.

3D-kuva A B C D E Kuvanto edestä Kuvanto sivulta Kuvanto päältä. Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p.

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa;

Lasketaan siirretty teho. Asetetaan loppupään vaihejännitteelle kulmaksi nolla astetta. Virran aiheuttama jännitehäviö johdolla on

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

a P en.pdf KOKEET;

1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla

Sähkötekniikka ja elektroniikka

Transkriptio:

DEE-11110 Sähkötekniikan perusteet Antti Stenvall Teho vaihtosähköpiireissä ja symmetriset kolmivaihejärjestelmät

Luennon keskeinen termistö ja tavoitteet Kompleksinen teho S ja näennästeho S Loisteho Q Symmetriset kolmivaihejärjestelmät Pätöteho P Tarkoitus on ymmärtää mitä eri vaihtosähköpiireihin liittyvät tehotermit tarkoittavat. Jatketaan myös harjoituksia vaihtosähköpiirien analyysistä tutuilla menetelmillä ja tutustutaan kolmivaihejärjestelmiin.

Johdatellaan aiheeseen esimerkillä Ratkaise kuvan piirissä jännitelähteen syöttämä teho silmukkavirtamenetelmällä. 5Ω 5 mh + U(t) 15 mh 0.5 mf U(t) = 325sin(100πt) V, M = 7.5 mh

Hetkellinen teho Hetkellisarvot jännitteelle ja virralle ovat U(t) = Ûsin(ωt +ϕ U ) I(t) = Î sin(ωt +ϕ I )

Hetkellinen teho Hetkellisarvot jännitteelle ja virralle ovat U(t) = Ûsin(ωt +ϕ U ) I(t) = Î sin(ωt +ϕ I ) Tällöin tehoksi saadaan P(t) = U(t)I(t) = ÛÎ sin(ωt +ϕ U )sin(ωt +ϕ I )

Hetkellinen teho Hetkellisarvot jännitteelle ja virralle ovat U(t) = Ûsin(ωt +ϕ U ) I(t) = Î sin(ωt +ϕ I ) Tällöin tehoksi saadaan P(t) = U(t)I(t) = ÛÎ sin(ωt +ϕ U )sin(ωt +ϕ I ) Kaivetaan avuksi trigonometriaa sin(x)sin(y) = 1 (cos(x y) cos(x +y)) 2

Hetkellinen teho Hetkellisarvot jännitteelle ja virralle ovat Tällöin tehoksi saadaan U(t) = Ûsin(ωt +ϕ U ) I(t) = Î sin(ωt +ϕ I ) P(t) = U(t)I(t) = ÛÎ sin(ωt +ϕ U )sin(ωt +ϕ I ) Kaivetaan avuksi trigonometriaa sin(x)sin(y) = 1 (cos(x y) cos(x +y)) 2 Jolloin teho voidaan kirjoittaa seuraavasti P(t) = ÛÎ 2 cos(ϕ U ϕ I ) ÛÎ 2 cos(2ωt +ϕ U +ϕ I )

Tehon eri komponentit Mitä edeltä voidaan havaita? Teho koostuu kahdesta termistä, joista toinen riippuu ajasta ja toinen ei. Jos kirjoitetaan teho osoittimien pituuksien avulla saadaan P(t) = U I cos(ϕ U ϕ I ) U I cos(2ωt +ϕ U +ϕ I ) Ensimmäinen termihän edustaa nyt keskimääräistä tehoa vastuksessa (tällöin ϕ U = ϕ I ). Toisen termin avulla päästään käsiksi siihen miten teho vaihtelee 0:n ja maksimin välillä. Toisen termin integraali jakson yli on 0, joten se ei vaikuta piirissä kuluvaan tehoon jakson aikana.

Tehon eri komponentit Hetkellisen tehon ajasta riippumatonta termiä kutsutaan pätötehoksi P P = U I cos(ϕ U ϕ I ) Pätötehon yksikkö on watti (W).

Tehon eri komponentit Hetkellisen tehon ajasta riippumatonta termiä kutsutaan pätötehoksi P P = U I cos(ϕ U ϕ I ) Pätötehon yksikkö on watti (W). Pätötehon maksimiarvo on näennäisteho S (eli miten ϕ I ja ϕ U voidaan valita, jotta saavutetaan maksimiarvo) S = U I Näennäistehon yksikkö on volttiampeeri (VA). Tämä ei vastaa hetkellisen tehon maksimiarvoa.

