Matematiikka ja teknologia, kevät 2011
|
|
- Jussi Melasniemi
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Matematiikka ja teknologia, kevät 2011 Peter Hästö 27. tammikuuta 2011 Matemaattisten tieteiden laitos
2 Sisältö Kurssi koostuu kuudesta (seitsemästä) toisistaan riippumattomasta luennosta. Aihepiirit ovat: 13.1 Global positioning system (GPS) 20.1 Satunnaislukugeneraattorit 27.1 Google ja PageRank algoritmi 3.2 JPEG kuvanpakkaus 10.2 ei luentoa! 17.2 Geometria arkkitehtuurissa 24.2 ROF kuvan virheenpoisto (3.3 Fraktaalit ja kuvanpakkaus) HUOM! 3.3 on ylimääräinen luento fraktaaleista tässä luennossa ei ole ollenkaan perusosaa, koska aiheen käsittely vaatii enemmän matemaattista pohjaa. Peter Hästö Matemaattisten tieteiden laitos 27. tammikuuta / 21
3 Hakukoneen tarkoitus Hakukonetta tarvitaan tilanteessa jossa suuresta datamäärästä pitää etsiä tiettyä informaatiopalasta, josta tiedetään jotain. Hakukoneita on monenlaisia; perusjako voidaan tehdä yleisten ja spesifien koneiden välillä. Yleisiä koneita ovat esim. Google, Yahoo, Altavista, spesifejä esim. etuovi sekä Oula. Käyttötarkoituksen lisäksi yleisiä ja spesifejä hakukoneita erottaa usein myös datan laatu. Peter Hästö Matemaattisten tieteiden laitos 27. tammikuuta / 21
4 Datan laatu Spesifejä datavarastoille pätee yleensä, että data on syötetty standardimuodossa; datan laatu on korkea (vähän puuttuvaa tai virhetietoa); käyttäjien tarpeet ovat pitkälti samanlaiset; datan pysyvyys on korkea; ja datan laadusta vallitsee yhteisymmärrys. Yleisistä, verkkosivujen hakukoneista puuttuvat yllä mainitut ominaisuudet. Esimerkiksi ei ole mielekästä, että verkkosivu voisi itse ilmoittaa oman tärkeytensä! Herää siis kysymys, miten verkosta löytyvä materiaali tulisi arvottaa, niin, että hakijalle voisi esittää ne sivut, jotka ovat hänelle todennäköisimmin hyödyllisiä. Peter Hästö Matemaattisten tieteiden laitos 27. tammikuuta / 21
5 World wide webin struktuuri www-formaatti ei rajoita (strukturoi) sivujen sisältöä juurikaan. Sivujen sisällä haku perustuukin tekstimassaan ei ole esim. väliä esiintyykö sana kuvanpakkaus sivun ylä- vai alaosassa, taulukossa vai leipätekstissä, jne. Yleiset hakukoneet perustuvat sivujen rankkauksen www-sivujen linkkeihin. Linkit HTML kielessä ovat yhdensuuntaisia, eivätkä vaadi linkattavalta sivulta toimenpiteitä/suostumusta. www-sivut voidaan mallintaa matemaattisesti (suunnattuna) graafina. (HUOM! tässä ei mallinneta internetiä, vaan www-sivujen verkostoa.) Peter Hästö Matemaattisten tieteiden laitos 27. tammikuuta / 21
6 www graafina Tässä kuvassa on esitetty pieni suunnattu graafi, joka koostuu viidestä solmusta ja kymmenestä suunnatusta kaaresta. Kuvassa musta piste merkkaa sitä sivua johon linkitetään. Siis esimerkiksi sivulta D on linkki sivulle A, ja sinne on linkki sivulta E. Peter Hästö Matemaattisten tieteiden laitos 27. tammikuuta / 21
7 Graafin satunnainen surfaaja PageRank algoritmi perustuu satunnaisen web-surffarin mallintamiseen: jos hän on sivulla jossa on N (eri?) linkkiä, niin hän seuraa kutakin todennäköisyydellä 1 N. Jos henkilö käyttäytyy tällä tavoin, niin millä todennäköisyydellä hän on tietyllä sivulla? [Parin ensimmäisen askeleen TN lasku] [simulaatio] Näyttää siltä, että sattumalla ei pitkässä juoksussa ole suurta merkitystä siihen, kuinka paljon aikaa tietyllä sivulla kulutetaan. (Todistetaan luennon toisessa osassa.) Tässä esimerkissä todennäköisyydet lähenevät lukuja 12 41, 16 41, 9 41, 1 41 ja Peter Hästö Matemaattisten tieteiden laitos 27. tammikuuta / 21
