Järvitesti Ympäristöteknologia T571SA
|
|
- Vilho Ahonen
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Hans Laihia Mika Tuukkanen 1 LASKENNALLISET JA TILASTOLLISET MENETELMÄT Järvitesti Ympäristöteknologia T571SA Sarkola Eino JÄRVITESTI Johdanto Järvien kuntoa tutkitaan monenlaisilla eri menetelmillä. Usein näytteiden analysointi on hidasta ja kallista, ja niitä otetaan lukumääräisesti useita järvien eri syvyyksistä. Kuntoluokituksen nopeuttamiseksi on kehitetty uusia testejä, jonka paikkansapitävyyttä haluttiin tässä harjoituksessa testata. Testin luotettavuutta määritettiin tutkimalla 100 satunnaisesti valittua järveä tietyllä alueella. Testissä tutkitut satunnaismuuttujat olivat Kunto (K), joka kuvasi järven todellista kuntoluokkaa Testi (T), joka luokitteli testin mukaan järven kunnon Kuntoluokat järven todellisen kunnon sekä testin mukaan jaettiin seuraavanlaisesti: 1= huono, 2 = kohtalainen ja 3 = hyvä. Eräällä alueella eri kuntoluokkien todennäköisyydet satunnaisesti valituille järville olivat seuraavat: Huono 40%, kohtalainen 30% ja hyvä 30%. Tehtävässä tuli odottaa, ettei tulosten ehdolliset todennäköisyydet eri kuntoluokissa riipu tutkittavasta alueesta. Järvitestin data oli annettu Moodle opiskelualueella. Tehtävässä on käytetty apuna Excel- taulukkolaskentaohjelmaa, sekä pivot taulukointia. Testin luotettavuus Tehtävän ratkaiseminen aloitettiin luomalla pivot taulukko saadusta Excel aineistosta (järvien tiedot). Pivot taulukossa sarakeotsikko kenttään valittiin kunto ja riviotsikko kenttään testi. Vastaavasti järvien lukumäärä tiedot siirrettiin - arvot -kenttään.
2 2 Tässä kentässä oltiin kiinnostuneita järvien lukumäärästä, joten arvokentän asetuksista valittiin laskentaperusteeksi määrä ja arvojen esiintymismuodoksi prosenttia kokonaissummasta. Saatu Pivot taulukko kopioitiin erilliseksi Excel-taulukoksi, joka mahdollisti tehdä muutoksia taulukon rivi ja sarake otsikoihin. Excelissä olleet järvitestin tiedot siirrettiin Excelin pivot- taulukkoon, jossa määrät (kunkin kuntoluokan kappalemäärä) vaihdettiin summa kentässä prosenttiosuudeksi. K1 on järven kuntoluokka huono, K2 kohtalainen ja K3 on hyvä. Testin mukaan kuntoluokat jakautuvat T1 on huono, T2 kohtalainen ja T3 hyvä. TAULUKKO 1: Järvien kuntoluokkien prosenttiosuus Riviotsikot K1 K2 K3 Kaikki yhteensä T1 15,00 % 6,00 % 2,00 % 23,00 % T2 4,00 % 40,00 % 3,00 % 47,00 % T3 1,00 % 4,00 % 25,00 % 30,00 % Kaikki yhteensä 20,00 % 50,00 % 30,00 % 100,00 % Seuraavaksi laskettiin ehdolliset todennäköisyydet testin tuloksille eri kuntoluokissa. Ehdollinen todennäköisyys sille, että testin mukaan esim. (T1) ja järven todellisen kuntoluokan mukaan esim. ( järven kunto oli huono, saatiin laskettua kaavalla: T1 15% P ( T1 75% 20% Eli tässä laskussa verrattiin huonon kuntoluokan ( ja huonon testiluokan (T1) prosenttiosuutta huonon kuntoluokan yhteismäärään. Ehdollisten todennäköisyyksien prosenttiosuudet laskettiin kaikkien kuntoluokkien osalta vastaavalla tavalla. TAULUKKO 2: Kuntoluokkien ehdolliset todennäköisyydet P ( K2) P ( K3) T1 75 % 12 % 7 % 94 % T2 20 % 80 % 10 % 110 % T3 5 % 8 % 83 % 96 % Todennäköisyysmallille huomioitiin kuntoluokkien priorijakauma. Nämä laskettiin kertomalla saadut ensitiedot taulukon 2 eri kuntoluokkien ehdollisilla todennäköisyyksillä: P ( T1 T1 * 40%*75% 30%