Tehokolmio Tehoja on vielä kolmaskin: loisteho Q, joka vastaa tehokolmion puuttuvaa kateettia Q = U I sin(ϕ U ϕ I ) Loistehon yksikkö on reaktiivinen volttiampeeri (VAr) Kuten loistehon yksiköstä (reaktiivinen) on pääteltävissä, loistehoa esiintyy sellaisissa komponenteissa, joiden reaktanssi (siis impedanssin imaginääriosa) poikkeaa nollasta) S = U I ϕ U ϕ I P = U I cos(ϕ U ϕ I) Q = U I sin(ϕu ϕi)

Mitä eri tehot tarkoittavat? Pätöteho on sitä, joka tekee työtä (esim. muuttuu lämmöksi vastuksessa). Pätöteho on aina positiivinne, mikä tarkoittaa sitä, että eneria kuluu tietyllä teholla. Loisteho liittyy magneettikenttään (induktanssi) tai sähkökenttään (kapasitanssi) varastoituvaan energiaan. Kyse on siitä, että jos komponentissa reaktanssi poikkeaa nollasta, kaikki lähteen syöttämä teho ei ole tarjolla työn tekemiseen, vaan osa energiasta varastoituu komponenttiin (tai palautuu siitä piiriin). Loisteho voi olla joka negatiivinen tai positiivinen: Negatiivinen: komponentti tuottaa loistehoa Positiivinen: komponentti ottaa loistehoa

Komponenttien tehot I(t) Z Komponentin virta on I(t) = 7.07sin(100πt +π/2) A Laske pätöteho P, loisteho Q ja näennäisteho S, kun komponetti on 1. 100 Ω:n vastus 2. 40 mh:n käämi 3. 20 µf kondensaattori (alkujännite 0 V).

Vaihtosähkön teho ja passiiviset piirikomponentit Vastusken teho on aina pelkkää pätötehoa, koska vastuksen jännitteen ja virran välillä ei ole vaihe-eroa Koska vastukselle Q = 0 VAr, vastuksen pätöteho ja näennäisteho ovat yhtäsuuret.

Vaihtosähkön teho ja passiiviset piirikomponentit Vastusken teho on aina pelkkää pätötehoa, koska vastuksen jännitteen ja virran välillä ei ole vaihe-eroa Koska vastukselle Q = 0 VAr, vastuksen pätöteho ja näennäisteho ovat yhtäsuuret. Käämin teho on aina pelkkää loistehoa, koska käämin jännitteen ja virran välillä on 90 :n vaihe-ero. Käämin loisteho on positiivinen, koska jännitteen vaihekulma on aina virran vaihekulmaa suurempi. Koska loisteho on positiivinen, käämi ottaa loistehoa. Kuitenkin käämi välillä varastoi energiaa ja välillä palauttaa piiriin. Koska käämille P = 0 W, käämin loisteho ja näennäisteho ovat yhtäsuuret.

Vaihtosähkön teho ja passiiviset piirikomponentit Koska käämille P = 0 W, käämin loisteho ja näennäisteho ovat yhtäsuuret. Kondensaattorin teho on aina pelkkää loistehoa, koska kondensaattorin jännitteen ja virran välillä on 90 :n vaihe-ero. Kondensaattorin loisteho on negatiivinen, koska jännitteen vaihekulma on aina virran vaihekulmaa pienempi Koska loisteho on negatiivinen, kondensaattori tuottaa loistehoa. Koska kondensaaattorille P = 0 W, kondensaattorin loisteho ja näennäisteho ovat itseisarvoiltaan yhtäsuuret.

Kompleksinen teho Kompleksinen teho tarkoittaa näennäistehon osoitinta S = S ϕ U ϕ I = S cos(ϕ U ϕ I )+js sin(ϕ U ϕ I ) = P+jQ Jos impedanssin jännite on U ja virat I, miksi kompleksinen teho ei ole UI? S = UI = U ϕ U I ϕ I = UI ϕ U +ϕ I = S ϕ U +ϕ I Osoittimen pituus oikein, kulma väärin! Kun kompleksinen teho määritellään S = UI, saadaan kulmakin oikein S = UI = U ϕ U I ϕ I = UI ϕ U ϕ I = S ϕ U ϕ I

Kompleksinen tehokolmio Im S ϕ U ϕ I Q = Im(S) P = Re(S) Re S = UI = U ϕ U I ϕ I = UI ϕ U ϕ I = S ϕ U ϕ I

