2 E. VALKEILA 1. Johdanto 1.1. Käytännöt. Kurssin kotisivu löytyy osoitteesta http://www.math.hut.fi/teaching/rahoitus/ Kurssi suoritetaan kahdella välikokeella; luennot ja seuraavan viikon harjoitustehtävät ovat kurssin kotisivulla yleensä torstaisin. Välikokeisiin ilmoittaudutaan topin avulla. Kurssiin liittyvää tiedotusta varten perustetaan sähköpostilista. Kurssin loputtua pyritään järjestämään ekskursio. 1.2. Rahoitusteorian synty. Rahoitusteorian tavoitteena on selvittää, kuinka rahoitusmarkkinat toimivat, kuinka ne saadaan tehokkaammiksi ja kuinka niitä pitää valvoa. Kansainväliset rahoitusmarkkinat vaikuttavat jokaisen ihmisen elämään: lainoista maksettavan koron suuruus määrätään markkinoilla, valuuttakurssit määräytyvät markkinoilla... Selvää on, että markkinataloutta myös kritisoidaan 1. Nykyään rahoitusteoria on hyvin pitkälle matematisoitunut teoria ja keskeiset matemaattiset menetelmät perustuvat stokastiikkaan: todennäköisyysteroiaan, stokastisiin prosesseihin ja tilastotieteeseen. Rahoitusteorian katsotaan alkaneen Markowitzin vuonna 1952 ilmestyneestä väitöskirjasta Portfolio Selection; hän analysoi sijoitussalkkua laskemalla sen keskimääräisen tuoton ja varianssin. Keskeisiä tuloksia oli se, että salkuista, joiden keskimääräinen tuotto on vakio tulisi valita se salkku, millä on pienin varianssi. Vuonna 1969 Merton ryhtyi soveltamaan stokastista analyysiä rahoitusteoriassa. Mertonin tavoitteena oli ymmärtää sitä, kuinka hinnat määräytyvät rahoitusmarkkinoilla. Samaan aikaan Black ja Scholes kehittivät, osittain Mertonin avustuksella, tunnetun hinnoittelukaavan optioille. Kun tähän asti oli päästy, havaittiin, että jo Bachelier käytti Brownin liikettä mallintaessaan Pariisin pörssin osakkeiden hintoja vuona 1900 ilmestyneessä väitöskirjassaan. Vuosina 1979-83 Harrison, Kreps ja Pliska käyttivät stokastisen prosessien yleistä teoriaa ja perustelivat Black&Scholes- hinnoittelukaavan täsmällisesti. Samalla he kehittivät menetelmiä, joiden avulla voidaan, ainakin periaatteessa, hinnoitella mutkikkaitakin optiosopimuksia. Eurooppalaisen option hinnoittelukaava. Oletetaan, että optiosopimuksen eräpäivään on aikaa T päivää, option toimitushinta on K, option hinta tällä hetkellä on s. Option tuotto eräpäivänä on S T K, jos osakkeen arvo S T eräpäivänä on suurempi kuin option tomitushinta K, muutoin option on arvoton. Talletuskorko on r; tällöin siis yhden euron talletuksen arvo eräpäivänä on e rt. Osakkeen volatiliteetti on σ; tämä tarkoittaa sitä, että osakkeen arvon logaritmin varianssi Var(log S T ) = σ 2 T. Black & Scholes hinnoittelukaavaa laskettaessa oletetaan vielä, että satunnaismuuttuja log(s T ) on normaalisti jakautunut odotusarvona µ ja varianssina σ 2. Option hinta lasketaan kaavalla (1.1) sφ( log( s σ2 K ) + T (r + σ T 2 ) ) Ke rt Φ( log( s σ2 K ) + T (r σ T 1 D. Henwood Wall st,verso 1997 on yksi kritiikki, uudempiakin varmaan löytyy. 2 ) );
