Jatkuva-aikaisia Markov-prosesseja

Koko: px
Aloita esitys sivulta:

Download "Jatkuva-aikaisia Markov-prosesseja"

Transkriptio

1 5B Jatkuva-aikaisia Markov-prosesseja Tämän harjoituksen tavoitteena on harjoitella jatkuva-aikaisiin Markov-prosesseihin liittyviä hetkittäisiä jakaumia ja tasapainojakaumia. Laskuharjoitukseen kannattaa ottaa mukaan tietokone tai matriisilaskutoimituksiin kykeneväinen laskin. Alla on kuhunkin tehtävään esitetty malliratkaisut punaisella sekä malliratkaisujen lisämateriaalit sinisellä. Tuntitehtävät 5B1 Yrityksen it-henkilö on vastuussa kahden www-palvelimen toiminnasta. Palvelin i toimii keskimäärin l i päivää ennen vikaantumistaan ja vian korjaaminen kestää keskimäärin m i päivää, missä l 1 = 30, l 2 = 100, m 1 = 1 ja m 2 = 2. Palvelinten toiminta- ja korjausajat oletetaan toisistaan riippumattomiksi ja eksponenttijakautuneiksi. It-henkilö korjaa palvelimet vikaantumisjärjestyksessä. (a) Mallinna palvelinten tilaa jatkuva-aikaisella tilajoukon S = {(), (1), (2), (1, 2), (2, 1)} Markov-ketjulla, missä tilajoukon alkiot ovat 0 2 alkion järjestettyjä listoja, jotka kuvaavat korjattavien palvelinten työjonoja. Kirjoita Markov-ketjun generaattorimatriisi ja piirrä siirtymäkaavio. Ratkaisu. Merkitään λ i = 1/l i ja µ i = 1/m i. Nyt koneen i toiminta-aika on L i Exp(λ i ) ja korjausaika M i Exp(µ i ). Voidaan päätellä, että kyseessä on jatkuva-aikaien Markov-ketju, jossa hyppyvauhdit ovat λ i ja µ i (kukin ilmeiselle siirtymälle). Tämä voidaan koota siirtymäkaavioon, jossa kaarten painot siis ovat siirtymäintensiteettejä (=hyppyvauhteja), ja kaaria vastaavat siirtymä-tn:t ovat [kaaren paino]/[kaikkien samasta solmusta lähtevien kaarten yhteispaino]. λ 1 λ µ 1 µ 2 λ 2 λ 1 µ µ 2 Generaattorimatriisin kirjoittamiseksi muistetaan Kytölän käsin kirjoitetuista luentomuistiinpanoista, että jos jatkuva-aikainen ja äärellistilainen Markov-ketju X t on annettu intensiteettien I x y avulla, joilla tilassa x oleva prosessi siirtyy tilaan y 1 / 8

2 (merkitään I x y = 0 jos siirtymää x y ei tapahdu), niin 1 { I x y, x y Q(x, y) = z y I y z, x = y. Tästä saadaan tilajoukon järjestyksellä {(), (1), (2), (1, 2), (2, 1)} (λ 1 + λ 2 ) λ 1 λ µ 1 (λ 2 + µ 1 ) 0 λ 2 0 Q = µ 2 0 (λ 1 + µ 2 ) 0 λ µ 1 µ µ µ 2 (b) Millä todennäköisyydellä kumpikaan palvelimista ei toimi viikon kuluttua, jos ne molemmat toimivat nykyhetkellä? Ratkaisu. Ketjun t:n aikayksikön siirtymämatriisi P t saadaan generaattorimatriisista matriisieksponenttina P t = e tq = n=0 t n n! Qn. Muistetaan, että ajan yksikkönä on päivä. Tietokoneella laskemalla nähdään, että P 7 = e 7Q = Ketjun alkutila on X(0) = 0 eli alkujakauma on µ 0 = (1, 0, 0, 0, 0). Tilajakauma hetkellä t = 7 on siis µ 7 = µ 0 P 7 = [ ], mikä on siis neliömatriisin P 7 ensimmäinen rivi. Viikon kuluttua kumpikaan palvelin ei toimi todennäköisyydellä µ 7 (12) + µ 7 (21) = = (c) Selvitä palvelinten tilaa kuvaavan ketjun tasapainojakauma. Millä todennäköisyydellä yrityksestä löytyy vähintään yksi toimiva palvelin tasapainotilanteessa? Ratkaisu. (Analyyttinen tapa.) Tasapainojakauma π saadaan lauseen [Leskelä 2015, Lause 11.5] mukaan ratkaisemalla matriisiyhtälö πq = 0 eli π(x)q(x, y) = 0, y S, 1 Tämä määritelmä on yhtäpitävä luentomonisteen [Leskelä 2015] kanssa. x S 2 / 8