3 Vastaavalla tavalla laskettiin testin ehdollinen todennäköisyys kaikille kuntoluokille. 3 TAULUKKO 3: Kuntoluokkien todennäköisyydet priorijakauman kanssa P ( K2) P ( K3) T1 30 % 4 % 2 % 36 % T2 8 % 24 % 3 % 35 % T3 2 % 2 % 25 % 29 % Priorijakauma 40 % 30 % 30 % Priorijakauman avulla saadaan testin todennäköisyysmallin posteriorijakauma. Priorijakaumaa hyväksikäyttäen todennäköisin kuntoluokka testin mukaan näyttäisi olevan huono, sillä huonon testituloksen yhteenlaskettu todennäköisyys on noin 36 %. Lisäksi laskettiin testi-rivit yhteen, jolloin saatiin selville testin antaman todennäköisyyden kokonaismäärä eri kuntoluokille. T1 30,0% P ( K T) 84,3% T1) 35,6% Vastaavalla tavalla laskettiin arvot kaikille kunto- ja testiluokille. TAULUKKO 4: Kuntoluokkien posteriorijakauma P ( K2) P ( K3) P ( T1) 84 % 10 % 6 % P ( T2) 23 % 69 % 9 % P ( T3) 7 % 8 % 85 % Oletetaan, että yksi alueen järvistä on testattu ja testin mukaan järven kunto on kohtalainen (tehtäväksiannossa pyydettiin vapaasti valitsemaan joku järven kuntoluokista). Tällöin todennäköisyysmallin mukaan testin antama kuntoluokka on 69 %:n todennäköisyydellä oikein. Huomattavaa on, että lähes neljäsosa (23%) testin kohtalainen - kuntoluokan tapauksista ovatkin oikeasti kuntoluokan huono järviä. Järven todellinen tila voi suurella todennäköisyydellä olla korkeintaan kohtalainen kuntoluokkaa.
4 4 Testin luotettavuus 100% 80% 60% 40% 20% 0% Huono Kohtalainen Hyvä Todellinen kunto Testi huono Testi Kohtalainen Testi hyvä KUVA 1: Testin luotettavuus Järven kuntoluokkaa huono mittaa myös testin antama huono tulos noin 84 prosentin todennäköisyydellä (kuva 1). Testille lasketun todennäköisyyden perusteella tehtiin pylväsdiagrammit, josta näkyy etukäteen tiedossa oleva priorijakauma sekä testin ehdollinen todennäköisyys eri kuntoluokkien kohdalla. Johtopäätökset Pivot taulukoinnin avulla Excelissä olevat järvien kuntoluokkien ja testien tulokset saatiin käsiteltyä ja laskettua ilman monivaiheisia laskutoimenpiteitä. Annettuja esitietoja hyväksikäyttäen saatiin selville todennäköisin kuntoluokka testin mukaan eli huono noin 36 %:n todennäköisyydellä. Posteriorijakauman perusteella saadaan selville miten luotettava testi on vertailtaessa tiedossa olevaan järven kuntoluokkaan. Tulosten mukaan testi näyttäisi olevan suhteellisen luotettava siinä tapauksessa kun järven kuntoluokka on huono (84 %) tai hyvä (85 %). Kuntoluokalle kohtalainen testin tulos antaa tulokseksi kohtalainen vain 69 % todennäköisyydellä. Jos taas järven kunto on todellisuudessa kohtalainen, voi testi antaa järven kuntoluokaksi huonon noin 23 %:n ja hyvän noin 8,6 %:n todennäköisyydellä.