kaavassa Φ on normaalijakauman kertymäfunktio: x 1 Φ(x) = e 1 2 y2 dy. 2π RAHOITUSTEORIA 3 Kaavassa kiinnittyy huomio siihen, että hinta ei riipu lainkaan parametrista µ! Kaava (1.1) johdetaan kurssin lopussa. 1.3. Esitiedot. Kuten stokastiikassa on tapana ajatella, niin meillä on todennäköisyysavaruus (Ω, F, IP) ja sillä määriteltyjä satunnaismuuttujia X. Satunnaismuuttujan X odotusarvoa merkitään merkinällä IEX ja varianssia merkinnällä Var(X). Kurssin alussa tarvitaan seuraavia tietoja: Olkoot X k riippumattomia ja samoin jakautuneita satunnaismuuttujia, k = 1,..., N, IP(X k = 1) = p = 1 IP(X k = 0) ja n (1.2) Y n = X k. k=1 Tällöin Y n Bin(n, p) kaikilla n = 1,..., N. IE[Y n+1 Y 1,..., Y n ] = Y n + p. Havaitaan, että IE[Y n+1 Y 1,..., Y n ] = IE[Y n+1 X 1,..., X n ] =: IE[Y n+1 F n ]; tässä F n on satunnaismuuttujien X 1,..., X n (tai satunnaismuuttujien Y 1,..., Y n ) virittämä historia 2. Selvästi F n F n+1 : tämä seuraa siitä, että mikä tahansa satunnaismuuttujia (X 1,..., X n ) koskeva tapahtuma voidaan tulkita sellaiseksi satunnaismuuttujia (X 1,..., X n, X n+1 ) koskevaksi tapahtumaksi, missä satunnaismuuttujalle X n+1 ei anneta mitään lisäehtoja. Joskus on mukavampaa tarkastella prosessin Y n asemasta prosessia Ỹn := 2Y n n; havaitaan, että prosessi Ỹn voidaan kirjoittaa satunnaismuuttujien X k, IP( X k = 1) = p = 1 IP( X k = 1) summana Ỹn = n X k=1 k. Prosessia Ỹ = (Ỹk) k=1,...,n sanotaan satunnaiskuluksi; jos p = 1 2, niin satunnaiskulkua sanotaan symmetriseksi. Seuraava päättely on tyypillinen jatkossa. Lause 1.1. Olkoon Y = (Y k ) 1 k N kuten yhtälössä (1.2) ja olkoon f jokin funktio. Tällöin ( ) k (1.3) IE[f(Y n+k ) F n ] = f(y n + l) p l (1 p) k l l Todistus Otetaan käyttöön merkintä Y n,k := Y n+k Y n. Tiedetään, että f(y n+k ) = f(y n + l)i { Yn,k =l}. Käyttämällä tietoa, että tapahtuma { Y n,k = l} on riippumaton historiasta F n (toisin sanoen kaikista mahdollisista tapahtumista A F n ), Y n,k 2 Kirjallisuudessa merkitään usein Fn = σ(x 1,..., X n) ja sanotaan, että F n on satunnaismuuttujien X 1,..., X n virittämä σ- algebra.
4 E. VALKEILA Bin(k, p), ja sitä, että funktion f arvo pisteessä f(y n + l) tunnetaan, kun Y n tunnetaan, saadaan E[f(Y n+k ) F n ] = = = = IE[f(Y n + l)i { Yn,k =l} F n ] f(y n + l)ie[i { Yn,k =l} F n ] n k f(y n + l)ip( Y n,k = l) ( ) k f(y n + l) p l (1 p) k l. l Otetaan käyttöön merkintä g(x, k) := IEf(x+ Y n,k ). Havaitaan, että lauseen 1.1 tulos voidaan kirjoittaa muodossa (1.4) IE[f(Y n+k ) F n ] = g(y n, k); lause 1.1 on siis eräänlainen Feyman-Kac- lauseen muunnelma tässä yksinkertaisessa tilanteessa. 2. Hinnoittelumalli 2.1. Osake ja obligaatio. Rahoitusteorian hinnoittelumallissa ajatellaan olevan kahdenlaista varallisuutta: riskitöntä ja riskillistä. Riskitöntä varallisuutta sanotaan obligaatioksi (toinen mahdollinen termi tässä yhteydesä on talletus tai pankkitalletus). Jatkossa obligaatiota merkitään merkinnällä B. Sovitaan, että obligaation arvo hetkellä t = 0 on B 0 = 1. Obligaation arvo hetkellä t on B t (sovitaan, että arvo ilmoitetaan euroissa). Riskillistä varallisuutta sanotaan osakkeeksi; osakkeita on yleensä useita. Osakkeelle käytetään merkintää S; osakkeen arvo hetkellä t = 0 on S 0 euroa ja hetkellä t se on S t euroa. Mikäli osakkeita on useita, niin kyseessä on vektori S = (S 1,..., S d ). Jatkossa käsitellään pääasiassa yhtä osaketta ja obligaatiota. Obligaation arvo tulevaisuudessa on tunnettu, osakkeen arvo puolestaan ei ole. Tämän vuoksi osakkeen arvon S ajatellaan olevan satunnaismuuttuja, joka on määritelty todennäköisyysavaruudella (Ω, F, IP). 2.2. Hinnoittelumallin säännöt. Hinnoittelumallissa on voimassa seuraavat säännöt. Kaikilla toimijoilla 3 on sama tieto osakkeen hinnasta. Obligaation talletuskorko on sama kuin lainauskorko. Osakkeen osto- ja myyntihinta on sama. Osakeita voi ostaa paloissa [tai ostaa velaksi = myydä lyhyeksi]. 3 agent
RAHOITUSTEORIA 5 Muutama kommentti oletuksista lienee paikallaan. Se, että kaikilla toimijoilla on sama informaatio markkinoilla on ainakin usein tavoitteena 4. Se että pankista saa velaksi rahaa samalla korolla kuin talletuksesta maksetaan koskee lähinnä suuria toimijoita. Osakkeen ostohinta on usein suurempi kuin myyntihinta, joten tämä oletus on epärealistinen. Rahaa voi panna pankkiin paloissa (ainakin yhden sentin kokoisissa paloissa), osakkeita ei kuitenkaan voi ostaa paloissa. Tätä sääntöä ei kuitenkaan pidetä yhtä epärealistsena kuin edellistä, pääasiassa siksi, että osakkeita ostetaan usein suuria määriä. 2.3. Salkku ja arbitraasi. 2.3.1. Yhden askeleen malli. Oletetaan että aika on diskreetti: hetki t = 0 on alkutilanne ja toimijat voivat ostaa ja myydä osakkeita sekä tehdä talletuksia tai ottaa velkaa hetkillä t = 0, missä k = 0, 1,..., T ; ajankohta T = N on erikoisasemassa, sitä sanotaan eräpäiväksi. Oletetaan seuraavassa, että T = 1. Tämä on yhden askeleen hinnoittelumalli. Jokainen toimija voi halutessaan sijoittaa varallisuutensa osakkeeseen tai obligaatioon. Merkitään toimijan varallisuutta merkinnällä V. Oletetaan, että toimijan alkupääoma on V 0 = v. Hetkellä t = 0 hän voi joko tehdä talletuksen tai ostaa (murto-osissa) osakkeen. Olkoon hetkellä t = 0 ostettujen osakkeiden määrä γ 1 ja talletuksen määrä β 1. Tehdään seuraavat oletukset: obligaation arvo hetkellä t = T = 1 on (1 + r)b 0 = 1 + r ja että osakkeen arvo hetkellä t = T = 1 on S 1. Vakio r on korko. Edelleen, hetkellä t = 0, toimija K. sijoittaa alkupääomansa obligaatioon ja osakkeeseen. Symbolisesti, alkupääoma V 0 = v sijoitetaan seuraavasti: v = β 1 + γ 1 S 0. Paria Γ = (β, γ) sanotaan sijoitusstrategiaksi ja paria (Γ, v) salkuksi. Jos β 1 > 0, niin rahaa talletetaan pankkiin, jos β 1 < 0, niin rahaa otetaan velaksi. Jos γ 1 > 0, niin ostetaan osakkeita kertoimen γ 1 verran, jos γ 1 < 0, niin osaketta myydään lyhyeksi kertoimen γ 1 verran. Hetkellä t = T = 1 salkun (Γ, v) arvo V1 Γ on V Γ 1 = β 1 (1 + r) + γ 1 S 1. Koska S 1 on satunnaismuuttuja, niin myös V Γ 1 on sitä. Esimerkki 2.1 (Lyhyeksimyynti). Herra K. on saanut tädiltään 10.000 euroa. Herra K. myy lyhyeksi Nokian osaketta 400 kappaletta. Osakkeen hinta S 0 on 100 euroa. Saamansa rahat herra K. panee pankkin. Salkku Γ on siis β 1 = 10.000 + 400 100 = 50.000 ja γ 1 = 400. Laskujen helpottamiseksi oletetaan, että r = 0. Nokian osakkeen hinta on satunnaismuuttuja S 1. Jos S 1 = 80, niin salkun arvo on 50.000 400 80 = 18.000 euroa. Herra K. voittaa siis tässä tapauksessa 8.000 euroa. Jos osakkeen hinta nousee, esimerkiksi arvoon S 1 = 120, niin saman salkun arvo hetkellä t = 1 = 2.000, joten tappio on 8.000 euroa. V Γ 1 4 Mikäli ehditään, niin tarkoitus on lyhyesti esitellä mitä tapahtuu, kun tästä oletuksesta luovutaan.
6 E. VALKEILA Määritelmä 2.1. Yhden askeleen hinnoittelumalli mahdollistaa arbitraasin, jos alkupääomalla v = 0 on olemassa salkku (Γ, 0) siten, että V1 Γ 0 ja IP(V1 Γ > 0) > 0. Sanotaan, että salkku (Γ, v) on arbitraasisalkku. Määritelmä 2.2. Yhden askeleen hinnoittelumalli (B, S) on arbitraasivapaa, jos siinä ei ole arbitraasisalkkuja. Hinnoittelumallin arbitraasivapaus on rahoitusteoriassa lähes aksiomaattinen käsite. Taustalla on se ajatus, että mikäli jossain tilanteessa markkinoilla olisi mahdollista tehdä arbitraasia, niin kaikki ryhtyisivät sitä tekemään, josta puolestaan seuraisi hintojen muutos siten, että arbitraasin tekeminen ei enää olisi mahdollista. 2.3.2. Omavaraisuus ja arbitraasivapaus. Tarkastellaan seuraavaksi diskreettiaikaista mallia. Oletetaan, että B t = (1 + r) t, kun t = 0, 1,..., N. Merkitään S t := S t S t 1, kun t = 1,..., N (vastaavasti B t ja Vt Γ ). Tarkastellaan seuraavaksi sijoittamisen sääntöjä diskreettiaikaisessa mallissa. Hetkellä t = 0 on käytössä alkupääoma v, joka voidaan sijoittaa joko obligaatioon tai osakkeeseen. Kertoimet β 1 ja γ 1 valitaan, ainoana rajoituksena ehto v = β 1 + γ 1 S 0 ; hetkellä t = 1 tiedetään osakkeen hinta S 1. Salkun V Γ arvo on nyt V Γ 1 = β 1(1 + r) + γ 1 S 1. Nyt on sallittua vaihtaa strategiaa ja valita β 2 ja γ 2 siten, että V Γ 1 = β 2 (1 + r) + γ 2 S 2. Jatketaan samalla tavalla: Oletetaan, että hetkellä t 1 on valittu strategia (β t, γ t ) ja kun osakkeen hinta S t on havaittu, niin strategia voidaan vaihtaa toiseksi seuraavan omavaraisuusehdon puitteissa: (2.1) Vt Γ = β t (1 + r) t + γ t S t = β t+1 (1 + r) t + γ t+1 S t. Harjoitustehtäväksi jää osoittaa, että omavaraisuusehto (2.1) on yhtäpitävä ehdon (2.2) V Γ t = v + t β k B k + k=1 t γ k S k kanssa. Muutama huomautus on nyt paikallaan. Strategia Γ on nyt stokastinen prosessi, Γ = (β t, γ t ) 1 t N. Omavaraisuusehdosta (2.1) seuraa, että kertoimet β t, γ t valitaan ennen kuin tiedetään osakkeen arvo hetkellä t! Toisaalta kertoimet β t ja γ t voidaan valita käyttäen kaikkia havaittuja osakkeen hintoja S 0, S 1,..., S t 1. Merkitään nyt osakkeen historiaa merkinnällä F t : F t = σ(s 1,..., S t ). Se, että kertoimet β t ja γ t voidaan valita käyttäen hintoja S 1,..., S t 1 tarkoitaa täsmällisemmin sitä, että β t ja γ t ovat mitallisia historian F t 1 suhteen. Tällaista mitallisuutta sanotaan yleisesti ennustettavuudeksi historian IF = (F t ) 0 t N suhteen. Määritelmä 2.3. Tarkastellaan diskreettiaikaista hinnoittelumallia (B, S) = (B t, S t ) 0 t N. Omavarainen strategia Γ alkupääomalla v = 0 on arbitraasistrategia, jos VN Γ 0 ja IP(V N Γ > 0) > 0. k=1
RAHOITUSTEORIA 7 Määritelmä 2.4. Diskreettiaikainen hinnoitelumalli on arbitraasivapaa, jos siinä ei ole arbitraasisalkkuja (Γ, 0). Luvussa 4 palataan arbitraasivapaiden hinnoitttelumallien karakterisointiin. 3. Binomipuu ja eurooppalaiset vaateet 3.1. Hinnoittelu ja suojaus yhden askeleen mallissa. Hinnoittelumalli. Tarkastellaan yhden askeleen mallia. Hetkellä N = 1 osakkeen hinta S 1 voi olla joko laskenut, S 1 = (1 + a)s 0, tai noussut S 1 = (1 + y)s 0. Tuntematonta on siis huominen arvo, tunnettua puolestaan on se, että osakkeen arvo on joko (1 + a)s 0 tai (1 + y)s 0. Talletuksen arvo taas kasvaa kiinteätä korkoa ja sen arvo huomenna on B 1 = (1 + r)b 0 = 1 + r. Kun korko r tunnetaan, tiedetään myös talletuksen arvo huomenna. Hinnoittelumallissa tehdään sopimuksia osakkeeseen liittyen. Esimerkkinä tarkastellaan eurooppalaista osto-optiota, missä sopimuksen ostajalla on oikeus ostaa osake huomenna tiettyyn kiinteään hintaan K. Sopimuksen myyjä/kirjoittaja puolestaan on velvollinen myymään osakkeen hintaan K. Myyjän kannalta tilanne on seuraava: a: Jos S 1 < K, niin sopimus on sen haltijalle arvoton, koska osakkeen hinta on sovittua hintaa K pienempi. Myyjän tappio hetkellä T = N = 1 on siis = 0. y: Jos S 1 > K, niin sopimuksen arvo on S 1 K, ja haltijan kannattaa ostaa osake hinnalla K ja myydä se välittömästi hinnalla S 1. Taskuun jää rahaa S 1 K markkaa, joka on myös myyjän tappio. Kaavana myyjän tappio tai vaade on f(s 1 ) =. max(s 1 K, 0). Mikä on option arvo? Tunnettuja ovat osakken hinta S 0, (lyhyt) korko r ja osakkeen mahdolliset arvot huomenna. Osakkeen arvon kasvusta, lyhyestä korosta r ja toimeenpanohinnasta K oletetaan (3.1) a < r < y ja (1 + a)s 0 < K < (1 + y)s 0. Vakio a on yleensä negatiivinen: a < 0. Ehdot (3.1) liittyvät siihen, että hinnoittelumalli (B, S) on arbitraasivapaa (tästä lisää harjoituksissa). Suojaushinta. Eurooppalaisen osto-option arvo määrätään hakemalla ns. suojaus. Haetaan strategia (β 1, γ 1 ) siten, että varallisuus hetkellä t = 1 on yhtä suuri kuin mahdollinen tappio: V 1 = β 1 B 1 + γ 1 S 1 = max(s 1 K, 0). Kun muistetaan, että B 0 = 1, saadaan yhtälöryhmä (3.2) β 1 (1 + r) + γ 1 S 0 (1 + a) = 0 β 1 (1 + r) + γ 1 S 0 (1 + y) = (1 + y)s 0 K. Yhtälöryhmässä (3.2) on kaksi tuntematonta β 1 ja γ 1 ja kaksi yhtälöä. Oletuksesta (3.1) seuraa, että ratkaisuksi saadaan β 1 = (1 + a) ((1 + y) S 0 K) (y a) (1 + r) ja γ 1 = (1 + y) S 0 K (y a) S 0.
8 E. VALKEILA Se alkupääoma v, millä suojaus on mahdollista, saadaan kaavasta v = β 1 B 0 + γ 1 S 0 : (3.3) v = ((1 + y) S 0 K) (r a). (y a) (1 + r) Jos option myyjä asettaa hinnaksi alkupääoman v yhtälöstä (3.3), niin hän ei kärsi tappiota hetkellä t = N = 1. Toisaalta ostaja tietää, että myyjä ei myöskään saa ylimääräistä voittoa tällä hinnalla! Näin määriteltyä hintaa sanotaankin tasapuoliseksi hinnaksi tai suojaushinnaksi.. Oletus siitä, että osakkeen hinta voi hetkellä t = 1 saada kaksi eri arvoa on puolestaan aivan oleellinen yllä esitetylle suojauksen konstruoinnille. Siitä seuraa, että kaikki sopimukset ovat suojattavissa tällöin sanotaan että markkinamalli on täydellinen. Mikäli hinta voisi muuttua kolmeen (tai useampaan ) eri arvoon, niin yhtälöryhmällä (3.2) ei enää ole yksikäsitteistä ratkaisua ja suojausta ei enää voi konstruoida. Saadaan esimerkki epätäydellisestä markkinamallista, missä tasapuolista hintaa ei yleensä ole. Esimerkki 3.1 (Valuuttasuojaus). Telakka solmii sopimuksen, jonka mukaan laivasta maksetaan vuoden 2007 alussa miljoona dollaria. Oletetaan, että dollarin kurssi vuoden 2005 alussa on yksi euro. Oletetaan, että dollarin kurssi voi vuoden 2007 alussa voi olla joko 0.80 euroa tai 1.20 euroa ja että korko kahden vuoden aikana on kaksi prosenttia. Telakka haluaa tehdä sopimuksen, jonka perusteella se saa ostaa miljoonalla dollarilla euroja hintaan yksi dollari eurosta. Tavoitteena on suojautua dollarin hinnan putoamista vastaan. Lasketaan kaavan (3.3) perusteella suojaussopimuksen hinta yhdelle dollarille. Ratkaistaan ensin vakiot y ja a: (1+y)1 = 1.20 mistä vakion y arvoksi saadaan 0.20 ja vakion a arvoksi vastaavsti 0.20. Korko r on = 0.02. Tarkastelujakso on siis kaksi vuotta. Kaavasta (3.3) saadaan nyt sopimuksen hinnaksi (1.2 1)(0.02 + 0.2) = 0.108. 0.4 1.02 Miljoonan dollarin suojaaminen maksaa siis noin 108.000 euroa. Verrataan tilannetta siihen, että suojausta ei tehdä: jos dollarin hinta nousee, saadaan voittoa 200.000 euroa, jos putoaa, niin tappiota tulee saman verran. Jos suojaus tehdään, niin voittoa tulee noin 92.000 euroa ja tappiota tulee sopmuksen hinnan verran eli noin 108.000 euroa. Etuna on tietenkin se, että kahden vuoden kuluttua ei enää ole mitään riskiä ja telakka voi suunnitella toimintaansa varmana siitä, että dollarin kurssin heilahtelu ei aiheuta uusia lisäkuluja. Todennäköisyystulkinta. Olkoon ρ satunnaismuuttuja, joka saa arvon y todennäköisyydellä p, ja arvon a todennäköisyydellä 1 p ja X satunnaismuuttuja, joka saa arvon 1, jos ρ = y ja arvon 0, jos ρ = a. Tällöin (3.4) S 1 = (1 + ρ)s 0 = (1 + y) X (1 + a) 1 X S 0 ; satunnaismuuttuja ρ on siis satunnainen korko. Vaihdetaan nyt todennäköisyys p todennäköisyydeksi q siten, että (3.5) E Q S 1 = S 0 (1 + r),
RAHOITUSTEORIA 9 missä Q on todennäköisyysmitta, jolle Q(ρ = y) = Q(X = 1) = q. Yhtälön (3.5) avulla saadaan yhtälö S 0 (1 + y)q + S 0 (1 + a)(1 q) = S 0 (1 + r) jonka ratkaisu on q = r a y a. Saatua todennäköisyyttä q sanotaan riskineutraaliksi todennäköisyydeksi. Todennäköisyyden q suhteen laskettu osakkeen keskimääräinen tuotto on sama kuin talletuksen. Osoitetaan lopuksi, että option myyjän diskontattu tappio on sama kuin käsiteltävän option tasapuolinen hinta: (1 + r) 1 E Q (max(s 1 K, 0)) = ((1 + y) S 0 K) (r a). (y a) (1 + r) Tämä seuraa siitä, että E Q (max(s 1 K, 0)) = q((1 + y)s 0 K) = r a y a ((1 + y)s 0 K). 3.2. Binomipuu. 3.2.1. Diskreetti stokastinen analyysi. Merkintöjä, osittaisintegrointi. Olkoon a = (a k ) n k=0 lukujono ja olkoon a k = a k a k 1, missä 1 k n. Seuraava lause on diskreetin ajan vastine stokastisen analyysin osittaisintegroitikaavalle. Tulos perustuu Abelin summakaavaan. Lause 3.1. Olkoot a ja b lukujonoja, a = (a k ) n k=0 ja b = (b k) n k=0. Jos k n, niin (3.6) a k b k = a 0 b 0 + l k a l 1 b l + l k b l 1 a l + l k a l b l. Todistus Koska jokainen lukujonon termi voidaan kirjoittaa teleskooppisummana aikaisemmista termeistä: a k = a 0 + l k a k, niin riittää osoittaa, että missä. ( (ab)) k = ak b k a k 1 b k 1 = u k, u k = a 0 b 0 + a l 1 b l + b l 1 a l + a l b l. l k l k l k Nyt u k = a k 1 b k + b k 1 a k + a k b k = a k b k a k 1 b k 1, mistä väite seuraa. Merkintä: [a, b] k = l k a l b l. Seuraus 3.1. Osittaisintegrointikaava (3.6) voidaan kirjoittaa myös muodossa (3.7) a n b n = a 0 b 0 + l n a l b l + l n b l 1 a l.
10 E. VALKEILA Stokastinen eksponentti. Olkoon a lukujono, jolle a 0 = 0. tarkastellaan lineaarista differenssiyhtälöä (3.8) x k = x k 1 a k, x 0 = 1. Lause 3.2. Yhtälön (3.8) yksikäsitteinen ratkaisu on (3.9) E(a) k = l k(1 + a l ). Todistus Induktiolla: kun k = 0 niin väite on selvä. Oletetaan, että lauseke (3.9) on yhtälön (3.8) yksikäsitteinen ratkaisu, kun l k. Riittää näyttää, että E(a) k+1 = E(a) k a k+1. Nyt E(a) k+1 = l k+1(1 + a l ) (1 + a l ) l k = l k(1 + a l ) a k+1. Siis lauseke E(a) on yhtälön (3.8) yksikäsitteinen ratkaisu kun l = 0,..., k+1 ja väite on todistettu. Seuraava on nyt ilmeinen: Huomautus 3.1. Olkoon a 0 = 0 ja tarkastellaan jonon a ajamaa differenssiyhtälöä: y k = y k 1 a k alkuarvona y 0 = y. Tämän yhtälön yksikäsitteinen ratkaisu on y k = ye(a) k. Lause 3.3 (Yor). Kahdelle lukujonolle a, b, a 0 = b 0 = 0 pätee (3.10) E(a)E(b) = E(a + b + [a, b]). Todistus Olkoon u =. E(a) ja w =. E(b). Osittaisintegrointikaavalla (3.6) saadaan (uw) k = u k 1 w k + w k 1 u k + u k w k. Mutta u k = u k 1 a k ja w k = w k 1 b k ; käyttämällä näitä havaintoja saadaan (uw) k = u k 1 w k 1 ( a k + b k + a k b k ). Lauseen 3.2 nojalla kaava (3.10) pätee. Esimerkki 3.2 (Vaihtuvakorkoinen pankkitalletus). Oletetaan, että korko r i on vakio aikavälillä [i 1, i), missä i = 1,..., n. Talletetaan 1 EUR pankkiin. Pankissa on rahaa hetkellä n lausekkeen i n (1 + r i) verran. Lauseen 3.2 avulla voidaan nyt päätellä seuraavaa. Olkoon R k = l k r i ja tarkastellaan yhtälöä B k = B k 1 R k, B 0 = 1. Tiedetään, että tämän yhtälön ratkaisu on nyt B k = E(R) k = l k (1 + R l ) = l k(1 + r l ). Erityisesti, B n = l n (1 + r l) on rahan määrä pankissa hetkellä t = n, jos sinne pantiin 1 EUR hetkellä t = 0. 14.9. - 15.9. 2004