8 Rankkaus Kun tiedämme, mikä on todennäköisyys, että satunnaissurffari on tietyllä sivulla, voimme järjestää haetut sivut järjestykseen todennäköisyyden mukaan. Tällä menetelmällä, sivu johon tulee paljon linkkejä korkeasti arvostetuilta sivuilta arvostetaan korkealla: tasapainotilassa voidaan ajatella myös, että jokainen sivu jakaa arvostustaan tasaisesti jokaiselle linkittämälleen sivulla. Tätä järjestelmää ei kuitenkin toimi kovin hyvin vähemmän yhtenäisessä graafissa. Peter Hästö Matemaattisten tieteiden laitos 27. tammikuuta / 21
9 Ongelmagraafi Miten tässä graafissa jakautuu todennäköisyys? Esimerkissä näemme, että ongelmaksi muodostuu erilliset tai yksisuuntaisesti erilliset osat graafia. Käytännössä www-verkoston osat voivat olla tuhansien sivujen kokoisia, joten niitä ei voi myöskään sivuttaa. Peter Hästö Matemaattisten tieteiden laitos 27. tammikuuta / 21
10 PageRank ratkaisu Eräs ratkaisu ongelmaan on käyttää satunnaista surfaajaa joka ei aina seuraa linkkejä. Oletetaan päin vastoin, että surfaaja seuraa linkkejä todennäköisyydellä β [0, 1]. Todennäköisyydellä 1 β, surfaaja siirtyykin jollain toisella periaatteella: esimerkiksi voimme olettaa, että siirtyminen jokaiselle www-sivulla on yhtä todennäköistä, ts. käytännössä surfaaja rupeaa tutkailemaan jotain muuta aihetta. Page et al. ehdottavat β = 0, 85. Siirtymisessä voi myös painottaa tiettyjä sivuja toisia enemmän; esimerkiksi maakohtaisia eroja hakutuloksissa voidaan saada aikaiseksi näin. Peter Hästö Matemaattisten tieteiden laitos 27. tammikuuta / 21
11 Syventävä osa käsitteet Tarvittavat käsitteet (huom! näistä voi kysellä tauon aikana!) todennäköisyys, ehdollinen todennäköisyys; matriisin kertolasku matriisin ominaisarvot, ominaisvektorit vektoriavaruuden kanta Peter Hästö Matemaattisten tieteiden laitos 27. tammikuuta / 21
12 Tilan representointi vektorina Tutkiaksemme satunnaisen surffarin liikkeitä, representoimme graafia vektorina niin, että solmua A vastaa ensimmäinen rivi, B toinen rivi, jne. Esim. vektori (0, 0, 1, 0, 0) T tarkoittaa tilannetta, missä surffari on solmussa C. Jos vektorin alkiot ovat reaalilukuja välillä [0, 1] ja niiden summa on 1, voimme tulkita ne todennäköisyyksiksi: esim. (0, 1/2, 0, 0, 1/2) T tarkoittaa, että henkilö on puolessa tapauksista solmussa B, toisessa puolessa solmussa E. Peter Hästö Matemaattisten tieteiden laitos 27. tammikuuta / 21
13 Tilan muutoksen representointi Jos surffarin olinpaikan todennäköisyydet hetkellä n kertoo vektori p n := (t A, t B, t C, t D, t E ) T, niin mitkä ovat todennäköisyydet seuraavan siirron jälkeen? Merkitään satunnaismuuttujalla X n surffarin paikka ajanhetkellä n. Siis pätee P(X n = A) =: t n A, P(X n = B) =: t n B, jne. Lasketaan seuraavan sijainnin todennäköisyydet ehdollisten todennäköisyyksien avulla: P(X n+1 = A) = P(X n+1 = A X n = A)p(X n = A) P(X n+1 = A X n = E)p(X n = E) = t n AA tn A tn AE tn E, missä t n ij := P(X n+1 = i X n = j), i, j {A, B, C, D, E}. Siis t ij kertoo todennäköisyyden siirtyä solmusta j solmuun i. Peter Hästö Matemaattisten tieteiden laitos 27. tammikuuta / 21