5 LÄHTEET: 5 Sarkola, Eino Tilastomatematiikan moodle-kurssi. www-dokumentti. Päivitetty Luettu
SISÄLTÖ. Vuokko Vanhala-Nurmi, 2013 Excel jatko
Excel 2013 Sisällysluettelo SISÄLTÖ PIVOT-TAULUKKO... 2 Pivot-taulukkoraportti... 2 Pivot-taulukon kokoaminen... 2 Pivot-taulukon muokkaaminen... 4 Kenttien otsikoiden ja jäsentelypainikkeiden piilottaminen...
LisätiedotTilastollinen testaus. Vilkkumaa / Kuusinen 1
Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää
LisätiedotNäillä sivuilla Tilastomatematiikan esimerkit, joissa käsitellään tietokoneen käyttöä tilastollissa operaatioissa, on tehty Excel-2007 -versiolla.
Näillä sivuilla Tilastomatematiikan esimerkit, joissa käsitellään tietokoneen käyttöä tilastollissa operaatioissa, on tehty Excel-2007 -versiolla. Nämä ohjeet, samoin kuin Tilastomatematiikan kirjakaan,
LisätiedotABHELSINKI UNIVERSITY OF TECHNOLOGY
Todennäköisyyslaskennan käsitteitä Satunnaisuus ja deterministisyys Deterministisessä ilmiössä alkutila määrää lopputilan yksikäsitteisesti. Satunnaisilmiö puolestaan arpoo - yhdestä alkutilasta voi päätyä
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila Kalvoissa käytetään materiaalia P. Palon vuoden 2005 kurssista. 07.09.2007 Antti Rasila () SovTodB 07.09.2007 07.09.2007 1 / 24 1 Todennäköisyyslaskennan
LisätiedotVäliestimointi (jatkoa) Heliövaara 1
Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).
LisätiedotMat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:
Mat-.9 Sovellettu todennäköisyyslasku A Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Moniulotteiset jakaumat Diskreetti jakauma, Ehdollinen jakauma, Ehdollinen odotusarvo, Jatkuva
LisätiedotMTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu
10.1.2019/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 10.1.2019 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2018 10.1.2019/2
LisätiedotP (X B) = f X (x)dx. xf X (x)dx. g(x)f X (x)dx.
Yhteenveto: Satunnaisvektorit ovat kuvauksia tn-avaruudelta seillaiselle avaruudelle, johon sisältyy satunnaisvektorin kaikki mahdolliset reaalisaatiot. Satunnaisvektorin realisaatio eli otos on jokin
LisätiedotExcel pivot. Sisällys
Excel 2016 -pivot Markku Könkkölä JY / Digipalvelut Sisällys Mikä on pivot Tiedot sopivaan muotoon ja alue taulukoksi Pivot-taulukon luonti ja kenttien valinta Kenttien muotoilu, suodatukset, ryhmittelyt
LisätiedotTilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003
Nimi Opiskelijanumero Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003 Normaalisti jakautuneiden yhdistyksessä on useita tuhansia jäseniä. Yhdistyksen sääntöjen mukaan sääntöihin tehtävää muutosta
Lisätiedot1. laskuharjoituskierros, vko 4, ratkaisut
1. laskuharjoituskierros, vko 4, ratkaisut D1. Heitetään kahta virheetöntä noppaa, joiden kuudella tahkolla on silmäluvut 1, 2, 3, 4, 5 ja 6. Tällöin heittotuloksiin liittyvä otosavaruus on S = {(x, y)
LisätiedotLuottamusvälit. Normaalijakauma johnkin kohtaan
Luottamusvälit Normaalijakauma johnkin kohtaan Perusjoukko ja otanta Jos halutaan tutkia esimerkiksi Suomessa elävien naarashirvien painoa, se voidaan (periaatteessa) tehdä kahdella tavalla: 1. tutkimalla
Lisätiedot2. Paina hiiren oikeaa näppäintä, pääset valikkoon. Valitse Lisää, tyhjä sarake ilmestyy aktivoidun sarakkeen eteen
Sivu 1 / 8 24 TIETOJEN SUODATTAMINEN JA LAJITTELU EXCELISSÄ Kun olet tehnyt raporttihaun, saat todennäköisesti paljon tietoa Excel-listalle. Tässä ohjeessa on esitelty joitain keinoja, joilla Excelissä