3 ja hyödyntämällä normalisointiehtoa x S π(x) = 1. Näissä yhtälöissä on 5 tuntematonta ja 6 yhtälöä, joten ratkaiseminen ei ole pelkkää matriisin kääntämistä. Vastaavia laskentatehtäviä tulee eteen myös diskreettiaikaisten Markov-ketjujen tasapainojakaumaa etsittäessä. (Tasapainoehto on πq = 0 tai π(p I) = 0 jatkuvalle tai diskreetille ajalle ja lisäksi normalisaatioehto x S π(x) = 1 molemmille.) Kehittyneempi laskentaohjelmisto tietysti ratkaisee periaatteessa tällaisenkin ongelman. Jos generaattori- tai siirtymämatriisin alkiot ovat numeerisia likiarvoja voi kuitenkin ohjelmisto yllättäen sanoa, että ratkaisua ei ole. Tällöin sopiva laskennallinen kikka on poistaa ensin yksi yhtälöistä πq = 0, ratkaista jäljelle jäänyt yhtälöryhmä (5 tuntematonta ja 5 yhtälöä) ja lopuksi tarkistaa, että numeerisen tarkkuuden rajoissa myös pois jätetty yhtälö toteutuu. Alla oleva lisäys takaa, että tämä kikka toimii itse asiassa aina. Ratkaistaan siis tuurilla tai taidolla yhtälöryhmä πq = 0 yhtälö normalisaatioehdolla x S π(x) = 1. Tulos on π [ ]. Kysytty tn on siis 1 π(12) π(21) = Lisäys. Alla oleva lause on hyödyllinen, kun ratkaistaan likiarvoin annetun Markovketjun tasapainojakaumaa. Lause 5B.1. Olkoon X yhtenäinen jatkuva- tai diskreettiaikainen Markov-ketju ja Q R n n sen generaattorimatriisi tai Q R n n siirtymämatriisin avulla Q = P I. Tällöin korvaamalla mikä tahansa yhtälöryhmän πq = 0 yhtälö normalisaatioehdolla i π(i) = 1 saadaan yhtälöryhmä, jonka kerroinmatriisi on kääntyvä. Tämän kääntyvän yhtälöryhmän ratkaisu π on ketjun yksikäsitteinen tasapainojakauma, joka totetuttaa πq = 0 ja i π(i) = 1. Todistus on karkeasti seuraava: luennoilta tiedämme [Leskelä, Luku 3.3], että yhtälöryhmän πq = 0 ratkaisuavaruus on yksiulotteinen. Kukin Q:n sarake vastaa yhtä ryhmän πq = 0 yhtälöä. Koska Q:n rivisummat ovat nollia, on kuitenkin kaikkien sarakkevektorien summa nollavektori. Näin ollen mikä tahansa sarake (ryhmän πq = 0 yhtälö) voidaan ilmaista toisten lineaarikombinaationa. Erityisesti mikä tahansa ryhmän πq = 0 yhtälö voidaan poistaa muuttamatta ratkaisuavaruutta. Loppu seuraa tasapainojakauman πq = 0, i π(i) = 1 olemassaolosta. (Numeerinen tapa.) Lauseen [Leskelä, Lause 11.8] mukaan yhtenäinen jatkuvaaikainen ja äärellistilainen Markov-ketju suppenee kohti tasapainojakaumaansa ajan kuluessa. Jatkuva-aikainen Markov-ketju on määritelmän mukaan yhtenäinen, joss vastaava siirtymäkaavio on verkkona yhtenäinen. Tämä on selvää y.o. kaaviosta. Otetaan siis pitkän aikavälin aikakehitysmatriisi, esim. e 100Q ja lasketaan se tietokoneella. Havaitaan, että numeerisen tarkkuuden rajoissa kaikki rivit ovat samoja [ ]. 3 / 8

4 Havaitaan myös, että numeerisen tarkkuuden rajoissa tämä tila toteuttaa tasapainoyhtälön [Leskelä 2015, Lause 11.5] [ ] Q = [0, 0, 0, 0, 0], joten kyseessä on tasapainotila. Siis π [ ]. Kysytty tn on siis 1 π(12) π(21) = (d) Jos tasapainotilanteessa havaitaan, että kumpikaan palvelin ei toimi, kauanko odotusarvoisesti kestää, ennen kuin toimintaan saadaan vähintään yksi palvelin? Ratkaisu. Tilat, joissa kumpikaan palvelin ei toimi, ovat 12 ja 21. Tilasta 12 siirrytään vain tilaan 2, satunnaisen Exp(µ 1 )-jakautuneen ajan kuluttua, jonka odotusarvo on m 1 = 1/µ 1 = 1 päivää. Vastaavasti tilasta 21 siirrytään vain tilaan 1, satunnaisen Exp(µ 2 )-jakautuneen ajan kuluttua, jonka odotusarvo on m 2 = 1/µ 2 = 2 päivää. Kun ketjun havaitaan tasapainotilassa kuuluvan tilajoukkoon {12, 21}, niin silloin se on tilassa 12 tn:llä ja tilassa 21 tn:llä π(12) = π(21) = π(12) π(12) + π(21) = π(21) π(12) + π(21) = Odotusarvoisesti toinen palvelin saadaan siis toimimaan päivän kuluttua = 1.79 Kotitehtävät (palautettava kirjallisina pe klo 10:15 mennessä) 5B2 Yrityksen it-henkilö on vastuussa kahden www-palvelimen toiminnasta, jotka toimivat kuten tehtävässä 5B1. Oletetaan nyt kuitenkin, että palvelimet on priorisoitu niin, että it-henkilö korjaa palvelimen 1 heti sen vioittuessa ja tarvittaessa keskeyttää palvelimen 2 korjaustyöt siksi aikaa. (a) Mallinna palvelinten tilaa jatkuva-aikaisella tilajoukon S = {, {1}, {2}, {1, 2}} Markov-ketjulla, missä tilajoukon alkiot ovat järjestämättömiä joukkoja, jotka kuvaavat korjausta odottavia palvelimia. Kirjoita ketjun generaattorimatriisi ja piirrä siirtymäkaavio. Ratkaisu. Edellisen tehtävän kanssa identtisillä perusteluilla ja merkinnöillä saadaan siirtymäkaavio 4 / 8