14 Tilan muutoksen representointi matriisilla Edellä näimme, että t n+1 A = taa n tn A tn AE tn E. Tämän voimme tulkita matriisin ja vektorin tulon ensimmäisenä rivinä; vastaava tulos pätee myös muille riville. Näin saamme siis t n+1 A t n+1 B t n+1 C t n+1 D t n+1 E = taa n tn AB tac n tad n tn AE tba n tn BB tbc n tbd n tn BE tca n tn CB tcc n tcd n tn CE tda n tn DB tn DC tdd n tn DE tea n teb n tec n ted n tn EE t n A t n B t n C t n D t n E. Siirtymämatriisin ensimmäinen sarake kertoo todennäköisyydet siirtyä solmusta A, jne. Satunnaisen surffaajan määritelmän mukaan tämä on tasaisesti jakautunut A:sta lähtevien kaarien välille. Koska A:sta lähtee vain yksi kaari, solmuun C, on ensimmäinen sarake (0, 0, 1, 0, 0) T. Peter Hästö Matemaattisten tieteiden laitos 27. tammikuuta / 21
15 Siirtymämatriisi Siirtymämatriisin muut sarakkeet saadaan samalla tavalla määrättyä P := Huomaa, että siirtymämatriisi ei riipu ajanhetkestä n. Lisäksi huomataan, että X n+1 riippuu vain muuttujasta X n, eli tulevaisuus riippuu vain nykyhetkestä, ei menneisyydestä. Tällaista prosessia (X n ) n kutsutaan Markovin prosessiksi. Peter Hästö Matemaattisten tieteiden laitos 27. tammikuuta / 21
16 Matriisiesityksen hyöty Olemme todistaneet, että p n+1 = Pp n. Tämä pätee jokaiselle n, joten p n = Pp n 1 = P(Pp n 2 ) =... = P n p 0, eli voimme lausua hetken n tilan yksinkertaisesti alkutilan avulla. Matriisin potenssin voimme laskea melko tehokkaasti: peräkkäisillä neliöimisillä saamme P 2, P 4, P 8, jne.: Peter Hästö Matemaattisten tieteiden laitos 27. tammikuuta / 21
17 P 8 = P 16 = P 32 = Laskujen perusteella näyttää siltä, että P n saattaisi supeta kun n. Tästä seuraisi, että myös p n suppenisi, mihin aikaisempi simulaatiokin viittasi. Peter Hästö Matemaattisten tieteiden laitos 27. tammikuuta / 21
18 Siirtymämatriisin ominaisuuksia Siirtymämatriisin ominaisuus on, että jokaisen sarakkeen alkioiden summa on yksi, lisäksi kaikki alkiot ovat ei-negatiivisia. Lemma Siirtymämatriisilla on ainakin yksi ominaisarvo 1. Todistus. Matriisilla ja sen transpoosilla on samat ominaisarvot; siirtymämatriisin transpoosilla on ominaisvektori (1,..., 1) T ominaisarvolla 1. Yhdistämällä em. lemma ja Frobeniuksen lause saamme: Lemma Siirtymämatriisin jokaiselle ominaisarvolle λ pätee λ 1. Lisäksi ominaisarvoa λ = 1 vastaa ominaisvektori jolla on ei negatiiviset alkiot. Peter Hästö Matemaattisten tieteiden laitos 27. tammikuuta / 21
19 Lisäoletuksia Teemme nyt eräitä lisäoletuksia matriisista: 1. Oletetaan, että täsmälleen yksi ominaisvektori vastaa ominaisarvoa 1, eikä muita ominaisarvoja λ = 1 ole; 2. Oletetaan, että ominaisvektorit muodostavat avaruuden kannan, eli, että matriisi on diagonalisoituva. Olkoon ominaisvektorit ja -arvot v 1,..., v k ja λ 1,..., λ k, missä λ 1 = 1. Oletuksista seuraa, että λ j < 1 muilla indekseillä. Peter Hästö Matemaattisten tieteiden laitos 27. tammikuuta / 21
20 Suppeneminen Koska (v j ) on kanta, voimme kirjoittaa p 0 = a 1 v a k v k. Ominaisvektorin ja -arvon määritelmän nojalla p 1 = Pp 0 = a 1 Pv a k Pv k = λ 1 a 1 v λ k a k v k. Iteroimalla saamme p n = λ n 1a 1 v λ n k a kv k. Koska λ 1 = 1 ja λ j < 1 muuten, näemme, että p n a 1 v 1 kun n. Tämä raja-arvohan oli perustana PageRank algoritmin sivujen rankkauksessa, eli toisin sanoen algoritmi perustuu siihen, että löydetään siirtymämatriisin ominaisarvoa 1 vastaava ominaisvektori. Peter Hästö Matemaattisten tieteiden laitos 27. tammikuuta / 21
