ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008. Tehtävissä 1, 2, ja 3 tarkastelemme seuraavaa tilannetta:



Samankaltaiset tiedostot
ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2010 Harjoitus 3

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy päätöspuiden avulla tarkastellaan vasta seuraavissa harjoituksissa.

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2010 Harjoitus 5 (Koetentti)

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008

HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2010 Harjoitus 4

Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat

Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava. TKK (c) Ilkka Mellin (2005) 1

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin Yliopisto Harjoitus 1, ratkaisuehdotukset

Aloitamme yksinkertaisella leluesimerkillä. Tarkastelemme yhtä osaketta S. Oletamme että tänään, hetkellä t = 0, osakkeen hinta on S 0 = 100=C.

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2010 Harjoitus Mitkä todennäköisyystulkinnat sopivat seuraaviin väitteisiin?

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008

Mat Sovellettu todennäköisyyslasku A

031021P Tilastomatematiikka (5 op)

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008

Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi

805306A Johdatus monimuuttujamenetelmiin, 5 op

Todennäköisyyslaskenta IIa, syyslokakuu 2019 / Hytönen 2. laskuharjoitus, ratkaisuehdotukset

9 Yhteenlaskusääntö ja komplementtitapahtuma

x 4 e 2x dx Γ(r) = x r 1 e x dx (1)

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

30A02000 Tilastotieteen perusteet

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1

Korkolasku ja diskonttaus, L6

Päätöksentekomenetelmät

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1

1. Esitä rekursiivinen määritelmä lukujonolle

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 8B Ratkaisuehdotuksia.

Päätöksentekomenetelmät

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2016 Harjoitusten 4 ja 5 ratkaisuehdotuksia

Moniulotteisia todennäköisyysjakaumia

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

Liite 2: Verkot ja todennäköisyyslaskenta. Todennäköisyyslaskenta ja puudiagrammit

Johdatus todennäköisyyslaskentaan Todennäköisyyslaskenta ja puudiagrammit. TKK (c) Ilkka Mellin (2005) 1

Varma tapahtuma, Yhdiste, Yhdistetty tapahtuma, Yhteenlaskusääntö

1. laskuharjoituskierros, vko 4, ratkaisut

Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit: Esitiedot

6. Toisen ja korkeamman kertaluvun lineaariset

a ord 13 (a)

Korkolasku, L6. Koronkorko. Korko-kaavat. Aiheet. Yksinkertainen korkolasku. Koronkorko. Jatkuva korkolasku. Korko-kaavat

Inversio-ongelmien laskennallinen peruskurssi Luento 7

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet

Sovellettu todennäköisyyslaskenta B

Ominaisarvot ja ominaisvektorit 140 / 170

ABHELSINKI UNIVERSITY OF TECHNOLOGY

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Valintahetket ja pysäytetyt martingaalit

diskonttaus ja summamerkintä, L6

Sallitut apuvälineet: kirjoitusvälineet, laskin sekä käsinkirjoitettu, A4-kokoinen lunttilappu ja MAOL taulukkokirjaa

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:

1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4.

2. laskuharjoituskierros, vko 5, ratkaisut

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008

4. Funktion arvioimisesta eli approksimoimisesta

Nollasummapelit ja bayesilaiset pelit

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

6. laskuharjoitusten vastaukset (viikot 10 11)

A-Osio. Ei saa käyttää laskinta, maksimissaan tunti aikaa. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat:

Jaksolliset suoritukset, L13

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

T Luonnollisen kielen tilastollinen käsittely

Jatkuvat satunnaismuuttujat

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

Sovellettu todennäköisyyslaskenta B

Johdatus todennäköisyyslaskentaan Klassinen todennäköisyys ja kombinatoriikka. TKK (c) Ilkka Mellin (2005) 1

Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾.

Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden

ABHELSINKI UNIVERSITY OF TECHNOLOGY

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon.

Matematiikan tukikurssi, kurssikerta 1

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko?

Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.

Osa 1: Todennäköisyys ja sen laskusäännöt

V ar(m n ) = V ar(x i ).

HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2017 Harjoitus 1 Ratkaisuehdotuksia

INTERVALLIPÄÄTÖSPUUT JANNE GUSTAFSSON 45433E. Mat Optimointiopin seminaari Referaatti

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai

2. Minkä joukon määrittelee kaava P 0 (x 0 ) P 1 (x 0 ) mallissa M = ({0, 1, 2, 3}, P M 0, P M 1 ), kun P M 0 = {0, 1} ja P M 1 = {1, 2}?

SARJAT JA DIFFERENTIAALIYHTÄLÖT

3.7 Todennäköisyysjakaumia

Mat Sovellettu todennäköisyyslasku A

= 3 = 1. Induktioaskel. Induktio-oletus: Tehtävän summakaava pätee jollakin luonnollisella luvulla n 1. Induktioväite: n+1

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy Jatkossa ratkaisuehdotukset ovat tyypillisesti paljon lakonisempia.

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden aksioomat

Algebra I, harjoitus 8,

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )

1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X Y Bin(Y, θ) Y Poi(λ) λ y. f X (x) (λθ)x

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi

Tilastollinen päättely, 10 op, 4 ov

Johdatus todennäköisyyslaskentaan Todennäköisyyden aksioomat. TKK (c) Ilkka Mellin (2005) 1

VAASAN YLIOPISTO TALOUSMATEMATIIKKA Päätöksenteko epävarmuuden vallitessa Prof. Ilkka Virtanen II UUSINTATENTTI

Lineaariset yhtälöryhmät ja matriisit

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?

Kohdassa on käytetty eksponentiaalijakauman kertymäfunktiota (P(t > T τ ) = 1 P(t T τ ). λe λτ e λ(t τ) e 3λT dτ.

Johdatus lukuteoriaan Harjoitus 11 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Transkriptio:

RMS22 Päätöksenteko epävarmuuden vallitessa Syksy 28 Harjoitus 8 Ratkaisuehdotuksia Tehtävissä 1, 2, ja 3 tarkastelemme seuraavaa tilannetta: Pankki harkitsee myöntääkö 5. euron lainan asiakkaalle 12% korolla, vai sijoittaako kyseiset 5. euroa valtion obligaatioihin 6% korolla. Pankki arvioi, että 4%:n todennäköisyydellä asiakas ei pysty maksamaan lainaansa takaisin. Pankki voi teettää tutkimuksen asiakkaan luotettavuudesta 5 eurolla. Todennäköisyys, että tutkimus antaa suotuisan tuloksen asiakkaalle, joka pystyy maksamaan lainansa on 77/96. Todennäköisyys, että tutkimus antaa suotuisan tuloksen asiakkaalle, joka ei pysty maksamaan lainaansa on 1/4. 1. Piirrä pankin tilannetta vastaava päätöspuu (ilman todennäköisyyksiä). Ratkaisuehdotus: (Palkkiot kiloeuroissa) maks. Suotuisa tul. Tutkitaan as. maks. Epas. tul. maks. Ei tutkita as. 1

2. Kannattaako pankin teettää tutkimus asiakkaasta? Ratkaisuehdotus: lkoot L = maksetaan, ei L = a ei makseta, S = Raportti on suotuisa, ei S = Raportti ei ole suotuisa, T = Asiakas tutkitaan, ei T = Asiakasta ei tutkita, = stetaan obligaatioita, ei = Annetaan laina. Näillä merkinnöillä abstraktein todennäköisyyksin täytetty päätöspuu on muotoa T P (S) P (ei S) ei ei P (L S) P (ei L S) P (L ei S) P (ei L ei S) ei T ei P (L) P (ei L) Prioritodennäkösyydet L:lle on annettu: P(ei L) =,4 ja P(L) =,96. Lisäksi on annettu uskottavuudet P(S L) = 77/96 ja P(ei S L) = 19/96 sekä P(S ei L) = 1/4 ja P(ei S ei L) = 3/4. 2

Laskemme sitten päätöspuuhun tarvitsemamme posterioritodennäköisyydet: P(L S) = P(L)P(S L) P(L)P(S L) + P(ei L)P(S ei L) =,96 77/96,96 77/96 +,4 1/4 =,987, P(ei L S) = 1 P(L S) =,13, P(L ei S) = P(L)P(ei S L) P(L)P(ei S L) + P(ei L)P(ei S ei L) =,96 19/96,96 19/96 +,4 3/4 =,864, P(ei L ei S) = 1 P(L ei S) =,136. Sijoittamalla saadut luvut edellisessä edellä rakennettuun päätöspuuhun ja laskemalla odotusarvot normaaliin tapaan lähtien liikkeelle lehdistä saamme täytetyn päätöspuun BLAH maks. Suotuisa tul. Tutkitaan as. maks. Epas. tul. maks. Ei tutkita as. 3

3. (a) Kuinka paljon pankin kannattaa korkeintaan maksaa tutkimuksen teettämisestä? (b) Kuinka paljon kannattaisi pankin maksaa oraakkelitutkijalle, joka ilmoittaa välittömasti pystyykö asiakas maksamaan lainansa vai ei? Ratkaisuehdotus: 4. Öljy-yhtiö y:n pitää päättää poratako öljyä paikasta P. Poraaminen maksaa 1.=C. Jos öljyä löytyy, niin siitä saadaan 6..=C. Öljyyhtiö y arvelee, että öljyn löytymisen todennäköisyys on 45%. Ennen varsinaista poraamista Öljy-yhtiö y voi palkata geologin arvioimaan paikkaa P. Geologin palkkaaminen maksaa 1.=C. Geologista tiedetään, että jos hän antaa suotuisan raportin, niin öljyä löytyy. Toisaalta geologi on antanut kerran epäsuotuisan raportin vaikka öljyä onkin lopulta löytynyt. Geologi on tehnyt uransa aikana 1 tutkimusta. Kannattaako Öljy-yhtiö y:n palkata geologi? Ratkaisuehdotus: lkoot 1 = Paikassa P on öljyä, ei = Paikassa P ei ole öljyä, S = Geologin raportti on suotuisa, ei S = Geologin raportti ei ole suotuisa, G = Palkataan geologi, ei G = Ei palkata geologia. Tällöin, symbolisesti, päätöspuu on BLAH Näemme, että päätöstä varten tarvitsemme numeeriset arvot todennäköisyyksille BLAH 5. lkoon mahdollisia, toistensa poissulkevia, maailmantiloja n kappaletta: s 1, s 2,..., s n ja olkoon mahdollisia, toistensa poissulkevia, havaintoja m kappaletta: o 1, o 2,..., o m. Todista Bayesin kaava (1) P(s i o j ) = P(s i )P(o j s i ) n k=1 P(o j s k )P(s k ) kaikille i n, j m. Vihje: Bayesin kaava seuraa loogisesti ehdollisen todennäköisyyden määritelmästä ja Kolmogorovin aksioomista. 1 Merkinnät ja S menevät ristiin vastaavien merkintöjen o ja s kanssa. Luennoija pahoittelee! 4

Ratkaisuehdotus: Tarkastelemme aluksi Bayesin kaavan (1) oikean puolen alakertaa n P(o j s k )P(s k ). Huomaamme, että k=1 P(o j s k )P(s k ) = P(o j s k ). Toisaalta täsmälleen yksi maailmantiloista s k, k n, sattuu. Siten n P(o j s k ) = P(o j ). k=1 Siispä Bayesin kaavan (1) oikean puolen alakerta on itse asiassa todennäköisyys P(o j ) ja kaava (1) on sama, kuin kaava (2) P(s i o j ) = P(s i)p(o j s i ). P(o j ) Mutta nyt, kertomalla kaavan (2) molemmat puolet luvulla P(o j ), huomaamme, että kaava (2) onkin yhtäpitävä triviaalin identiteetin P(o j s i ) = P(s i o j ) kanssa. Koska tämä identiteetti pitää aina paikkansa, niin loogisesti Bayesin kaava (1) pitää myös aina paikkansa. 5