5 λ 1 λ µ 1 µ 2 λ 2 µ 1 12 λ 1 Tästä saadaan ketjun generaattorimatriisi λ 1 λ 2 λ 1 λ 2 0 Q = µ 1 λ 2 µ 1 0 λ 2 µ 2 0 λ 1 µ 2 λ µ 1 µ 1 (b) Selvitä palvelinten tilaa kuvaavan ketjun tasapainojakauma. Millä todennäköisyydellä yrityksestä löytyy vähintään yksi toimiva palvelin tasapainotilanteessa? Ratkaisu. Edellisen tehtävän tapaan halutaan siis ratkaista yhtälöt πq = 0 ja i π(i) = 1. Edellisen tehtävän lisäyksen hengessä ratkaistaan korvaamalla yksi Q:n saraketta vastaava yhtälö normitusehdolla, λ 1 λ 2 λ 1 λ 2 1 π ˆQ = [0, 0, 0, 1], ˆQ = µ 1 λ 2 µ µ 2 0 λ 1 µ µ 1 1 mistä matriisi kääntämällä saadaan π = [0.948, , , ]. Kuten edellisessä tehtävässä, tp-jakauma voitaisiin myös löytää matriisieksponentin avulla. Vähintään yksi palvelin toimii tasapainotilassa tn:llä 1 π(12) = (c) Jos tasapainotilanteessa havaitaan, että kumpikaan palvelin ei toimi, kauanko odotusarvoisesti kestää, ennen kuin toimintaan saadaan vähintään yksi palvelin? Ratkaisu. Jos molemmat palvelimet ovat rikki, korjataan palvelinta 1. Tämän korjausaika τ on Exp(µ 1 )-jakautunut, joten (kts. teht. 1A2) E(τ) = 1/µ 1 = / 8

6 (d) Vertaa edellisten kohtien tuloksia tehtävän 5B1 tuloksiin. Ratkaisu. Verrataan ensin tehtävien 5B1d ja 5B2c tuloksia. Jos molemmat palvelimet ovat rikki, on jälkimmäisessä tehtävässä tutkittu nopeamman korjattavan priorisointi selvästikin kannattavampaa, eli ainakin toinen palvelin saadaan toimimaan keskimäärin nopeammin tehtävän 5B2 tavalla. Verrataan seuraavaksi tasapainojakaumia (5B1c ja 5B2b), eli pitkän aikavälin käytöstä. Ensiksikin havaitaan, että tilojen (12) ja (21) yhteenlaskettu osuus kaikista päivistä pitkällä aikavälillä on tehtävässä 5B2 pienempi. Myös tässä mielessä tehtävän 5B2 strategia oli siis fiksu. Toisaalta kuitenkin havaitaan, että tilan 0 tn on tasapainotilassa sama tehtävissä 5B1c ja 5B2b. Syy on selvä: korjausjärjestys ei vaikuta siihen, kuinka usein koneet rikkoutuvat ja kuinka kauan korjaus kestää, ja vain nämä kaksi määräävät tilan nolla osuuden. 5B3 Kone toimii odotusarvoisesti 1/λ = 100 päivää ennen rikkoutumistaan ja korjaaminen kestää odotusarvoisesti 1/µ = 10 päivää. Toiminta- ja korjausajat oletetaan toisistaan riippumattomiksi ja eksponenttijakautuneiksi. Toimiessaan (tila 1) kone tuottaa voittoa keskimäärin A = e päivässä ja rikki ollessaan (tila 2) tappiota keskimäärin e päivässä. (a) Jos kone on kuukauden alussa rikki, niin kuinka monta päivää se odotusarvoisesti on rikki kyseisen kuukauden (30 päivää) aikana? Vihje: Tehtävän 5A3 tuloksista on apua. Ratkaisu. Olkoon X t koneen tilaa kuvaava jatkuva-aikainen äärellistilainen prosessi. Eksponentiaalisista ja riippumattomista odotusajoista päätellään, että X t on Markov-prosessi. Valitaan aikayksiköksi päivä. Päätellään kuvauksesta siirtymäkaavio λ 1 2 µ jossa siis tila 1 on kunnossa ja 2 rikki. Järjestämällä tilat järjestykseen 1, 2, vastaa ketjua generaattorimatriisi [ ] λ λ Q =. µ µ Huomaa, että ketju ja notaatiot ovat yhtenevät tehtävän 5A3 kanssa. Tuossa tehtävässä ratkaistiin siirtymämatriisi P (t): P t = 1 [ ] [ ] µ λ + e (λ+µ)t λ λ. (1) λ + µ µ λ λ + µ µ µ 6 / 8

7 Tilan y odotusarvoinen esiintyvyys alkutilalla x on [Leskelä 2015, luku 11.5] M t (x, y) = t s=0 P s (x, y)ds, joten tässä kiinnostaa alkio M t (2, 2). Sijoittamalla matriisin (1) alkio (2, 2) saadaan M t (2, 2) = λt λ + µ + µ (λ + µ) 2 (1 e (λ+µ)t ). Sijoittamalla tähän lukuarvot µ = 1/10, λ = 1/100 ja t = 30 saadaan M 30 (2, 2) (päivää). (b) Jos kone on kuukauden alussa rikki, niin kuinka paljon se odotusarvoisesti tuottaa voittoa omistajalleen kyseisen kuukauden (30 päivää) aikana? Ratkaisu. Luentomonisteen mukaan [Leskelä 2015, luku 11.6] odotusarvoisten kustannusten vaakavektori g t (x) alkutiloilla x S indeksoituna saadaan g t = M t c, jossa c on kustannusten pystyvektori. Kuten edellä, M t (x, y) = t s=0 P s (x, y)ds, joten siirtymämatriisin (1) avulla saadaan g t (2) = = = t s=0 y S t P s (2, y)c(y)ds [ µ λ s=0 λ + µ (1 e (λ+µ)s ) λ + µ + µ ] λ + µ e (λ+µ)s ds [ ] µ λ + µ (t + e (λ+µ)t 1 λt ) λ + µ λ + µ + µ (λ + µ) (1 2 e (λ+µ)t ) Sijoittamalla arvot saadaan g 30 (2) (euroa). (c) Millä vauhdilla kone tuottaa omistajalleen voittoa pitkällä aikavälillä? Ratkaisu. Ergodisuuslauseen [Leskelä 2015, Lause 11.10] mukaan pitkän aikavälin tuottovauhti on tn:llä yksi tasapainojakauman tuottovauhti π(x)c(x). x S 7 / 8