21 Käytännön vaikeuksia Vaikka rankkausongelma on periaatteessa redusoitu yksinkertaiseen ominaisvektoriongelmaksi, muodostuu matriisin koosta käytännön ongelmia. Internetissä on suuruusluokkaa www-sivua, joten kyseessä on matriisi. Se miten ominaisarvo-ongelma ratkaistaan Googlessa ei ole julkista. Todennäköisesti ratkaisu perustuu ainakin osittain siihen, että matriisissa on erittäin suuria osia joissa on pelkkiä nollia. Peter Hästö Matemaattisten tieteiden laitos 27. tammikuuta / 21
Matematiikka ja teknologia, kevät 2011
Matematiikka ja teknologia, kevät 2011 Peter Hästö 3. helmikuuta 2011 Matemaattisten tieteiden laitos Sisältö Kurssi koostuu kuudesta (seitsemästä) toisistaan riippumattomasta luennosta. Aihepiirit ovat:
Matematiikka ja teknologia, kevät 2011
Matematiikka ja teknologia, kevät 2011 Peter Hästö 13. tammikuuta 2011 Matemaattisten tieteiden laitos Tarkoitus Kurssin tarkoituksena on tutustuttaa ja käydä läpi eräisiin teknologisiin sovelluksiin liittyvää
1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.
Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i
MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42
MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 Tehtävät 1-4 lasketaan alkuviikon harjoituksissa ryhmissä, ja ryhmien ratkaisut esitetään harjoitustilaisuudessa (merkitty kirjaimella L = Lasketaan).
Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:
8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden
MS-A0004/A0006 Matriisilaskenta
4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin
Esimerkki: Tietoliikennekytkin
Esimerkki: Tietoliikennekytkin Tämä Mathematica - notebook sisältää luennolla 2A (2..26) käsitellyn esimerkin laskut. Esimerkin kuvailu Tarkastellaan yksinkertaista mallia tietoliikennekytkimelle. Kytkimeen
Department of Mathematics, Hypermedia Laboratory Tampere University of Technology. Arvostus Verkostoissa: PageRank. Idea.
Arvostus Tommi Perälä Department of Mathematics, Hypermedia Laboratory Tampere University of Technology 8..0 in idea on määrittää verkoston solmuille arvostusta kuvaavat tunnusluvut. Voidaan ajatella
Lineaarikuvauksen R n R m matriisi
Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:
Etsintä verkosta (Searching from the Web) T Datasta tietoon Heikki Mannila, Jouni Seppänen
Etsintä verkosta (Searching from the Web) T-61.2010 Datasta tietoon Heikki Mannila, Jouni Seppänen 12.12.2007 Webin lyhyt historia http://info.cern.ch/proposal.html http://browser.arachne.cz/screen/
Ominaisarvo ja ominaisvektori
Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2
Markov-ketjut pitkällä aikavälillä
2A Markov-ketjut pitkällä aikavälillä Tämän harjoituksen tavoitteena on oppia lukemaan siirtymämatriisista tai siirtymäkaaviosta, milloin Markov-ketju on yhtenäinen ja jaksoton; oppia tunnistamaan, milloin
Ominaisvektoreiden lineaarinen riippumattomuus
Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin
Matematiikka ja teknologia, kevät 2011
Matematiikka ja teknologia, kevät 2011 Peter Hästö 24. helmikuuta 2011 Matemaattisten tieteiden laitos Sisältö Kurssi koostuu kuudesta (seitsemästä) toisistaan riippumattomasta luennosta. Aihepiirit ovat:
Department of Mathematics, Hypermedia Laboratory Tampere University of Technology. Roolit Verkostoissa: HITS. Idea.
Roolit Tommi Perälä Department of Mathematics, Hypermedia Laboratory Tampere University of Technology 25.3.2011 J. Kleinberg kehitti -algoritmin (Hypertext Induced Topic Search) hakukoneen osaksi. n taustalla
MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48
MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?