Kompleksinen teho piirikomponentille U ϕ U Z I ϕ I Kompleksinen teho S, pätöteho P, loisteho Q ja näennäisteho S: S = UI = U ϕ U I ϕ I = UI ϕ I ϕ U = P +jq P = Re(S) = Re(UI ϕ I ϕ U ) = UI cos(ϕ U ϕ I ) Q = Im(S) = Im(UI ϕ I ϕ U ) = UI sin(ϕ U ϕ I ) S = S = UI Kompleksiluku a ja sen konjugaatti a : a = 2+j5 = 2 2 +5 2 tan 1 5 2 5.4 68.2 a = 2 j5 = 2 2 +5 2 tan 1 5 2 5.4 68.2

Esimerkki Laske kytkennän impedanssien kompleksiset tehot, näennäistehot, pätötehot ja loistehot. Minkälaisia komponentteja piirissä on? 2 90 Ω 10 0 V + 5 0 Ω 5 j3ω

Kolmivaihejärjestelmät Nikola Tesla keksi monivaiheisen sähkönsiirtojärjestelmän edut 1800-luvun lopulla.

Kolmivaihejärjestelmät Nikola Tesla keksi monivaiheisen sähkönsiirtojärjestelmän edut 1800-luvun lopulla. Yksivaihejärjestelmässä teho värähtelee kaksinkertaisella taajuudella P(t) = U I cos(ϕ U ϕ I ) U I cos(2ωt +ϕ U +ϕ I )

Kolmivaihejärjestelmät Nikola Tesla keksi monivaiheisen sähkönsiirtojärjestelmän edut 1800-luvun lopulla. Yksivaihejärjestelmässä teho värähtelee kaksinkertaisella taajuudella P(t) = U I cos(ϕ U ϕ I ) U I cos(2ωt +ϕ U +ϕ I ) Siirtoverkko täytyy mitoittaa huipputehon mukaan, pyritään tasaiseen tehonvirtaukseen. Symmetrisissä kolmivaihejärjestelmissä kuormaan syötetty pätöteho on vakio!

Kolmivaihejärjestelmät Nikola Tesla keksi monivaiheisen sähkönsiirtojärjestelmän edut 1800-luvun lopulla. Yksivaihejärjestelmässä teho värähtelee kaksinkertaisella taajuudella P(t) = U I cos(ϕ U ϕ I ) U I cos(2ωt +ϕ U +ϕ I ) Siirtoverkko täytyy mitoittaa huipputehon mukaan, pyritään tasaiseen tehonvirtaukseen. Symmetrisissä kolmivaihejärjestelmissä kuormaan syötetty pätöteho on vakio! Kolmivaihejärjestelmin analyysi ei ole merkittävästi monimutkaisempaa, kuin 1-vaihejärjestelmän, silloin kuin järjestelmä on symmetrinen.

Kolmivaihejärjestelmät Nikola Tesla keksi monivaiheisen sähkönsiirtojärjestelmän edut 1800-luvun lopulla. Yksivaihejärjestelmässä teho värähtelee kaksinkertaisella taajuudella P(t) = U I cos(ϕ U ϕ I ) U I cos(2ωt +ϕ U +ϕ I ) Siirtoverkko täytyy mitoittaa huipputehon mukaan, pyritään tasaiseen tehonvirtaukseen. Symmetrisissä kolmivaihejärjestelmissä kuormaan syötetty pätöteho on vakio! Kolmivaihejärjestelmin analyysi ei ole merkittävästi monimutkaisempaa, kuin 1-vaihejärjestelmän, silloin kuin järjestelmä on symmetrinen. Käytännössä järjestelmiä pyritään käyttämään siten, että vaiheiden väliset kuormat ovat tasapainossa ja tällöin järjestelmä toimii symmetrisesti.

Kolmivaihesähkön tuottaminen Sähköenergiaa tuotetaan pääasiassa kolmivaihegeneraattoreilla. Näiden käämien napajännittet ovat U R = Ûsin(ωt) U S = Ûsin(ωt 120 ) U T = Ûsin(ωt 240 ) Tärkeää on huomata, että symmetrisessä kolmivaihejärjestelmässä jännitteiden välillä on 120:n vaihe-erot ja huippuarvot ovat samat.

Eurooppalainen kolmivaihejärjestelmä on kytketty myötäpäivään R S T 0.01 0.02 0.03 0.04 0.05 0.06 0.07 Tällä on merkitystä 3-vaihe moottorien pyörimissuunnalle. Samalla tavalla käämitty moottori pyörii erisuuntiin USAssa ja Euroopassa!