LisätiedotJatkuvat satunnaismuuttujat
Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään
LisätiedotExcel 2010 ja QlikView. Mihin ja milloin pivot:ia voi käyttää
Excel 2010 ja QlikView 6.11.2012 Markku Könkkölä J Y / IT -palvelut Mihin ja milloin pivot:ia voi käyttää Datan pitää olla listamuotoinen ts. otsikkorivi ja sen alla tietorivit ilman tyhjiä välejä. Jokaisella
LisätiedotLuento 7 Taulukkolaskennan edistyneempiä piirteitä Aulikki Hyrskykari
Luento 7 Taulukkolaskennan edistyneempiä piirteitä 25.10.2016 Aulikki Hyrskykari Luento 7 o Kertausta: suhteellinen ja absoluuttinen viittaus o Tekstitiedoston tuonti Exceliin o Tietojen lajittelu, suodatus
LisätiedotI. Ristiintaulukointi Excelillä / Microsoft Office 2010
Savonia-ammattikorkeakoulu Liiketalous Kuopio Tutkimusmenetelmät Likitalo & Mäkelä I. Ristiintaulukointi Excelillä / Microsoft Office 2010 Tässä ohjeessa on mainittu ensi Excelin valinnan/komennon englanninkielinen
LisätiedotVarma tapahtuma, Yhdiste, Yhdistetty tapahtuma, Yhteenlaskusääntö
Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Unioni, Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Alkeistapahtuma, Ehdollinen todennäköisyys,
LisätiedotMS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
LisätiedotHARJOITUS 1 Monen taulukkosivun käsittely
Excel Harjoituksia 5 1 (8) HARJOITUS 1 Monen taulukkosivun käsittely 1. Aloita uusi työkirja 2. Nimeä taulukkosivut seuraavalla sivulla olevan mallin mukaan, tarvittaessa lisää taulukkosivuja valitsemalla
LisätiedotJohdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:
LisätiedotHarjoitus 7: NCSS - Tilastollinen analyysi
Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen
LisätiedotMTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu
5.3.2018/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 5.3.2018, osa 1 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2017
LisätiedotJuuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri 0 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 9..08 Kertaus K. a) Alapaineiden pienin arvo on ja suurin arvo 74, joten vaihteluväli on [, 74]. b) Alapaineiden keskiarvo on 6676870774
LisätiedotVALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain
LisätiedotMAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan
LisätiedotP(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu
1. Tyhjentävä tunnusluku (sucient statistics ) Olkoon (P(X = x θ) : θ Θ) todennäköisyysmalli havainnolle X. Datan funktio T (X ) on Tyhjentävä tunnusluku jos ehdollinen todennäköisyys (ehdollinen tiheysfunktio)
LisätiedotLUENTO 8 TAULUKKOLASKENTA II
LUENTO 8 TAULUKKOLASKENTA II TIEY4 TIETOTEKNIIKKATAIDOT KEVÄT 2017 JUHANI LINNA ANTTI SAND 31.10.2017 LUENTO 8 31.10.2017 Tällä luennolla jatkoa Teemaan 4: Taulukkolaskenta 1. Taustaa yksilöharjoitukseen
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Bayesläiset piste- ja väliestimaatit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Lisätiedot6. laskuharjoitusten vastaukset (viikot 10 11)
6. laskuharjoitusten vastaukset (viikot 10 11) 1. a) Sivun 102 hypergeometrisen jakauman määritelmästä saadaan µ µ 13 39 13! 13 12 11 10 9 µ 0! 8! 1! 2 2! 2 1 0 49 48! 47!! 14440 120 31187200 120 1287
LisätiedotExcel helpoksi hankintojen maailmassa. Ymmärrystä ja tehoa Excel-työskentelyyn.
Excel helpoksi hankintojen maailmassa Ymmärrystä ja tehoa Excel-työskentelyyn. Päivän kulku lyhyesti 2 OSIO 1 Excel-työskentelyn tehokas suunnittelu Asetukset, perusteet ja yleistoiminnot Harjoitustaulukko
LisätiedotTuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta
Tuloperiaate Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta ja 1. vaiheessa valinta voidaan tehdä n 1 tavalla,. vaiheessa valinta voidaan tehdä n tavalla,
Lisätiedot5 Lisa materiaali. 5.1 Ristiintaulukointi
5 Lisa materiaali 5.1 Ristiintaulukointi 270. a) Aineiston koko nähdään frekvenssitaulukon oikeasta alakulmasta: N = 559. Tilastotieteen johdantokurssille osallistui yhteensä 559 opiskelijaa. Huomaa: Opiskelijoiden
LisätiedotBayesilainen päätöksenteko / Bayesian decision theory
Bayesilainen päätöksenteko / Bayesian decision theory Todennäköisyysteoria voidaan perustella ilman päätösteoriaa, mutta vasta päätösteorian avulla siitä on oikeasti hyötyä Todennäköisyyteoriassa tavoitteena
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 18 1 Kertausta: momenttimenetelmä ja suurimman uskottavuuden menetelmä 2 Tilastollinen
LisätiedotEstimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?
TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman
LisätiedotJärvi 1 Valkjärvi. Järvi 2 Sysijärvi
Tilastotiedettä Tilastotieteessä kerätään tietoja yksittäisistä asioista, ominaisuuksista tai tapahtumista. Näin saatua tietoa käsitellään tilastotieteen menetelmin ja saatuja tuloksia voidaan käyttää
LisätiedotTodennäköisyyden ominaisuuksia
Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Bayesläinen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy
Lisätiedotχ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut
Mat-2.091 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Avainsanat: Estimointi, Havaittu frekvenssi, Homogeenisuus,
LisätiedotGripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta
MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,
LisätiedotABHELSINKI UNIVERSITY OF TECHNOLOGY
Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai
LisätiedotOtosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko
ÌÓÒÒĐĐÓ ÝÝ ÔÖÙ ØØ Naiiveja määritelmiä Suhteellinen frekvenssi kun ilmiö toistuu Jos tehdas on valmistanut 1000000 kpl erästä tuotetta, joista 5013 ovat viallisia, niin todennäköisyys, että tuote on viallinen
LisätiedotLUENTO 7 TAULUKKOLASKENTA I
LUENTO 7 TAULUKKOLASKENTA I TIEY4 TIETOTEKNIIKKATAIDOT KEVÄT 2017 JUHANI LINNA ANTTI SAND 24.10.2017 LUENTO 7 24.10.2017 Tällä luennolla 1. Teema 4 Taulukkolaskenta Miksi? Harjoitukset 2. Taustaa yksilöharjoitukseen
LisätiedotMICROSOFT EXCEL 2010
1 MICROSOFT EXCEL 2010 Taulukkolaskentaohjelman jatkokurssin tärkeitä asioita 2 Taulukkolaskentaohjelmalla voit Käyttää tietokonetta ruutupaperin ja taskulaskimen korvaajana Laatia helposti ylläpidettäviä
LisätiedotAineistoista. Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin
Aineistoista 11.2.09 IK Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin Muotoilussa kehittyneet menetelmät, lähinnä luotaimet Havainnointi:
LisätiedotYksikkökate tarkoittaa katetuottoa yhden tuotteen kohdalla. Tämä voidaan määrittää vain jos myytäviä tuotteita on vain yksi.
KATETUOTTOLASKENTA laskennassa selvitetään onko liiketoiminta kannattavaa. Laskelmat tehdään liiketoiminnasta syntyvien kustannuksien ja tuottojen perusteella erilaisissa tilanteissa. laskennassa käytetään
LisätiedotOma nimesi Tehtävä (5)
Oma nimesi Tehtävä 3.1 1 (5) Taulukot ja niiden laatiminen Tilastotaulukko on perinteinen ja monikäyttöisin tapa järjestää numeerinen havaintoaineisto tiiviiseen ja helposti omaksuttavaan muotoon. Tilastoissa
LisätiedotOsa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat
Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Kokonaistodennäköisyyden ja Bayesin kaavat TKK (c) Ilkka Mellin (2007) 1 Kokonaistodennäköisyys ja Bayesin kaava >> Kokonaistodennäköisyys
LisätiedotT Luonnollisten kielten tilastollinen käsittely
T-61.281 Luonnollisten kielten tilastollinen käsittely Vastaukset 3, ti 11.2.2003, 16:15-18:00 Kollokaatiot, Versio 1.1 1. Lasketaan ensin tulokset sanaparille valkoinen, talo käsin: Frekvenssimenetelmä:
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi
LisätiedotS Laskennallinen systeemibiologia
S-114.2510 Laskennallinen systeemibiologia 3. Harjoitus 1. Koska tilanne on Hardy-Weinbergin tasapainossa luonnonvalintaa lukuunottamatta, saadaan alleeleista muodostuvien eri tsygoottien genotyyppifrekvenssit
Lisätiedot4. laskuharjoituskierros, vko 7, ratkaisut
4. laskuharjoituskierros, vko 7, ratkaisut D1. Kone valmistaa kuulalaakerin kuulia, joiden halkaisija vaihtelee satunnaisesti. Halkaisijan on oltava tiettyjen rajojen sisällä, jotta kuula olisi käyttökelpoinen.
LisätiedotKynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto
Kynä-paperi -harjoitukset Taina Lehtinen 43 Loput ratkaisut harjoitustehtäviin 44 Stressitestin = 40 s = 8 Kalle = 34 pistettä Ville = 5 pistettä Z Kalle 34 8 40 0.75 Z Ville 5 8 40 1.5 Kalle sijoittuu
LisätiedotMat Sovellettu todennäköisyyslasku A
Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Klassinen todennäköisyys ja kombinatoriikka Todennäköisyyden aksioomat Kokonaistodennäköisyys ja Bayesin kaava Bayesin kaava,
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
LisätiedotMATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2019 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti
LisätiedotMoniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
LisätiedotTodennäköisyyslaskenta IIa, syyslokakuu 2019 / Hytönen 2. laskuharjoitus, ratkaisuehdotukset
Todennäköisyyslaskenta IIa, syyslokakuu 019 / Hytönen. laskuharjoitus, ratkaisuehdotukset 1. Kurssilla on 0 opiskelijaa, näiden joukossa Jutta, Jyrki, Ilkka ja Alex. Opettaja aikoo valita umpimähkään opiskelijan
LisätiedotIlkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
Lisätiedothttps://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015
25.10.2016/1 MTTTP5, luento 25.10.2016 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa
LisätiedotT Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti , 8:30-10:00 Kollokaatiot, Versio 1.1
T-61.281 Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti 10.2.2004, 8:30-10:00 Kollokaatiot, Versio 1.1 1. Lasketaan ensin tulokset sanaparille valkoinen, talo käsin: Frekvenssimenetelmä:
LisätiedotJos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden
1.12.2006 1. Satunnaisjakauman tiheysfunktio on Ü µ Üe Ü, kun Ü ja kun Ü. Määritä parametrin estimaattori momenttimenetelmällä ja suurimman uskottavuuden menetelmällä. Ratkaisu: Jotta kyseessä todella
Lisätiedot¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi.
10.11.2006 1. Pituushyppääjä on edellisenä vuonna hypännyt keskimäärin tuloksen. Valmentaja poimii tämän vuoden harjoitusten yhteydessä tehdyistä muistiinpanoista satunnaisesti kymmenen harjoitushypyn
Lisätiedot031021P Tilastomatematiikka (5 op)
031021P Tilastomatematiikka (5 op) Jukka Kemppainen Mathematics Division Yleinen todennäköisyys Kertausmateriaalissa esiteltiin koulusta tuttuja todennäköisyysmalleja. Tällä kurssilla todennäköisyys on
LisätiedotKliininen arviointi ja kliininen tieto mikä riittää?
Kliininen arviointi ja kliininen tieto mikä riittää? Riittävä tutkimuksen otoskoko ja tulos Timo Partonen LT, psykiatrian dosentti, Helsingin yliopisto Ylilääkäri, Terveyden ja hyvinvoinnin laitos Tutkimuksen
LisätiedotSisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS...
Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 1.1 INDUKTIO JA DEDUKTIO... 9 1.2 SYYT JA VAIKUTUKSET... 11 TEHTÄVIÄ... 13
LisätiedotTodennäköisyys (englanniksi probability)
Todennäköisyys (englanniksi probability) Todennäköisyyslaskenta sai alkunsa 1600-luvulla uhkapeleistä Ranskassa (Pascal, Fermat). Nykyisin todennäköisyyslaskentaa käytetään hyväksi mm. vakuutustoiminnassa,
Lisätiedot11. laskuharjoituskierros, vko 15, ratkaisut
11. laskuharjoituskierros vko 15 ratkaisut D1. Geiger-mittari laskee radioaktiivisen aineen emissioiden lukumääriä. Emissioiden lukumäärä on lyhyellä aikavälillä satunnaismuuttuja jonka voidaan olettaa
Lisätiedotpitkittäisaineistoissa
Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon
Lisätiedot&idx=2&uilang=fi&lang=fi&lvv=2015
20.10.2015/1 MTTTP5, luento 20.10.2015 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa
LisätiedotTILASTOLLINEN OPPIMINEN
301 TILASTOLLINEN OPPIMINEN Salmiakki- ja hedelmämakeisia on pakattu samanlaisiin käärepapereihin suurissa säkeissä, joissa on seuraavat sekoitussuhteet h 1 : 100% salmiakkia h 2 : 75% salmiakkia + 25%
LisätiedotMat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-2.090 Sovellettu todennäköisyyslasku Harjoitus 2 (vko 39/2003) (ihe: tapahtumien todennäköisyys, Laininen luvut 1.6 2.4) 1. Tarkastellaan rinnan- ja sarjaankytketyistä
Lisätiedotr = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.
A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät
LisätiedotLukuspiraali. Syöte. Tuloste. Esimerkki 1. Esimerkki 2. Esimerkki 3. Tarkastellaan seuraavanlaisia lukuspiraaleita:
A Lukuspiraali Tarkastellaan seuraavanlaisia lukuspiraaleita: 7 8 9 10 6 1 2 11 5 4 3 12 16 15 14 13 21 22 23 24 25 20 7 8 9 10 19 6 1 2 11 18 5 4 3 12 17 16 15 14 13 Spiraalin keskellä on luku 1, josta
LisätiedotP (A)P (B A). P (B) P (A B) = P (A = 0)P (B = 1 A = 0) P (B = 1) P (A = 1)P (B = 1 A = 1) P (B = 1)
Harjoitustehtäviä (erä 1) 1 1. Käytetään yksinkertaisesti Bayesin kaavaa: P (A B) = P (A)P (B A). P (B) Tapauksessa B = 1 saadaan P (A = 0 B = 1) = P (A = 1 B = 1) = P (A = 0)P (B = 1 A = 0) P (A = 1)P
LisätiedotSisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4
Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN...6 1.1 INDUKTIO JA DEDUKTIO...7 1.2 SYYT JA VAIKUTUKSET...9
LisätiedotInversio-ongelmien laskennallinen peruskurssi Luento 7
Inversio-ongelmien laskennallinen peruskurssi Luento 7 Kevät 2012 1 Tilastolliset inversio-ongelmat Tilastollinen ionversio perustuu seuraaviin periaatteisiin: 1. Kaikki mallissa olevat muuttujat mallinnetaan
Lisätiedot7. laskuharjoituskierros, vko 10, ratkaisut
7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,
LisätiedotD ( ) E( ) E( ) 2.917
Mat-2.091 Sovellettu todennäköisyyslasku 4. harjoitukset/ratkaisut Aiheet: Diskreetit jakaumat Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen jakauma, Kertymäfunktio,
LisätiedotTIETOJEN TUONTI TIETOKANNASTA + PIVOT-TAULUKON JA OLAP-KUUTION TEKO
TIETOJEN TUONTI TIETOKANNASTA + PIVOT-TAULUKON JA OLAP-KUUTION TEKO JOUNI HUOTARI 2005-2010 OLAP-OHJETEKSTIT KOPIOITU MICROSOFTIN OHJATUN OLAP-KUUTION TEKO-OHJEESTA ESIMERKIN KUVAUS JA OLAP-MÄÄRITELMÄ
LisätiedotGenetiikan perusteet 2009
Genetiikan perusteet 2009 Malli selittää, mutta myös ennustaa ja ennusteen voi testata kokeella. Mendel testasi F 2 -mallinsa tuottamalla itsepölytyksellä F 3 -polven Seuraava sukupolvi tai toinen, riippumaton
LisätiedotTestaa onko myrkkypitoisuus eri ryhmissä sama. RATK. Lasketaan kaikkien havaintoarvojen summa: k T i = = 486.
Mat-.103 Koesuunnittelu ja tilastolliset mallit Harjoitus 8, kevät 004 Esimerkkiratkaisut. 1. Myrkyllistä ainetta oli kaadettu jokeen, joka johtaa suurelle kalastusalueelle. Tie- ja vesirakennusinsinöörit
LisätiedotMTTTP5, luento Luottamusväli, määritelmä
23.11.2017/1 MTTTP5, luento 23.11.2017 Luottamusväli, määritelmä Olkoot A ja B satunnaisotoksen perusteella määriteltyjä satunnaismuuttujia. Väli (A, B) on parametrin 100(1 - ) %:n luottamusväli, jos P(A
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo
LisätiedotMat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat:
Mat-2.091 Sovellettu todennäköisyyslasku Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma, Ehdollinen todennäköisyys, Erotustapahtuma,
LisätiedotOtoskoko 107 kpl. a) 27 b) 2654
1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää
Lisätiedot4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on
Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen
LisätiedotJos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan
17.11.2006 1. Kahdesta kohteesta (A ja K) kerättiin maanäytteitä ja näistä mitattiin SiO -pitoisuus. Tulokset (otoskoot ja otosten tunnusluvut): A K 10 16 Ü 64.94 57.06 9.0 7.29 Oletetaan mittaustulosten
LisätiedotMoniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?
TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia: Mitä
LisätiedotTilastollisia peruskäsitteitä ja Monte Carlo
Tilastollisia peruskäsitteitä ja Monte Carlo Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Tilastollisia peruskäsitteitä ja Monte Carlo 1/13 Kevät 2003 Tilastollisia
LisätiedotLIITE 1 VIRHEEN ARVIOINNISTA
1 LIITE 1 VIRHEEN ARVIOINNISTA Mihin tarvitset virheen arviointia? Mittaustulokset ovat aina todellisten luonnonvakioiden ja tutkimuskohdetta kuvaavien suureiden likiarvoja, vaikka mittauslaite olisi miten
LisätiedotTilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä
Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),
Lisätiedot5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3
Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,
LisätiedotKäsitteistä. Reliabiliteetti, validiteetti ja yleistäminen. Reliabiliteetti. Reliabiliteetti ja validiteetti
Käsitteistä Reliabiliteetti, validiteetti ja yleistäminen KE 62 Ilpo Koskinen 28.11.05 empiirisessä tutkimuksessa puhutaan peruskurssien jälkeen harvoin "todesta" ja "väärästä" tiedosta (tai näiden modernimmista
LisätiedotLuento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja
1 Luento 23.9.2014 KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 2 Ristiintaulukko Esim. Toyota Avensis farmariautoja, nelikenttä (2x2-taulukko) 3 Esim. 5.2.6. Markkinointisuunnitelma
LisätiedotExcel Perusteet. 2005 Päivi Vartiainen 1
Excel Perusteet 2005 Päivi Vartiainen 1 SISÄLLYS 1 Excel peruskäyttö... 3 2 Fonttikoon vaihtaminen koko taulukkoon... 3 3 Sarakkeen ja rivin lisäys... 4 4 Solun sisällön ja kaavojen kopioiminen... 5 5
LisätiedotDOORSin Spreadsheet export/import
DOORSin Spreadsheet export/import 17.10.2006 SoftQA Oy http/www.softqa.fi/ Pekka Mäkinen Pekka.Makinen@softqa.fi Tietojen siirto DOORSista ja DOORSiin Yhteistyökumppaneilla ei välttämättä ole käytössä
Lisätiedot