Ratkaisuehdotukset LH 3 / alkuvko 45
Ratkaisuehdotukset LH 3 / alkuvko 45 Tehtävä : Olkoot A, B, X R n n, a, b R n ja jokin vektorinormi. Kätetään vektorinormia vastaavasta operaattorinormista samaa merkintää. Nätä, että. a + b a b, 2. A
Ortogonaalisen kannan etsiminen
Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,
Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia
Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella
Koodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 3.5 Reedin-Mullerin koodit Olkoon tässä kappaleessa F = F2 = Z2 ja n = 2 m. Määritellään avaruuteen F n kertolasku koordinaateittain:
Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )
Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä
Kanta ja Kannan-vaihto
ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V
Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =
Similaarisuus. Määritelmä. Huom.
Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP
1 Kertaus. Lineaarinen optimointitehtävä on muotoa:
1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n
7 Vapaus. 7.1 Vapauden määritelmä
7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan
Markov-ketjut pitkällä aikavälillä
MS-C2111 Stokastiset prosessit 2A Markov-ketjut pitkällä aikavälillä Tämän harjoituksen tavoitteena on oppia lukemaan siirtymämatriisista tai siirtymäkaaviosta, milloin Markov-ketju on yhtenäinen ja jaksoton;
Lineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot
Insinöörimatematiikka D
Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1
MS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä
3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset
31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita
MS-A0003/A Matriisilaskenta Laskuharjoitus 6
MS-A3/A - Matriisilaskenta Laskuharjoitus 6 Ratkaisuehdotelmia. Diagonalisointi on hajotelma A SΛS, jossa diagonaalimatriisi Λ sisältää matriisin A ominaisarvot ja matriisin S sarakkeet ovat näitä ominaisarvoja
Ominaisarvot ja ominaisvektorit 140 / 170
Ominaisarvot ja ominaisvektorit 140 / 170 Seuraavissa luvuissa matriisit ja vektori ajatellaan kompleksisiksi, ts. kertojakuntana oletetaan olevan aina kompleksilukujoukko C Huomaa, että reaalilukujoukko
Lineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.
Sisätuloavaruudet. 4. lokakuuta 2006
Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä
Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)
Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe 26.10.2017 Ratkaisuehdotus 1. (35 pistettä) (a) Seuraavat matriisit on saatu eräistä yhtälöryhmistä alkeisrivitoimituksilla. Kuinka monta ratkaisua yhtälöryhmällä
1 Kannat ja kannanvaihto
1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:
Ominaisarvo-hajoitelma ja diagonalisointi
Ominaisarvo-hajoitelma ja a 1 Lause 1: Jos reaalisella n n matriisilla A on n eri suurta reaalista ominaisarvoa λ 1,λ 2,...,λ n, λ i λ j, kun i j, niin vastaavat ominaisvektorit x 1, x 2,..., x n muodostavat
Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.
Matematiikan ja tilastotieteen laitos Lineaarialgebra ja matriisilaskenta II Ylimääräinen harjoitus 6 Ratkaisut A:n karakteristinen funktio p A on λ p A (λ) det(a λi ) 0 λ ( λ) 0 5 λ λ 5 λ ( λ) (( λ) (
Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma
Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen
Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 4 Ratkaisut palautettava viimeistään maanantaina 862015 klo 1615 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin
Lineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja
Kantavektorien kuvavektorit määräävät lineaarikuvauksen
Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin
Etsintä verkosta (Searching from the Web) T Datasta tietoon Jouni Seppänen
Etsintä verkosta (Searching from the Web) T-61.2010 Datasta tietoon Jouni Seppänen 13.12.2006 1 Webin lyhyt historia 2 http://info.cern.ch/proposal.html 3 4 5 http://browser.arachne.cz/screen/ 6 7 Etsintä
BM20A0700, Matematiikka KoTiB2
BM20A0700, Matematiikka KoTiB2 Luennot: Matti Alatalo, Harjoitukset: Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luku 7. 1 Kurssin sisältö Matriiseihin
Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa.