Kytketyt kolmivaihejärjestelmät Kolmivaihejärjestelmä voidaan kytkeä kahdella eri tavalla: tähteen Y tai kolmioon. U R + R I R Z U S U T + + S T U R U S I S I T Z Z T R N U T S

Kytketyt kolmivaihejärjestelmät Kolmivaihejärjestelmä voidaan kytkeä kahdella eri tavalla: tähteen Y tai kolmioon. R I ST U TR U ST S T U S I ST Z Z Z I TR T R U RS U R N U T S

Kytketyt kolmivaihejärjestelmät Kolmivaihejärjestelmä voidaan kytkeä kahdella eri tavalla: tähteen Y tai kolmioon. Vaiheen ja nollan välistä jännitettä kutsutaan vaihejännitteellä. Kahden vaiheen välistä jännitettä kutsutaan pääjännitteellä: U RS = U R U S = U R 1 120 U R = (1 cos( 120 ) sin( 120 )j)u R ( ) 3 3 = 2 + 2 j U R = 3 30 U R ja vastaavasti muut. Eli pääjännitteen itseisarvo on 3 kertaa vaihejännitteen itseisarvo ja välillä on 30 vaihe-ero.

Kytketyt kolmivaihejärjestelmät Kolmivaihejärjestelmä voidaan kytkeä kahdella eri tavalla: tähteen Y tai kolmioon. Piirejä voidaan siis kytkeä neljällä eri tavalla kolmioon ja/tai tähteen lähde ja/tai kuorma. Ns. kolmiotähtimuunnoksella voidaan aina siirtyä tähti-tähti esitykseen (ks. kotisivut Piirianalyysi 1 pruju) ja symmetrisiä kolmivaihejärjestelmiä analysoitaessa voidaan rajoittua 1-vaiheisiin sijaiskytkentöihin, jotka esittävät tähtikytkennän yhtä vaihetta.

Esimerkki Symmetrinen tähtikytketty 3-vaihegeneraattori, jonka napajännite on 230 V rms ja vaihejärjestys on myötäpäivään syöttää tähtikytkettyä kuormaa, jonka impedanssi on 20 + 4j Ω. Siirtolinjan impedanssi on 1 + 0.2j Ω. Piirrä järjestelmän yksivaiheinen sijaiskytkentä ja määritä mikä on generaattorin syöttämä pätöteho ja loisteho.

Kolmivaihejärjestelmässä siirtyvä teho on vakio ajan suhteen Aikaisemmin teho ajan funktiona oli (nyt yhtä vaihetta kohti) P R (t) = U R (t)i R (t) = ÛÎ cosϕ ÛÎ cos(2ωt ϕ)

Kolmivaihejärjestelmässä siirtyvä teho on vakio ajan suhteen Eli kokonaistehoksi saadaan P tot = P R (t)+p S (t)+p T (t) = ÛÎ cosϕ ÛÎ cos(2ωt ϕ) +ÛÎ cosϕ ÛÎ cos(2ωt ϕ 120 ) +ÛÎ cosϕ ÛÎ cos(2ωt ϕ 240 ) = 3ÛÎ cosϕ ÛÎ [cos(2ωt ϕ)+cos(2ωt ϕ 120 )+cos(2ωt ϕ 240 )] ja vähän trigonometriaa osoittaa, että [ ] = 0, jolloin tehoksi jää vakio, joka on kolme kertaa yhden vaiheen keskimäärinen teho.

Kolmivaihejärjestelmässä siirtyvä teho on vakio ajan suhteen HUOM! Kolmivaihejärjestelmässä (niin kuin 1-vaihejärjestelmässäkin) joudutaan siirtämään loistehoa varten virtaa. Tämä generoi häviöitä siirtoverkossa ja isot teollisuusyritykset joutuvat maksamaan loistehosta (joka yleensä johtuu sähkömoottoreista). Loistehoa voi kompensoida asentamalla kuorman yhteyteen kondensaattoripankkeja.

Yhteenveto Kompleksinen teho S ja näennästeho S tehokolmio Loisteho Q Kompleksisen tehon imaginääriosa kondensaattori tuottaa käämi kuluttaa Symmetriset kolmivaihejärjestelmät - amplitudit ja vaihe-erot - pääjännite - vaihejännite - vakio tehon siirto - kätisyys Pätöteho P Kompleksisen tehon reaaliosa vastukset

Yhteenveto piiriteoriaosuudesta tällä kurssilla Virta, jännite, potentiaali, varaus, työ, teho Kirchhoffin virtaja jännitelaki Kerrostamissilmukkavirta- ja solmupistemenetelmä Theveninin ekvivalentti Vastus, käämi, kondensaattori ja näiden virta-jännite yhtälöt Vaihtosähköpiirien analyysi kompleksiluvuilla, impedanssit, keskinäisinduktanssi Vaihtosähkön teho: Pätö, lois, näennäis Symmetriset kolmivaihejärjestelmät