8 Tasapainojakaumaksi ratkaistu tehtävässä 5A3d π = [ µ λ+µ λ λ+µ], joten pitkän aikavälin tuottovauhdiksi saadaan x S π(x)c(x) = 1 (µ λ ) (euroa/päivä). λ + µ Huomaa, että pitkän aikavälin odotusarvoinen tuottovauhti alkaen tilasta 2 voidaan ratkaista suoraan edellisestä tehtävästä ja saada sama tulos: g t (2)/t t 1 (µ λ ). λ + µ Ergodisuuslauseen mukaan kyseessä ei ole kuitenkaan pelkästään odotusarvoinen tuottovauhti vaan myös melkein varma raja. 8 / 8

Jatkuvan aikavälin stokastisia prosesseja

Jatkuvan aikavälin stokastisia prosesseja 6A Jatkuvan aikavälin stokastisia prosesse Tämän harjoituksen tavoitteena on tutustua uusiutumisprosesseihin tkuva-aikaisiin Markovprosesseihin harjoitella laskemaan niihin liittyviä hetkittäisiä kaumia

Lisätiedot

Markov-ketjut pitkällä aikavälillä

Markov-ketjut pitkällä aikavälillä 2A Markov-ketjut pitkällä aikavälillä Tämän harjoituksen tavoitteena on oppia lukemaan siirtymämatriisista tai siirtymäkaaviosta, milloin Markov-ketju on yhtenäinen ja jaksoton; oppia tunnistamaan, milloin

Lisätiedot

Markov-kustannusmallit ja kulkuajat

Markov-kustannusmallit ja kulkuajat 2B Markov-kustannusmallit ja kulkuajat Tämän harjoituksen tavoitteena on oppia laskemaan Markov-kustannusmallien kustannuskertymiä ja -vauhteja, ketjujen odotettuja kulkuaikoja sekä todennäköisyyksiä osua

Lisätiedot

Markov-ketjut pitkällä aikavälillä

Markov-ketjut pitkällä aikavälillä MS-C2111 Stokastiset prosessit 2A Markov-ketjut pitkällä aikavälillä Tämän harjoituksen tavoitteena on oppia lukemaan siirtymämatriisista tai siirtymäkaaviosta, milloin Markov-ketju on yhtenäinen ja jaksoton;

Lisätiedot

Jatkuva-aikaisten Markov-prosessien aikakehitys

Jatkuva-aikaisten Markov-prosessien aikakehitys 5A Jatkuva-aikaisten Markov-prosessien aikakehitys Tämän harjoituksen tavoitteena on harjoitella jatkuva-aikaisiin Markov-prosesseihin liittyviä hetkittäisiä jakaumia ja tutkia niien muutoksia ajassa.

Lisätiedot

Erilaisia Markov-ketjuja

Erilaisia Markov-ketjuja MS-C2 Stokastiset prosessit Syksy 207 3A Erilaisia Markov-ketjuja Tuntitehtävät 3A Lepakoiden rengastaja (tai kuponkien keräilijä) Lepakkoluolassa on lepakkoa, joista jokainen lentää luolasta ulos joka

Lisätiedot

Markov-kustannusmallit ja kulkuajat

Markov-kustannusmallit ja kulkuajat 2B Markov-kustannusmallit ja kulkuajat Tämän harjoituksen tavoitteena on oppia laskemaan Markov-kustannusmallien kustannuskertymiä ja -vauhteja, ketjujen odotettuja kulkuaikoja sekä todennäköisyyksiä osua

Lisätiedot

Poisson-prosessien ominaisuuksia ja esimerkkilaskuja

Poisson-prosessien ominaisuuksia ja esimerkkilaskuja 4B Poisson-prosessien ominaisuuksia ja esimerkkilaskuja Tuntitehtävät 4B1 Eksponentiaalisten odotusaikojen toistuva odottaminen. Satunnaisluvun X sanotaan noudattavan Gamma-jakaumaa parametrein k ja λ,

Lisätiedot

Markov-ketjuja suurilla tila-avaruuksilla

Markov-ketjuja suurilla tila-avaruuksilla 3B Markov-ketjuja suurilla tila-avaruuksilla Tuntitehtävät 3B1 Sekoaako korttipakka sekoittamalla? Olkoon S kaikkien 52 kortin korttipakan mahdollisten järjestysten joukko. (a) Perustele, miksi joukossa

Lisätiedot

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi. Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i

Lisätiedot

Esimerkki: Tietoliikennekytkin

Esimerkki: Tietoliikennekytkin Esimerkki: Tietoliikennekytkin Tämä Mathematica - notebook sisältää luennolla 2A (2..26) käsitellyn esimerkin laskut. Esimerkin kuvailu Tarkastellaan yksinkertaista mallia tietoliikennekytkimelle. Kytkimeen

Lisätiedot

Generoivat funktiot, Poisson- ja eksponenttijakaumat

Generoivat funktiot, Poisson- ja eksponenttijakaumat 4A Generoivat funktiot, Poisson- ja eksponenttijakaumat Tämän harjoituksen tavoitteena on edelleen tutustua generoivien funktioiden sovelluksiin ja lisäksi harjoitella ratkaisemaan Poisson- ja eksponenttijakaumiin

Lisätiedot

Valintahetket ja pysäytetyt martingaalit

Valintahetket ja pysäytetyt martingaalit 4B Valintahetket ja pysäytetyt martingaalit Tämän harjoituksen tavoitteena on oppia tunnistamaan, mitkä satunnaishetket ovat valintahetkiä ja oppia laskemaan lukuarvoja ja estimaatteja satunnaisprosessien

Lisätiedot

T Rinnakkaiset ja hajautetut digitaaliset järjestelmät Stokastinen analyysi

T Rinnakkaiset ja hajautetut digitaaliset järjestelmät Stokastinen analyysi T-79.179 Rinnakkaiset ja hajautetut digitaaliset järjestelmät Stokastinen analyysi 12. maaliskuuta 2002 T-79.179: Stokastinen analyysi 8-1 Stokastinen analyysi, miksi? Tavallinen Petri-verkkojen saavutettavuusanalyysi

Lisätiedot

Poisson-prosessien ominaisuuksia ja esimerkkilaskuja

Poisson-prosessien ominaisuuksia ja esimerkkilaskuja 5B Poisson-prosessien ominaisuuksia ja esimerkkilaskuja Alla on kuhunkin tehtävään esitetty malliratkaisut punaisella sekä malliratkaisujen lisämateriaalit sinisellä. Tuntitehtävät 5B1 Teemu Selänne on

Lisätiedot

1 p p P (X 0 = 0) P (X 0 = 1) =

1 p p P (X 0 = 0) P (X 0 = 1) = Mat-2.3 Stokastiset rosessit Syksy 2007 Laskuharjoitustehtävät 3 Poroudas/Kokkala. Tarkastellaan Markov-ketjua, jonka tilajoukko on {0, } ja tilansiirtotodennäköisyysmatriisi P Olkoon alkujakauma α 0 a

Lisätiedot

Syntymä-kuolema-prosessit

Syntymä-kuolema-prosessit J. Virtamo 38.343 Jonoteoria / SK-prosessit Syntymä-kuolema-prosessit Yleistä Syntymä-kuolema-prosessiksi (SK-prosessi) kutsutaan Markov-prosessia, jonka - tila-avaruus on iskreetti - tilat voiaan järjestää

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

Markov-ketjun hetkittäinen käyttäytyminen

Markov-ketjun hetkittäinen käyttäytyminen Matematiika ja systeemiaalyysi laitos B Markov-ketju hetkittäie käyttäytymie Tämä harjoitukse tavoitteea o oppia muodostamaa Markov-malleja satuaisilmiöille, piirtämää tiettyä siirtymämatriisia vastaava

Lisätiedot

Markov-ketjun hetkittäinen käyttäytyminen

Markov-ketjun hetkittäinen käyttäytyminen Matematiika ja systeemiaalyysi laitos 1B Markov-ketju hetkittäie käyttäytymie Tämä harjoitukse tavoitteea o oppia muodostamaa Markov-malleja satuaisilmiöille, piirtämää tiettyä siirtymämatriisia vastaava

Lisätiedot

Matriisilaskenta Luento 8: LU-hajotelma

Matriisilaskenta Luento 8: LU-hajotelma Matriisilaskenta Luento 8: LU-hajotelma Antti Rasila 2016 Matriisihajotelmat 1/2 Usein matriisiyhtälön Ax = y ratkaiseminen on epäkäytännöllistä ja hidasta. Siksi numeerisessa matriisilaskennassa usein

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Martingaalit ja informaatioprosessit

Martingaalit ja informaatioprosessit 4A Martingaalit ja informaatioprosessit Tämän harjoituksen tavoitteena on tutustua satunnaisvektorin informaation suhteen lasketun ehdollisen odotusarvon käsitteeseen sekä oppia tunnistamaan, milloin annettu

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

Martingaalit ja informaatioprosessit

Martingaalit ja informaatioprosessit 6A Martingaalit ja informaatioprosessit Tämän harjoituksen tavoitteena on oppia tunnistamaan, milloin satunnaisprosessi on martingaali annetun informaatioprosessin suhteen ja milloin satunnaishetki on

Lisätiedot

MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42

MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 Tehtävät 1-4 lasketaan alkuviikon harjoituksissa ryhmissä, ja ryhmien ratkaisut esitetään harjoitustilaisuudessa (merkitty kirjaimella L = Lasketaan).

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 4.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Viimeiset harjoitukset on palautettava torstaina 13.6. Laskaripisteensä ja läsnäolonsa voi kukin tarkistaa

Lisätiedot

Käänteismatriisi 1 / 14

Käänteismatriisi 1 / 14 1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella

Lisätiedot

Lineaarikuvauksen R n R m matriisi

Lineaarikuvauksen R n R m matriisi Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:

Lisätiedot

ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa.

ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa. BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 7, Syksy 206 Tutkitaan yhtälöryhmää x + y + z 0 2x + y + az b ax + y + 2z 0 (a) Jos a 0 ja b 0 niin mikä on yhtälöryhmän ratkaisu? Tulkitse ratkaisu

Lisätiedot

STOKASTISET PROSESSIT Peruskäsitteitä

STOKASTISET PROSESSIT Peruskäsitteitä J. Virtamo 38.3143 Jonoteoria / Stokastiset prosessit 1 STOKASTISET PROSESSIT Peruskäsitteitä Usein tarkasteltava järjestelmä kehittyy ajan mukana ja meitä kiinnostaa sen dynaaminen, yleensä satunnaisuutta

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Ennakkotehtävän ratkaisu

Ennakkotehtävän ratkaisu Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48 MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Matriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi.

Matriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi. Matriisilaskenta Harjoitusten ratkaisut (Kevät 9). Olkoot ja A = B = 5. Osoitetaan, että matriisi B on matriisin A käänteismatriisi. Tapa Käänteismatriisin määritelmän nojalla riittää osoittaa, että AB

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 7 (vko 44/003) (Aihe: odotusarvon ja varianssin ominaisuuksia, satunnaismuuttujien lineaarikombinaatioita,

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla: 11 Determinantti Neliömatriisille voidaan laskea luku, joka kertoo muun muassa, onko matriisi kääntyvä vai ei Tätä lukua kutsutaan matriisin determinantiksi Determinantilla on muitakin sovelluksia, mutta

Lisätiedot

7 Vapaus. 7.1 Vapauden määritelmä

7 Vapaus. 7.1 Vapauden määritelmä 7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =

Lisätiedot

1.1. Määritelmiä ja nimityksiä

1.1. Määritelmiä ja nimityksiä 1.1. Määritelmiä ja nimityksiä Luku joko reaali- tai kompleksiluku. R = {reaaliluvut}, C = {kompleksiluvut} R n = {(x 1, x 2,..., x n ) x 1, x 2,..., x n R} C n = {(x 1, x 2,..., x n ) x 1, x 2,..., x

Lisätiedot

Käänteismatriisin ominaisuuksia

Käänteismatriisin ominaisuuksia Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit

Lisätiedot

Lineaariset kongruenssiyhtälöryhmät

Lineaariset kongruenssiyhtälöryhmät Lineaariset kongruenssiyhtälöryhmät LuK-tutkielma Jesse Salo 2309369 Matemaattisten tieteiden laitos Oulun yliopisto Sisältö Johdanto 2 1 Kongruensseista 3 1.1 Kongruenssin ominaisuuksia...................

Lisätiedot

T Rinnakkaiset ja hajautetut digitaaliset järjestelmät Stokastinen analyysi

T Rinnakkaiset ja hajautetut digitaaliset järjestelmät Stokastinen analyysi T-79.179 Rinnakkaiset ja hajautetut digitaaliset järjestelmät Stokastinen analyysi 15. maaliskuuta 2004 T-79.179: Stokastinen analyysi 8-1 Mihin tarvitaan stokastista analyysiä? Saavutettavuusanalyysissä

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja

Lisätiedot

Liikenneongelmien aikaskaalahierarkia

Liikenneongelmien aikaskaalahierarkia J. Virtamo 38.3141 Teleliikenneteoria / HOL-esto 1 Liikenneongelmien aikaskaalahierarkia AIKASKAALAHIERARKIA Kiinnostavat aikaskaalat kattavat laajan alueen, yli 13 dekadia! Eri aikaskaaloissa esiintyvät

Lisätiedot

802118P Lineaarialgebra I (4 op)

802118P Lineaarialgebra I (4 op) 802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu

Lisätiedot

Matriisialgebra harjoitukset, syksy x 1 + x 2 = a 0

Matriisialgebra harjoitukset, syksy x 1 + x 2 = a 0 MATRIISIALGEBRA, s, Ratkaisuja/ MHamina & M Peltola 22 Virittääkö vektorijoukko S vektoriavaruuden V, kun a V = R 3 ja S = {(1,0, 1,(2,0,4,( 5,0,2,(0,0,1} b V = P 2 (R ja S = {t1,t 2 1,t 2 t} ( ( 1 0 c

Lisätiedot

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 4 Ratkaisut palautettava viimeistään maanantaina 862015 klo 1615 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi Talousmatematiikan perusteet: Luento 11 Lineaarikuvaus Matriisin aste Käänteismatriisi Viime luennolla Käsittelimme matriisien peruskäsitteitä ja laskutoimituksia Vakiolla kertominen, yhteenlasku ja vähennyslasku

Lisätiedot

Vektoreiden virittämä aliavaruus

Vektoreiden virittämä aliavaruus Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden

Lisätiedot

Syntymä-kuolema-prosessit

Syntymä-kuolema-prosessit J. Virtamo Liikenneteoria ja liikenteenhallinta / SK-prosessit Syntymä-kuolema-prosessit Yleistä Syntymä-kuolema-prosessiksi (SK-prosessi) kutsutaan Markov-prosessia, jonka - tila-avaruus on iskreetti

Lisätiedot

8 KANNAT JA ORTOGONAALISUUS. 8.1 Lineaarinen riippumattomuus. Vaasan yliopiston julkaisuja 151

8 KANNAT JA ORTOGONAALISUUS. 8.1 Lineaarinen riippumattomuus. Vaasan yliopiston julkaisuja 151 Vaasan yliopiston julkaisuja 151 8 KANNAT JA ORTOGONAALISUUS KantaOrthogon Sec:LinIndep 8.1 Lineaarinen riippumattomuus Lineaarinen riippumattomuus on oikeastaan jo määritelty, mutta kirjoitamme määritelmät

Lisätiedot

Matemaattinen Analyysi, s2016, L2

Matemaattinen Analyysi, s2016, L2 Matemaattinen Analyysi, s2016, L2 riippumattomuus, 1 Esimerkkejä esimerkki Dieetti-välipala 1: Opiskelija Ken Obi on dieetillä. Lenkin jälkeen Ken pysähtyy välipalalle. Dieetin mukaan hänen pitäisi saada

Lisätiedot

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij. Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Talousmatematiikan perusteet: Luento 10 Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Lineaarikuvaus Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta, jossa käytetään

Lisätiedot

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio,

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio, Differentiaaliyhtälöt, Kesä 06 Harjoitus 3 Kaikissa tehtävissä, joissa pitää tarkastella kriittisten pisteiden stabiliteettia, jos kyseessä on satulapiste, ilmoita myös satulauraratkaisun (tai kriittisessä

Lisätiedot

Lineaariset yhtälöryhmät ja matriisit

Lineaariset yhtälöryhmät ja matriisit Lineaariset yhtälöryhmät ja matriisit Lineaarinen yhtälöryhmä a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. a m1 x 1 + a m2 x 2 + + a mn x n = b m, (1) voidaan esittää

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1.

Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1. HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 2 Ratkaisut palautettava viimeistään maanantaina 25.5.2015 klo 16.15. Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja

Lisätiedot

Lineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg

Lineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg Vaasan yliopisto, syksy 218 Lineaarialgebra II, MATH124 Matti laaksonen, Lassi Lilleberg Tentti T1, 284218 Ratkaise 4 tehtävää Kokeessa saa käyttää laskinta (myös graafista ja CAS-laskinta), mutta ei taulukkokirjaa

Lisätiedot

2.8. Kannanvaihto R n :ssä

2.8. Kannanvaihto R n :ssä 28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit

Lisätiedot

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1 Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon

Lisätiedot

BM20A0700, Matematiikka KoTiB2

BM20A0700, Matematiikka KoTiB2 BM20A0700, Matematiikka KoTiB2 Luennot: Matti Alatalo, Harjoitukset: Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luku 7. 1 Kurssin sisältö Matriiseihin

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 2

Inversio-ongelmien laskennallinen peruskurssi Luento 2 Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +

Lisätiedot

Aiheet. Kvadraattinen yhtälöryhmä. Kvadraattinen homogeeninen YR. Vapaa tai sidottu matriisi. Vapauden tutkiminen. Yhteenvetoa.

Aiheet. Kvadraattinen yhtälöryhmä. Kvadraattinen homogeeninen YR. Vapaa tai sidottu matriisi. Vapauden tutkiminen. Yhteenvetoa. Yhtälöryhmän ratkaisujen lukumäärä, L8 Esimerkki kvadraattinen Haluamme ratkaista n 4x + y z = x + y + z = 5 x + y + z = 4 4 x 4 + y x y z = + z 5 4 = 5 4 Esimerkki kvadraattinen Yhtälöryhmä on kvadraattinen,

Lisätiedot

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A

Lisätiedot

Kanta ja Kannan-vaihto

Kanta ja Kannan-vaihto ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V

Lisätiedot

Ominaisarvo-hajoitelma ja diagonalisointi

Ominaisarvo-hajoitelma ja diagonalisointi Ominaisarvo-hajoitelma ja a 1 Lause 1: Jos reaalisella n n matriisilla A on n eri suurta reaalista ominaisarvoa λ 1,λ 2,...,λ n, λ i λ j, kun i j, niin vastaavat ominaisvektorit x 1, x 2,..., x n muodostavat

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1

Lisätiedot

MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)

MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2) MS-A4 Differentiaali- ja integraalilaskenta (ELEC2) MS-A6 Differentiaali- ja integraalilaskenta (ENG2) Harjoitukset 3L, syksy 27 Tehtävä. a) Määritä luvun π likiarvo käyttämällä Newtonin menetelmää yhtälölle

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28 Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä

Lisätiedot

Ratkaisuehdotukset LH 3 / alkuvko 45

Ratkaisuehdotukset LH 3 / alkuvko 45 Ratkaisuehdotukset LH 3 / alkuvko 45 Tehtävä : Olkoot A, B, X R n n, a, b R n ja jokin vektorinormi. Kätetään vektorinormia vastaavasta operaattorinormista samaa merkintää. Nätä, että. a + b a b, 2. A

Lisätiedot

Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.

Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8. HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..

Lisätiedot

5 Lineaariset yhtälöryhmät

5 Lineaariset yhtälöryhmät 5 Lineaariset yhtälöryhmät Edellisen luvun lopun esimerkissä päädyttiin yhtälöryhmään, jonka ratkaisemisesta riippui, kuuluuko tietty vektori eräiden toisten vektorien virittämään aliavaruuteen Tämäntyyppisiä

Lisätiedot

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut)

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut) J. Virtamo 38.3143 Jonoteoria / Markov-prosessit 1 Markov-prosessit (Jatkuva-aikaiset Markov-ketut) Tarkastellaan (stationaarisia) Markov-prosessea, oiden parametriavaruus on atkuva (yleensä aika). Siirtymät

Lisätiedot

a) Sievennä lauseke 1+x , kun x 0jax 1. b) Aseta luvut 2, 5 suuruusjärjestykseen ja perustele vastauksesi. 3 3 ja

a) Sievennä lauseke 1+x , kun x 0jax 1. b) Aseta luvut 2, 5 suuruusjärjestykseen ja perustele vastauksesi. 3 3 ja 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 1.10.2018 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella

Lisätiedot

Stokastiset prosessit. Lasse Leskelä Aalto-yliopisto

Stokastiset prosessit. Lasse Leskelä Aalto-yliopisto Stokastiset prosessit Lasse Leskelä Aalto-yliopisto 7. elokuuta 2018 Sisältö 1 Satunnaisluvut ja satunnaisvektorit 5 1.1 Todennäköisyysjakauma...................... 5 1.2 Satunnaismuuttuja.........................

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden

Lisätiedot

LU-hajotelma. Esimerkki 1 Matriisi on yläkolmiomatriisi ja matriisi. on alakolmiomatriisi. 3 / 24

LU-hajotelma. Esimerkki 1 Matriisi on yläkolmiomatriisi ja matriisi. on alakolmiomatriisi. 3 / 24 LU-hajotelma 1 / 24 LU-hajotelma Seuravassa tarkastellaan kuinka neliömatriisi voidaan esittää kahden kolmiomatriisin tulona. Käytämme alkeismatriiseja tälläisen esityksen löytämiseen. Edellä mainittua

Lisätiedot

MS-A0003/A Matriisilaskenta Laskuharjoitus 6

MS-A0003/A Matriisilaskenta Laskuharjoitus 6 MS-A3/A - Matriisilaskenta Laskuharjoitus 6 Ratkaisuehdotelmia. Diagonalisointi on hajotelma A SΛS, jossa diagonaalimatriisi Λ sisältää matriisin A ominaisarvot ja matriisin S sarakkeet ovat näitä ominaisarvoja

Lisätiedot

Käänteismatriisin. Aiheet. Käänteismatriisin ominaisuuksia. Rivioperaatiot matriisitulona. Matriisin kääntäminen rivioperaatioiden avulla

Käänteismatriisin. Aiheet. Käänteismatriisin ominaisuuksia. Rivioperaatiot matriisitulona. Matriisin kääntäminen rivioperaatioiden avulla Käänteismatriisi, L5 1 Tässä kalvosarjassa käsittelemme neliömatriiseja. Ilman asian jatkuvaa toistamista oletamme seuraavassa, että kaikki käsittelemämme matriisit ovat neliömatriiseja. Määritelmä. Olkoon

Lisätiedot

Similaarisuus. Määritelmä. Huom.

Similaarisuus. Määritelmä. Huom. Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP

Lisätiedot

Ortogonaaliset matriisit, määritelmä 1

Ortogonaaliset matriisit, määritelmä 1 , määritelmä 1 Määritelmä (a). Neliömatriisi Q on ortogonaalinen, jos Q T Q = I. Määritelmästä voidaan antaa samaa tarkoittavat, mutta erilaiselta näyttävät muodot: Määritelmä (b). n n neliömatriisi Q,

Lisätiedot

Estynyt puheluyritys menetetään ei johda uusintayritykseen alkaa uusi miettimisaika: aika seuraavaan yritykseen Exp(γ) pitoaika X Exp(µ)

Estynyt puheluyritys menetetään ei johda uusintayritykseen alkaa uusi miettimisaika: aika seuraavaan yritykseen Exp(γ) pitoaika X Exp(µ) J Virtamo 383143 Jonoteoria / Engsetin järjestelmä 1 Äärellinen lähdepopulaatio: M/M/s/s/n-järjestelmä Tarkastellaan estojärjestelmää (ei odotuspaikkoja) tapauksessa, jossa saapumiset tulevat äärellisestä

Lisätiedot

5 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A

Lisätiedot

9 Matriisit. 9.1 Matriisien laskutoimituksia

9 Matriisit. 9.1 Matriisien laskutoimituksia 9 Matriisit Aiemmissa luvuissa matriiseja on käsitelty siinä määrin kuin on ollut tarpeellista yhtälönratkaisun kannalta. Matriiseja käytetään kuitenkin myös muihin tarkoituksiin, ja siksi on hyödyllistä

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 28. syyskuuta 2007 Antti Rasila () TodB 28. syyskuuta 2007 1 / 20 1 Jatkoa diskreeteille jakaumille Negatiivinen binomijakauma Poisson-jakauma Diskreettien

Lisätiedot

Matematiikka ja teknologia, kevät 2011

Matematiikka ja teknologia, kevät 2011 Matematiikka ja teknologia, kevät 2011 Peter Hästö 27. tammikuuta 2011 Matemaattisten tieteiden laitos Sisältö Kurssi koostuu kuudesta (seitsemästä) toisistaan riippumattomasta luennosta. Aihepiirit ovat:

Lisätiedot

Ortogonaalisen kannan etsiminen

Ortogonaalisen kannan etsiminen Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,

Lisätiedot

Kaksirivisen matriisin determinantille käytämme myös merkintää. a 11 a 12 a 21 a 22. = a 11a 22 a 12 a 21. (5.1) kaksirivine

Kaksirivisen matriisin determinantille käytämme myös merkintää. a 11 a 12 a 21 a 22. = a 11a 22 a 12 a 21. (5.1) kaksirivine Vaasan yliopiston julkaisuja 97 5 DETERMINANTIT Ch:Determ Sec:DetDef 5.1 Determinantti Tämä kappale jakautuu kolmeen alakappaleeseen. Ensimmäisessä alakappaleessa määrittelemme kaksi- ja kolmiriviset determinantit.

Lisätiedot

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä) Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe 26.10.2017 Ratkaisuehdotus 1. (35 pistettä) (a) Seuraavat matriisit on saatu eräistä yhtälöryhmistä alkeisrivitoimituksilla. Kuinka monta ratkaisua yhtälöryhmällä

Lisätiedot