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 7, Syksy 206 Tutkitaan yhtälöryhmää x + y + z 0 2x + y + az b ax + y + 2z 0 (a) Jos a 0 ja b 0 niin mikä on yhtälöryhmän ratkaisu? Tulkitse ratkaisu
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 /
MS-A3/A5 Matriisilaskenta, II/27 MS-A3/A5 Matriisilaskenta Laskuharjoitus 3 / 3. 7..27 Tehtävä (L): Etsi kaikki yhtälön Ax = b ratkaisut, kun 3 5 4 A = 3 2 4 ja b = 6 8 7 4. Ratkaisu : Koetetaan ratkaista
5.1. Normi ja suppeneminen Vektoriavaruus V on normiavaruus, jos siinä on määritelty normi : V R + = [0, ) jolla on ominaisuudet:
5.. Normi ja suppeneminen Vektoriavaruus V on normiavaruus, jos siinä on määritelty normi : V R + = [, ) jolla on ominaisuudet: x = x = x + y x + y, x, y V a x = a x, x V, a K (= R tai C) Esimerkki 5..
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
8 KANNAT JA ORTOGONAALISUUS. 8.1 Lineaarinen riippumattomuus. Vaasan yliopiston julkaisuja 151
Vaasan yliopiston julkaisuja 151 8 KANNAT JA ORTOGONAALISUUS KantaOrthogon Sec:LinIndep 8.1 Lineaarinen riippumattomuus Lineaarinen riippumattomuus on oikeastaan jo määritelty, mutta kirjoitamme määritelmät
9 Matriisit. 9.1 Matriisien laskutoimituksia
9 Matriisit Aiemmissa luvuissa matriiseja on käsitelty siinä määrin kuin on ollut tarpeellista yhtälönratkaisun kannalta. Matriiseja käytetään kuitenkin myös muihin tarkoituksiin, ja siksi on hyödyllistä
1.1. Määritelmiä ja nimityksiä
1.1. Määritelmiä ja nimityksiä Luku joko reaali- tai kompleksiluku. R = {reaaliluvut}, C = {kompleksiluvut} R n = {(x 1, x 2,..., x n ) x 1, x 2,..., x n R} C n = {(x 1, x 2,..., x n ) x 1, x 2,..., x
2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio
x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A
Milloin A diagonalisoituva?
Milloin A diagonalisoituva? ) Oletus: A on diagonalisoituva eli D = TAT, jollakin D = diag(λ, λ 2,..., λ n ). A:n ja D:n ominaisarvot ovat samat λ, λ 2,..., λ n ovat myös A:n ominaisarvot... D e i = D
Matematiikka ja teknologia, kevät 2011
Matematiikka ja teknologia, kevät 2011 Peter Hästö 17. helmikuuta 2011 Matemaattisten tieteiden laitos Sisältö Kurssi koostuu kuudesta (seitsemästä) toisistaan riippumattomasta luennosta. Aihepiirit ovat:
Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden
2.8. Kannanvaihto R n :ssä
28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit
(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,
1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
Ominaisarvo ja ominaisvektori
Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo
Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Antti Rasila 2016 Vektoriavaruuden kannan olemassaolo Jos {v 1, v 2,..., v k } on äärellisulotteisen vektoriavaruuden V lineaarisesti riippumaton
Determinantti 1 / 30
1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen
Oppimistavoitematriisi
Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Arvosanaan 1 2 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä ja yhtälöpareja Osaan muokata
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C340 Lineaarialgebra ja differentiaaliyhtälöt Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 205 / 3 R. Kangaslampi Matriisihajotelmista Differentiaaliyhtälöitä ratkaistaessa
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 6 Mikko Salo 6.9.2017 Sisältö 1. Kompleksitaso 2. Joukko-oppia Kompleksiluvut Edellisellä luennolla huomattiin, että toisen asteen yhtälö ratkeaa aina, jos ratkaisujen annetaan
Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2014 Harjoitus 4 Ratkaisujen viimeinen palautuspäivä: pe 662014 klo 1930 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisihajotelmat: Schur ja Jordan Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi Matriisihajotelmat:
Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
Latinalaiset neliöt ja taikaneliöt
Latinalaiset neliöt ja taikaneliöt LuK-tutkielma Aku-Petteri Niemi Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 2018 Sisältö Johdanto 2 1 Latinalaiset neliöt 3 1.1 Latinalainen neliö.........................
MS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille
1 Ominaisarvot ja ominaisvektorit
1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin
Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti
14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on
Erilaisia Markov-ketjuja
MS-C2 Stokastiset prosessit Syksy 207 3A Erilaisia Markov-ketjuja Tuntitehtävät 3A Lepakoiden rengastaja (tai kuponkien keräilijä) Lepakkoluolassa on lepakkoa, joista jokainen lentää luolasta ulos joka
Ennakkotehtävän ratkaisu
Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb
Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä
Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.4 Kongruenssien laskusääntöjä Seuraavassa lauseessa saamme kongruensseille mukavia laskusääntöjä.
Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut
Insinöörimatematiikka D, 06 laskuharjoituksien esimerkkiratkaisut Alla olevat esimerkkiratkaisut ovat melko ksitiskohtaisia Tenttivastauksissa ei leensä tarvitse muistaa lauseiden, määritelmien, esimerkkien
Matriisihajotelmat. MS-A0007 Matriisilaskenta. 5.1 Diagonalisointi. 5.1 Diagonalisointi
MS-A0007 Matriisilaskenta 5. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 25.11.2015 Laskentaongelmissa käsiteltävät matriisit ovat tyypillisesti valtavia.
Markov-kustannusmallit ja kulkuajat
2B Markov-kustannusmallit ja kulkuajat Tämän harjoituksen tavoitteena on oppia laskemaan Markov-kustannusmallien kustannuskertymiä ja -vauhteja, ketjujen odotettuja kulkuaikoja sekä todennäköisyyksiä osua
802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
Sarjat ja integraalit, kevät 2015
Sarjat ja integraalit, kevät 2015 Peter Hästö 11. maaliskuuta 2015 Matemaattisten tieteiden laitos Osaamistavoitteet Kurssin onnistuneen suorittamisen jälkeen opiskelija osaa erottaa jatkuvuuden ja tasaisen
5 Lineaariset yhtälöryhmät
5 Lineaariset yhtälöryhmät Edellisen luvun lopun esimerkissä päädyttiin yhtälöryhmään, jonka ratkaisemisesta riippui, kuuluuko tietty vektori eräiden toisten vektorien virittämään aliavaruuteen Tämäntyyppisiä
Matematiikka B2 - TUDI
Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
Lineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg
Vaasan yliopisto, syksy 218 Lineaarialgebra II, MATH124 Matti laaksonen, Lassi Lilleberg Tentti T1, 284218 Ratkaise 4 tehtävää Kokeessa saa käyttää laskinta (myös graafista ja CAS-laskinta), mutta ei taulukkokirjaa
802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
802120P Matriisilaskenta (5 op)
802120P Matriisilaskenta (5 op) Tero Vedenjuoksu Matemaattiset tieteet Syksy 2015 1 / 159 Luennoitsija: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi M321 Kurssilla käytetään Noppaa (noppa.oulu.fi) sekäoptimaa
110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3
4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5
Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.
1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:
Insinöörimatematiikka D
Insinöörimatematiikka D Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2014 Mika Hirvensalo mikhirve@utu.fi Luentokalvot 3 1 of 16 Kertausta Lineaarinen riippuvuus
=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin
FUNKTIONAALIANALYYSI, RATKAISUT 1 KEVÄT 211, (AP) 1. Ovatko seuraavat reaaliarvoiset funktiot p : R 3 R normeja? Ovatko ne seminormeja? ( x = (x 1, x 2, x 3 ) R 3 ) a) p(x) := x 2 1 + x 2 2 + x 2 3, b)
Luku 9. Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa
1 / 31 Luku 9. Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa T-61.2010 Datasta tietoon, syksy 2011 professori Heikki Mannila Tietojenkäsittelytieteen laitos, Aalto-yliopisto 1.12.2011
Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita?
Matematiikkaa kaikille, kesä 2017 Avoin yliopisto Luentojen 2,4 ja 6 tehtäviä Päivittyy kurssin aikana 1. Olkoon A = {0, 1, 2}, B = {1, 2, 3} ja C = {2, 3, 4}. Luettele joukkojen A B, A B, A B ja (A B)
Matriisit. Määritelmä 1 Reaaliluvuista a ij, missä i = 1,..., k ja j = 1,..., n, muodostettua kaaviota a 11 a 12 a 1n a 21 a 22 a 2n A =
1 / 21 Määritelmä 1 Reaaliluvuista a ij, missä i 1,..., k ja j 1,..., n, muodostettua kaaviota a 11 a 12 a 1n a 21 a 22 a 2n A... a k1 a k2 a kn sanotaan k n matriisiksi. Usein merkitään A [a ij ]. Lukuja
802118P Lineaarialgebra I (4 op)
802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu