Johdatus L A TEXiin. 5. Ristiviittauksista, monirivisistä kaavoista ja vähän muustakin Markus Harju. Matemaattiset tieteet

Koko: px
Aloita esitys sivulta:

Download "Johdatus L A TEXiin. 5. Ristiviittauksista, monirivisistä kaavoista ja vähän muustakin Markus Harju. Matemaattiset tieteet"

Transkriptio

1 Johdtus L A TEXiin 5. Ristiviittuksist, monirivisistä kvoist j vähän muustkin Mrkus Hrju Mtemttiset tieteet

2 Ristiviittuksist I Jos johonkin kirjoitelmn osioon, yhtälöön ti kvn hlutn viitt, niin se tulee ensin nimetä ntmll sille ns. viittusvin \lbel{vin} komennoll (ei erikoismerkkejä!) 5. Ristiviittuksist, monirivisistä kvoist Johdtus j vähän LTeXiin muustkin (2/10)

3 Ristiviittuksist I Jos johonkin kirjoitelmn osioon, yhtälöön ti kvn hlutn viitt, niin se tulee ensin nimetä ntmll sille ns. viittusvin \lbel{vin} komennoll (ei erikoismerkkejä!) Tämä komento ei tulost mitään näkyvää 5. Ristiviittuksist, monirivisistä kvoist Johdtus j vähän LTeXiin muustkin (2/10)

4 Ristiviittuksist I Jos johonkin kirjoitelmn osioon, yhtälöön ti kvn hlutn viitt, niin se tulee ensin nimetä ntmll sille ns. viittusvin \lbel{vin} komennoll (ei erikoismerkkejä!) Tämä komento ei tulost mitään näkyvää Viittusvimeen voidn viitt \ref{vin} j \pgeref{vin} komennoill, jotk tulostvt viittusvint vstvn numeron j sivunumeron. 5. Ristiviittuksist, monirivisistä kvoist Johdtus j vähän LTeXiin muustkin (2/10)

5 Ristiviittuksist I Jos johonkin kirjoitelmn osioon, yhtälöön ti kvn hlutn viitt, niin se tulee ensin nimetä ntmll sille ns. viittusvin \lbel{vin} komennoll (ei erikoismerkkejä!) Tämä komento ei tulost mitään näkyvää Viittusvimeen voidn viitt \ref{vin} j \pgeref{vin} komennoill, jotk tulostvt viittusvint vstvn numeron j sivunumeron. Esim. nimetään osion otsikko j viittn siihen: \section{funktioist}\lbel{sec:funk}... Luvuss \ref{sec:funk} sivull \pgeref{sec:funk} todistettiin... Luvuss 2 sivull 13 todistettiin Ristiviittuksist, monirivisistä kvoist Johdtus j vähän LTeXiin muustkin (2/10)

6 Ristiviittuksist I Jos johonkin kirjoitelmn osioon, yhtälöön ti kvn hlutn viitt, niin se tulee ensin nimetä ntmll sille ns. viittusvin \lbel{vin} komennoll (ei erikoismerkkejä!) Tämä komento ei tulost mitään näkyvää Viittusvimeen voidn viitt \ref{vin} j \pgeref{vin} komennoill, jotk tulostvt viittusvint vstvn numeron j sivunumeron. Esim. nimetään osion otsikko j viittn siihen: \section{funktioist}\lbel{sec:funk}... Luvuss \ref{sec:funk} sivull \pgeref{sec:funk} todistettiin... Luvuss 2 sivull 13 todistettiin... Tätä utomttist järjestelmää on syytä käyttää! 5. Ristiviittuksist, monirivisistä kvoist Johdtus j vähän LTeXiin muustkin (2/10)

7 . Ristiviittuksist, monirivisistä kvoist Johdtus j vähän LTeXiin muustkin (3/10) Ristiviittuksist II Numeroituihin yhtälöihin viittn smll tekniikll

8 . Ristiviittuksist, monirivisistä kvoist Johdtus j vähän LTeXiin muustkin (3/10) Ristiviittuksist II Numeroituihin yhtälöihin viittn smll tekniikll Esim. nimetään yhtälö j viittn siihen: Tällöin \begin{eqution}\lbel{eq:sin} y = x-\sin x. \end{eqution} Yhtälön (\ref{eq:sin}) nojll... Tällöin y = x sin x. (1) Yhtälön (1) nojll...

9 . Ristiviittuksist, monirivisistä kvoist Johdtus j vähän LTeXiin muustkin (3/10) Ristiviittuksist II Numeroituihin yhtälöihin viittn smll tekniikll Esim. nimetään yhtälö j viittn siihen: Tällöin \begin{eqution}\lbel{eq:sin} y = x-\sin x. \end{eqution} Yhtälön (\ref{eq:sin}) nojll... Tällöin y = x sin x. (1) Yhtälön (1) nojll... Huom, että \ref{...} komento tulost vin numeron, ei sulkuj!

10 . Ristiviittuksist, monirivisistä kvoist Johdtus j vähän LTeXiin muustkin (3/10) Ristiviittuksist II Numeroituihin yhtälöihin viittn smll tekniikll Esim. nimetään yhtälö j viittn siihen: Tällöin \begin{eqution}\lbel{eq:sin} y = x-\sin x. \end{eqution} Yhtälön (\ref{eq:sin}) nojll... Tällöin y = x sin x. (1) Yhtälön (1) nojll... Huom, että \ref{...} komento tulost vin numeron, ei sulkuj! msmth pketin \eqref{...} vstineell myös sulut tulostuvt.

11 1 M. Born ( ) 5. Ristiviittuksist, monirivisistä kvoist Johdtus j vähän LTeXiin muustkin (4/10) Ristiviittuksist III Myös numeroitujen listojen yksiköihin voidn viitt: \begin{enumerte} \item Jos $n$ on prillinen,...\lbel{koht1} \item Jos $n$ on priton,...\lbel{koht2} \end{enumerte} Kohdn \ref{koht2} nojll Jos n on prillinen, Jos n on priton,... Kohdn 2 nojll...

12 1 M. Born ( ) 5. Ristiviittuksist, monirivisistä kvoist Johdtus j vähän LTeXiin muustkin (4/10) Ristiviittuksist III Myös numeroitujen listojen yksiköihin voidn viitt: \begin{enumerte} \item Jos $n$ on prillinen,...\lbel{koht1} \item Jos $n$ on priton,...\lbel{koht2} \end{enumerte} Kohdn \ref{koht2} nojll Jos n on prillinen, Jos n on priton,... Kohdn 2 nojll... Alviitteitä voi tehdä \footnote{...} komennoll. Esim. Bornin\footnote{M. Born ( )} pproksimtio. Bornin 1 pproksimtio.

13 5. Ristiviittuksist, monirivisistä kvoist Johdtus j vähän LTeXiin muustkin (5/10) Moniriviset kvt I Monirivisille kvoille, yhtälöille j lskuille löytyy msmth pketist hyödyllisiä ympäristöjä.

14 5. Ristiviittuksist, monirivisistä kvoist Johdtus j vähän LTeXiin muustkin (5/10) Moniriviset kvt I Monirivisille kvoille, yhtälöille j lskuille löytyy msmth pketist hyödyllisiä ympäristöjä. Yhdelle kvlle ti yhtälölle knntt käyttää split ympäristöä. Tsus tehdään & merkillä j rivinvihto khdell kenoviivll \\ (vrt. mtriisit).

15 5. Ristiviittuksist, monirivisistä kvoist Johdtus j vähän LTeXiin muustkin (5/10) Moniriviset kvt I Monirivisille kvoille, yhtälöille j lskuille löytyy msmth pketist hyödyllisiä ympäristöjä. Yhdelle kvlle ti yhtälölle knntt käyttää split ympäristöä. Tsus tehdään & merkillä j rivinvihto khdell kenoviivll \\ (vrt. mtriisit). Esim. \begin{eqution} \begin{split} f(x)=1&+xˆ2+xˆ4+xˆ6+xˆ8+xˆ{10}+xˆ{12}\\ &+xˆ{14}+xˆ{16}+xˆ{18}+xˆ{20} \end{split} \end{eqution} f(x) = 1 + x 2 + x 4 + x 6 + x 8 + x 10 + x 12 + x 14 + x 16 + x 18 + x 20 (2)

16 Moniriviset kvt I Monirivisille kvoille, yhtälöille j lskuille löytyy msmth pketist hyödyllisiä ympäristöjä. Yhdelle kvlle ti yhtälölle knntt käyttää split ympäristöä. Tsus tehdään & merkillä j rivinvihto khdell kenoviivll \\ (vrt. mtriisit). Esim. \begin{eqution} \begin{split} f(x)=1&+xˆ2+xˆ4+xˆ6+xˆ8+xˆ{10}+xˆ{12}\\ &+xˆ{14}+xˆ{16}+xˆ{18}+xˆ{20} \end{split} \end{eqution} f(x) = 1 + x 2 + x 4 + x 6 + x 8 + x 10 + x 12 + x 14 + x 16 + x 18 + x 20 (2) Tämä toimii myös displymth ympäristön knss (mutt 5. Ristiviittuksist, ei $$...$$ monirivisistä knss). kvoist Johdtus j vähän LTeXiin muustkin (5/10)

17 5. Ristiviittuksist, monirivisistä kvoist Johdtus j vähän LTeXiin muustkin (6/10) Moniriviset kvt II Useiden rivien numerointiin on lign ympäristö. Tsus j rivinvihto kuten edellä. Numeroimton vstine on lign*.

18 5. Ristiviittuksist, monirivisistä kvoist Johdtus j vähän LTeXiin muustkin (6/10) Moniriviset kvt II Useiden rivien numerointiin on lign ympäristö. Tsus j rivinvihto kuten edellä. Numeroimton vstine on lign*. Numeroinnin s pois \notg komennoll. \lbel{} komento toimii normlisti rivin lopuss (ennen \\).

19 5. Ristiviittuksist, monirivisistä kvoist Johdtus j vähän LTeXiin muustkin (6/10) Moniriviset kvt II Useiden rivien numerointiin on lign ympäristö. Tsus j rivinvihto kuten edellä. Numeroimton vstine on lign*. Numeroinnin s pois \notg komennoll. \lbel{} komento toimii normlisti rivin lopuss (ennen \\). Esim. \begin{lign} ˆ4-bˆ4&=(ˆ2-bˆ2)(ˆ2+bˆ2)\notg\\ &=(-b)(+b)(ˆ2+bˆ2) \end{lign} 4 b 4 = ( 2 b 2 )( 2 + b 2 ) = ( b)( + b)( 2 + b 2 ) (3)

20 5. Ristiviittuksist, monirivisistä kvoist Johdtus j vähän LTeXiin muustkin (6/10) Moniriviset kvt II Useiden rivien numerointiin on lign ympäristö. Tsus j rivinvihto kuten edellä. Numeroimton vstine on lign*. Numeroinnin s pois \notg komennoll. \lbel{} komento toimii normlisti rivin lopuss (ennen \\). Esim. \begin{lign} ˆ4-bˆ4&=(ˆ2-bˆ2)(ˆ2+bˆ2)\notg\\ &=(-b)(+b)(ˆ2+bˆ2) \end{lign} 4 b 4 = ( 2 b 2 )( 2 + b 2 ) = ( b)( + b)( 2 + b 2 ) (3) Huom! lign j lign* ovt itsessään jo mtemttisi ympäristöjä. Ne eivät siis tule eqution ti displymth ympäristön sisään (toisin kuin split).

21 Moniriviset kvt II Useiden rivien numerointiin on lign ympäristö. Tsus j rivinvihto kuten edellä. Numeroimton vstine on lign*. Numeroinnin s pois \notg komennoll. \lbel{} komento toimii normlisti rivin lopuss (ennen \\). Esim. \begin{lign} ˆ4-bˆ4&=(ˆ2-bˆ2)(ˆ2+bˆ2)\notg\\ &=(-b)(+b)(ˆ2+bˆ2) \end{lign} 4 b 4 = ( 2 b 2 )( 2 + b 2 ) = ( b)( + b)( 2 + b 2 ) (3) Huom! lign j lign* ovt itsessään jo mtemttisi ympäristöjä. Ne eivät siis tule eqution ti displymth ympäristön sisään (toisin kuin split). Huom! \left...\right ei toimi rivinvihtojen yli, vn niiden priksi täytyy litt smlle riville tyhjä vstinerotin \left. 5. Ristiviittuksist, monirivisistä kvoist Johdtus j vähän LTeXiin muustkin (6/10)

22 5. Ristiviittuksist, monirivisistä kvoist Johdtus j vähän LTeXiin muustkin (7/10) Välistyksestä I Mtemtiikktilss voidn lisätä tyhjää til vksuunnss seurvill komennoill, joiden koko ilmenee lt: \! (negtiivinen tyhjä til) (oletusväli) \, \: \; \qud \qqud

23 5. Ristiviittuksist, monirivisistä kvoist Johdtus j vähän LTeXiin muustkin (7/10) Välistyksestä I Mtemtiikktilss voidn lisätä tyhjää til vksuunnss seurvill komennoill, joiden koko ilmenee lt: \! (negtiivinen tyhjä til) (oletusväli) \, \: \; \qud \qqud Tärkein näistä on \qud.

24 + c = b + d jos c = d 5. Ristiviittuksist, monirivisistä kvoist Johdtus j vähän LTeXiin muustkin (7/10) Välistyksestä I Mtemtiikktilss voidn lisätä tyhjää til vksuunnss seurvill komennoill, joiden koko ilmenee lt: \! (negtiivinen tyhjä til) (oletusväli) \, \: \; \qud \qqud Tärkein näistä on \qud. Mtemtiikktiln s tvllist tekstiä \mbox{...} ti \text{...} (msmth) komennoill. Esim. (huom välistys) \[ +c=b+d \qud \mbox{jos} \qud c=d\]

25 5. Ristiviittuksist, monirivisistä kvoist Johdtus j vähän LTeXiin muustkin (8/10) Välistyksestä II Desimlipilkun ympärille trvitn ltosulut estämään turh välistys mtemtiikktilss. Desimlipisteen knss tätä ilmiötä ei ole: $3,14$ 3, 14 (väärin) $3{,}14$ 3,14 (oikein) $3.14$ 3.14 (oikein)

26 Välistyksestä II Desimlipilkun ympärille trvitn ltosulut estämään turh välistys mtemtiikktilss. Desimlipisteen knss tätä ilmiötä ei ole: $3,14$ 3, 14 (väärin) $3{,}14$ 3,14 (oikein) $3.14$ 3.14 (oikein) Mittyksiköt tulisi erott lukurvoist pienellä välillä \,. Esim. $9{,}81\,\mthrm{m/sˆ2}$ 9,81 m/s 2 5. Ristiviittuksist, monirivisistä kvoist Johdtus j vähän LTeXiin muustkin (8/10)

27 . Ristiviittuksist, monirivisistä kvoist Johdtus j vähän LTeXiin muustkin (9/10) Kirjsintyyleistä Mtemtiikktilss on käytössä seurvt kirjsintyylit: \mthcl{} A \mthrm{} d \mthbf{} A \mthsf{} A \mthit{} A \mthtt{} A

28 5. Ristiviittuksist, monirivisistä kvoist Johdtus j vähän LTeXiin muustkin (9/10) Kirjsintyyleistä Mtemtiikktilss on käytössä seurvt kirjsintyylit: \mthcl{} A \mthrm{} d \mthbf{} A \mthsf{} A \mthit{} A \mthtt{} A msmth pketti trjo lisäksi \boldsymbol{...} komennon, jok ero hiemn \mthbf{...} komennost: teksti \mthbf{teksti} \boldsymbol{teksti} xyz xyz xyz A \cp B A B A B \lph\bet αβ αβ

29 5. Ristiviittuksist, monirivisistä kvoist Johdtus j vähän LTeXiin muustkin (10/10) Yllä j ll {n \choose k} rkenne tuott binomikerroinmisen rkenteen ( ) n k

30 5. Ristiviittuksist, monirivisistä kvoist Johdtus j vähän LTeXiin muustkin (10/10) Yllä j ll {n \choose k} rkenne tuott binomikerroinmisen rkenteen ( ) n k Tämä iheutt vroituksen msmth pketin knss. Silloin vihtoehton on käyttää komento \binom{n}{k}.

31 5. Ristiviittuksist, monirivisistä kvoist Johdtus j vähän LTeXiin muustkin (10/10) Yllä j ll {n \choose k} rkenne tuott binomikerroinmisen rkenteen ( ) n k Tämä iheutt vroituksen msmth pketin knss. Silloin vihtoehton on käyttää komento \binom{n}{k}. Viivt \overline j \underline komennoill: \overline{z_1+z_2+z_3} z 1 + z 2 + z 3

32 5. Ristiviittuksist, monirivisistä kvoist Johdtus j vähän LTeXiin muustkin (10/10) Yllä j ll {n \choose k} rkenne tuott binomikerroinmisen rkenteen ( ) n k Tämä iheutt vroituksen msmth pketin knss. Silloin vihtoehton on käyttää komento \binom{n}{k}. Viivt \overline j \underline komennoill: \overline{z_1+z_2+z_3} z 1 + z 2 + z 3 Altosulut \overbrce j \underbrce komennoill (hrvoin trpeen!): n \overbrce{1+1+\cdots+1}ˆn {}}{ \underbrce{1+1+\cdots+1}_n }{{} n

33 5. Ristiviittuksist, monirivisistä kvoist Johdtus j vähän LTeXiin muustkin (10/10) Yllä j ll {n \choose k} rkenne tuott binomikerroinmisen rkenteen ( ) n k Tämä iheutt vroituksen msmth pketin knss. Silloin vihtoehton on käyttää komento \binom{n}{k}. Viivt \overline j \underline komennoill: \overline{z_1+z_2+z_3} z 1 + z 2 + z 3 Altosulut \overbrce j \underbrce komennoill (hrvoin trpeen!): n \overbrce{1+1+\cdots+1}ˆn {}}{ \underbrce{1+1+\cdots+1}_n Pinotut symbolit \stckrel{}{}: x_n\stckrel{n\to\infty}{\to}0 1 } {{ + 1 } n x n n 0

Johdatus L A TEXiin. 5. Ristiviittauksista, monirivisistä kaavoista ja vähän muustakin Markus Harju. Matemaattiset tieteet

Johdatus L A TEXiin. 5. Ristiviittauksista, monirivisistä kaavoista ja vähän muustakin Markus Harju. Matemaattiset tieteet Johdatus L A TEXiin 5. Ristiviittauksista, monirivisistä kaavoista ja vähän muustakin Markus Harju Matemaattiset tieteet a Ristiviittauksista I Jos johonkin kirjoitelman osioon, yhtälöön tai kaavaan halutaan

Lisätiedot

Johdatus L A TEXiin. 4. Matematiikkaa II Markus Harju. Matemaattiset tieteet

Johdatus L A TEXiin. 4. Matematiikkaa II Markus Harju. Matemaattiset tieteet Johdtus L A TEXiin 4. Mtemtiikk II Mrkus Hrju Mtemttiset tieteet Näyttömtemtiikktilst I Numerointi trvitsevt, pljon til vtivt ti muust syystä tärkeät kvt j lusekkeet tulee sijoitt omlle rivilleen ns. näyttömtemtiikktiln.

Lisätiedot

Johdatus L A TEXiin. 4. Matematiikkaa II Markus Harju. Matemaattiset tieteet

Johdatus L A TEXiin. 4. Matematiikkaa II Markus Harju. Matemaattiset tieteet Johdtus L A TEXiin 4. Mtemtiikk II Mrkus Hrju Mtemttiset tieteet Näyttömtemtiikktilst I Numerointi trvitsevt, pljon til vtivt ti muust syystä tärkeät kvt j lusekkeet tulee sijoitt omlle rivilleen ns. näyttömtemtiikktiln.

Lisätiedot

Johdatus L A TEXiin. 6. Omat komennot ja lauseympäristöt Markus Harju. Matemaattiset tieteet

Johdatus L A TEXiin. 6. Omat komennot ja lauseympäristöt Markus Harju. Matemaattiset tieteet Johdtus L A TEXiin 6. Omt komennot j luseympäristöt Mrkus Hrju Mtemttiset tieteet 6. Omt komennot j luseympäristöt Johdtus LTeXiin (2/10) Omt komennot I L A TEXin vlmiiden komentojen lisäksi kirjoittj

Lisätiedot

Johdatus L A TEXiin. 2. Dokumentin rakenne Markus Harju. Matemaattiset tieteet

Johdatus L A TEXiin. 2. Dokumentin rakenne Markus Harju. Matemaattiset tieteet Johdtus L A TEXiin 2. Dokumentin rkenne Mrkus Hrju Mtemttiset tieteet 2. Dokumentin rkenne Johdtus LTeXiin (2/10) Dokumenttiluokist L A TEXin perusdokumenttiluokt ovt rticle, report j book. Ne otetn käyttöön

Lisätiedot

Johdatus L A TEXiin. 2. Dokumentin rakenne Markus Harju. Matemaattiset tieteet

Johdatus L A TEXiin. 2. Dokumentin rakenne Markus Harju. Matemaattiset tieteet Johdtus L A TEXiin 2. Dokumentin rkenne Mrkus Hrju Mtemttiset tieteet 2. Dokumentin rkenne Johdtus LTeXiin (2/10) Dokumenttiluokist L A TEXin perusdokumenttiluokt ovt rticle, report j book. Dokumenttiluokist

Lisätiedot

Johdatus L A TEXiin. 7. Taulukot ja kuvat Markus Harju. Matemaattiset tieteet

Johdatus L A TEXiin. 7. Taulukot ja kuvat Markus Harju. Matemaattiset tieteet Johdtus L A TEXiin 7. Tulukot j kuvt Mrkus Hrju Mtemttiset tieteet 7. Tulukot j kuvt Johdtus LTeXiin (2/) Tulukot I Tulukkomiset rkenteet tehdään ympäristöllä tbulr Ympäristön rgumentiksi nnetn srkemäärittely,

Lisätiedot

Johdatus L A TEXiin. 7. Taulukot ja kuvat Markus Harju. Matemaattiset tieteet

Johdatus L A TEXiin. 7. Taulukot ja kuvat Markus Harju. Matemaattiset tieteet Johdtus L A TEXiin 7. Tulukot j kuvt Mrkus Hrju Mtemttiset tieteet 7. Tulukot j kuvt Johdtus LTeXiin (2/11) Tulukot I Tulukkomiset rkenteet tehdään ympäristöllä tbulr Tulukot I Tulukkomiset rkenteet tehdään

Lisätiedot

Fysiikan laboratoriotyöt 1: Johdatus L A TEXiin

Fysiikan laboratoriotyöt 1: Johdatus L A TEXiin Fysiikn lbortoriotyöt 1: Johdtus L A TEXiin Mrkus Hrju Mtemttiset tieteet L A TEXist L A TEX[ lteh] on ldontohjelm, joll voidn helposti tuott (ldukkit) mtemttisi merkintöjä sisältäviä dokumenttej (esim.

Lisätiedot

OUML6421B3004. 3-tilaohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT

OUML6421B3004. 3-tilaohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT OUML6421B3004 3-tilohjttu venttiilimoottori KÄYTTÖKOHTEET i Lämmityksen säätö i Ilmnvihtojärjestelmät TUOTETIEDOT OMINAISUUDET Helppo j nope sent Ei trvitse erillistä sennustelinettä Ei trvitse liikepituuden

Lisätiedot

Polynomien laskutoimitukset

Polynomien laskutoimitukset Polyomie lskutoimitukset Polyomi o summluseke, joss jokie yhteelskettv (termi) sisältää vi vkio j muuttuj välisiä kertolskuj. Esimerkki 0. Mm., 6 j ovt polyomej. Polyomist, joss o vi yksi termi, käytetää

Lisätiedot

OUML7421B3003. Jänniteohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT. i OUV5049 i OUV5050

OUML7421B3003. Jänniteohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT. i OUV5049 i OUV5050 OUML7421B3003 Jänniteohjttu venttiilimoottori TUOTETIEDOT OMINAISUUDET Helppo j nope sent Ei trvitse erillistä sennustelinettä Ei trvitse liikepituuden säätöä Momenttirjkytkimet Käsikäyttömhdollisuus Mikroprosessorin

Lisätiedot

Johdatus L A TEXiin. 3. Matematiikkaa I Markus Harju. Matemaattiset tieteet

Johdatus L A TEXiin. 3. Matematiikkaa I Markus Harju. Matemaattiset tieteet Johdtus L A TEXiin 3. Mtemtiikk I Mrkus Hrju Mtemttiset tieteet 3. Mtemtiikk I Johdtus LTeXiin (2/12) Mtemtiikktiloist Mtemttiset symbolit, lusekkeet, lskut yms. tulee sijoitt ns. mtemtiikktiloihin (ympäristöihin)

Lisätiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot TKK (c) Ilkk Mellin (24) 1 Johdtus todennäköisyyslskentn TKK (c) Ilkk Mellin (24) 2 : Mitä opimme? 1/2 Jos stunnisilmiötä hlutn mllint mtemttisesti, on ilmiön tulosvihtoehdot kuvttv numeerisess muodoss.

Lisätiedot

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään.

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään. S-8. Sähkönsiirtoärstlmät Tntti 8..7 Vst thtäviin -4 vlits toinn thtävistä 5 6. Vstt siis nintään viitn thtävään.. Tutkitn ll piirrttyä PV-käyrää, ok kuv sllist vrkko, oss on tuotntolu kuormituslu niidn

Lisätiedot

sin θ θ θ r 2 sin 2 θ φ 2 = 0.

sin θ θ θ r 2 sin 2 θ φ 2 = 0. Mtemtiikn j tilstotieteen litos Osittisdifferentiliyhtälöt Kevät 21 Hrjoitus 9 Rtkisuj Jussi Mrtin 1. Osoit, että Lplce-yhtälö pllokoordinteiss on 2 u 1 r 2 2 u r r 1 r 2 sin θ u 1 2 u sin θ θ θ r 2 sin

Lisätiedot

Johdatus L A TEXiin. 3. Matematiikkaa I Markus Harju. Matemaattiset tieteet

Johdatus L A TEXiin. 3. Matematiikkaa I Markus Harju. Matemaattiset tieteet Johdtus L A TEXiin 3. Mtemtiikk I Mrkus Hrju Mtemttiset tieteet 3. Mtemtiikk I Johdtus LTeXiin (2/12) Mtemtiikktiloist Mtemttiset symbolit, lusekkeet, lskut yms. tulee sijoitt ns. mtemtiikktiloihin (ympäristöihin)

Lisätiedot

Asennusopas. Daikin Altherma - Matalan lämpötilan Monoblocin varalämmitin EKMBUHCA3V3 EKMBUHCA9W1. Asennusopas. Suomi

Asennusopas. Daikin Altherma - Matalan lämpötilan Monoblocin varalämmitin EKMBUHCA3V3 EKMBUHCA9W1. Asennusopas. Suomi Dikin Altherm - Mtln lämpötiln Monolocin vrlämmitin EKMBUHCAV EKMBUHCA9W Suomi Sisällysluettelo Sisällysluettelo Tietoj sikirjst. Tieto tästä sikirjst... Tietoj pkkuksest. Vrlämmitin..... Vrusteiden poistminen

Lisätiedot

Runkovesijohtoputket

Runkovesijohtoputket Runkovesijohtoputket PUTKET JA PUTKEN OSAT SSAB:n vlmistmi pinnoitettuj putki j putken osi käytetään lähinnä runkovesijohtolinjoihin, joiden hlkisij on DN 400-1200. Ost vlmistetn teräksisistä pineputkist

Lisätiedot

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA Tekijät: Ari Heimonen, Hellevi Kupil, Ktj Leinonen, Tuomo Tll, Hnn Tuhknen, Pekk Vrniemi Alkupl Tiedekeskus Tietomn torninvrtij

Lisätiedot

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi Tehtävä. Jtk loogisesti oheisi jonoj khdell seurvksi tulevll termillä. Perustele vstuksesi lyhyesti. ), c, e, g, b),,, 7,, Rtkisut: ) i j k - oike perustelu j oiket kirjimet, nnetn p - oike perustelu,

Lisätiedot

Kirjallinen teoriakoe

Kirjallinen teoriakoe 11 Kirjllinen teorikoe Päivämäärä: Osllistujn nimi: Kirjllinen teorikoe Arviointi koostuu khdest osst: "yleiset kysymykset "j lskutehtävät" Kokeen hyväksytty rj on 51% molemmist osioist erikseen. St 1

Lisätiedot

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko 3.3 KILIOPPIN JÄSNNYSONGLMA Rtkistv tehtävä: Annettu yhteydetön kielioppi G j merkkijono x. Onko x L(G)? Rtkisumenetelmä = jäsennyslgoritmi. Useit vihtoehtoisi menetelmiä, erityisesti kun G on jotin rjoitettu

Lisätiedot

5 Epäoleellinen integraali

5 Epäoleellinen integraali 5 Epäoleellinen integrli 5. Integrlin suppeneminen Olkoon f sellinen välillä [, b[ (ei siis välttämättä pisteessä b) määritelty funktio, että f on Riemnn-integroituv välillä [, ] kikill ], b[ eli on olemss

Lisätiedot

Vakioiden variointi kolmannen kertaluvun yhtälölle

Vakioiden variointi kolmannen kertaluvun yhtälölle Vkioiden vriointi kolmnnen kertluvun yhtälölle Olkoon trksteltvn kolmnnen kertluvun linerinen epähomogeeninen differentiliyhtälö > diffyht:= (-1)*diff(y(), $3)-*diff(y(), $2)+diff(y(), )=ep(^2); diffyht

Lisätiedot

.) (b) Vertaa p :tä vastaavaa kineettistä energiaa perustilan kokonaisenergiaan. ( ) ( ) = = Ek

.) (b) Vertaa p :tä vastaavaa kineettistä energiaa perustilan kokonaisenergiaan. ( ) ( ) = = Ek S-446, FYSIIKKA IV (Sf) Kevät 5, HSf Rtkisut HSf- Kvnttimekninen hrmoninen värähtelijä on perustillln (mss m) Värähtelyn mplitudi on A () ske p (Värähtelijä sijitsee välillä A ) (b) Vert p :tä vstv kineettistä

Lisätiedot

Sarjaratkaisun etsiminen Maplella

Sarjaratkaisun etsiminen Maplella Srjrtkisun etsiminen Mplell Olkoon trksteltvn ensimmäisen kertluvun differentiliyhtälö: > diffyht:= diff(y(x, x=1y(x^; d diffyht := = dx y( x 1 y( x Tälle pyritään etsimään srjrtkisu origokeskisenä potenssisrjn.

Lisätiedot

SARJAT JA DIFFERENTIAALIYHTÄLÖT Funktiojonot 1

SARJAT JA DIFFERENTIAALIYHTÄLÖT Funktiojonot 1 SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 JOUNI PARKKONEN Sisältö 0. Tästä tekstistä. Funktiojonot 0. Tästä tekstistä Tämä moniste on trkoitettu käytettäväksi kurssin Srjt j differentiliyhtälöt luentomterilin.

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29 Numeeriset menetelmät TIEA381 Luento 9 Kirsi Vljus Jyväskylän yliopisto Luento 9 () Numeeriset menetelmät 17.4.2013 1 / 29 Luennon 9 sisältö Numeerisest integroinnist Newtonin j Cotesin kvt Luento 9 ()

Lisätiedot

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS 11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS Tilvuus on sen verrn rkielämässä viljelty käsite, että useimmiten sen syvemmin edes miettimättä ymmärretään, mitä juomlsin ti pikkuvuvn kylpymmeen tilvuudell trkoitetn.

Lisätiedot

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten

Lisätiedot

2.1 Vaillinaiset yhtälöt

2.1 Vaillinaiset yhtälöt .1 Villiniset yhtälöt Yhtälö, jok sievenee muotoon x + bx + c = 0 (*) on yleistä normlimuoto olev toisen steen yhtälö. Tämän rtkiseminen ei olekn enää yhtä meknist kuin normlimuotoisen ensisteen yhtälön

Lisätiedot

Kognitiivinen mallintaminen I, kevät Harjoitus 1. Joukko-oppia. MMIL, luvut 1-3 Ratkaisuehdotuksia, MP

Kognitiivinen mallintaminen I, kevät Harjoitus 1. Joukko-oppia. MMIL, luvut 1-3 Ratkaisuehdotuksia, MP Kognitiivinen mllintminen I, kevät 007 Hrjoitus. Joukko-oppi. MMIL, luvut -3 Rtkisuehdotuksi, MP. Määritellään joukot: A = {,,, 3, 4, 5} E = {, {}, } B = {, 4} F = C = {, } G = {{, }, {,, 4}} D = {, }

Lisätiedot

Asennusopas. Daikin Altherma Matalan lämpötilan Monoblocin varalämmitin EKMBUHCA3V3 EKMBUHCA9W1. Asennusopas. Suomi

Asennusopas. Daikin Altherma Matalan lämpötilan Monoblocin varalämmitin EKMBUHCA3V3 EKMBUHCA9W1. Asennusopas. Suomi Dikin Altherm Mtln lämpötiln Monolocin vrlämmitin EKMBUHCAV EKMBUHCA9W Dikin Altherm Mtln lämpötiln Monolocin vrlämmitin Suomi Sisällysluettelo Sisällysluettelo Tietoj sikirjst. Tieto tästä sikirjst...

Lisätiedot

S Fysiikka III (EST), Tentti

S Fysiikka III (EST), Tentti S-114.137 Fysiikk III (ES), entti 30.8.006 1. Lämpövoimkone toteutt oheisen kuvn Crnotin prosessi. Koneess on työineen yksi mooli ideliksu. Lske yksitomisen ksun kierroksen ikn tekemän työn suhde kksitomisen

Lisätiedot

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.

Lisätiedot

Riemannin integraali

Riemannin integraali LUKU 5 iemnnin integrli Tässä luvuss funktion f iemnnin integrli merkitään - b f = - b f() d. Vstvsti funktion f Lebesgue in integrli merkitään f = f() dm(). [,b] [,b] Luse 5.1. Olkoon f : [, b] rjoitettu

Lisätiedot

x k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b

x k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b 5 Integrlien lskemisest 51 Riemnnin summt [A2], [4, 61] Rjoitetun funktion f : [, b] R Riemnn-integroituvuudelle ytäpitäväksi on kurssill Anlyysi 2 osoitettu, että Riemnnin summill S P := f(ξ k ) ( ),

Lisätiedot

Ristitulo ja skalaarikolmitulo

Ristitulo ja skalaarikolmitulo Ristitulo j sklrikolmitulo Opetussuunnitelmn 00 mukinen kurssi Vektorit (MAA) sisältää vektoreiden lskutoimituksist keskeisenä ineksen yhteenlskun, vähennyslskun, vektorin kertomisen luvull j vektoreiden

Lisätiedot

uusi COOLSIDE JÄÄHDYTYSYKSIKKÖ PALVELIMILLE C_GNR_0608 Mikroprosessori RCGROUP SpA

uusi COOLSIDE JÄÄHDYTYSYKSIKKÖ PALVELIMILLE C_GNR_0608 Mikroprosessori RCGROUP SpA COOLS COOLSIDE uusi JÄÄHDYTYSYKSIKKÖ PALVELIMILLE Jäähdytysteho Kylmäine Puhllintyyppi Mikroprosessori jop 96,0 kw sroll R410A ksili MP.COM T: MONO DXA (R410A) Jäähdytysteho jop 21,9 kw Ilmluhdutteinen

Lisätiedot

Johdatus L A TEXiin. 6. Omat komennot ja lauseympäristöt Markus Harju. Matemaattiset tieteet

Johdatus L A TEXiin. 6. Omat komennot ja lauseympäristöt Markus Harju. Matemaattiset tieteet Johdatus L A TEXiin 6. Omat komennot ja lauseympäristöt Markus Harju Matemaattiset tieteet Omat komennot I a L A TEXin valmiiden komentojen lisäksi kirjoittaja voi itse määritellä omia komentojaan. Tämä

Lisätiedot

Kuvausta f sanotaan tällöin isomorfismiksi.

Kuvausta f sanotaan tällöin isomorfismiksi. Määritelmä..12. Oletetn, että 1 =(V 1,E 1 ) j 2 =(V 2,E 2 ) ovt yksinkertisi verkkoj. Verkot 1 j 2 ovt isomorfiset, jos seurvt ehdot toteutuvt: (1) on olemss bijektio f : V 1 V 2 (2) kikill, b V 1 pätee,

Lisätiedot

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [ 1. Derivtn Testi Jos funktio f on jtkuv voimell välillä ], b[ j x 0 ], b[ on kriit. ti singul. piste niin { f (x) < 0, x ], x 0 [ f x (x) > 0, x ]x 0, b[ 0 on lokli minimipiste (1) { f (x) > 0, x ], x

Lisätiedot

Suorakaidekanavat. lindab suorakaidekanavat

Suorakaidekanavat. lindab suorakaidekanavat Suorkideknvt lind suorkideknvt lind suorkideknvt Sisällysluettelo Suorkideknvt Knv LKR... Liitosost Liitoslist LS... Liitoslist LS-... Kulmyhde LBR... Liitoslist LS... S-mutk LBXR... LBSR... Liitoslist

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Harri Lehtinen. Kongruenssista

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Harri Lehtinen. Kongruenssista TAMPEREEN YLIOPISTO Pro grdu -tutkielm Hrri Lehtinen Kongruenssist Mtemtiikn, tilstotieteen j filosofin litos Mtemtiikk Helmikuu 006 Tmpereen yliopisto Mtemtiikn, tilstotieteen j filosofin litos LEHTINEN,

Lisätiedot

Kuva 1. n i n v. (2 p.) b) Laske avaimiesi etäisyys x altaan seinämästä. (4 p.) c) Kuinka paljon lunta voi sulaa enintään Lassen suksien alla?

Kuva 1. n i n v. (2 p.) b) Laske avaimiesi etäisyys x altaan seinämästä. (4 p.) c) Kuinka paljon lunta voi sulaa enintään Lassen suksien alla? TKK, TTY, LTY, OY, ÅA, TY j VY insinööriosstojen vlintkuulustelujen fysiikn koe 26.5.2004 Merkitse jokiseen koepperiin nimesi, hkijnumerosi j tehtäväsrjn kirjin. Lske jokinen tehtävä siististi omlle sivulleen.

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa.

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa. Jkso 12. Sähkömgneettinen induktio Tässä jksoss käsitellään sähkömgneettist induktiot, jok on tärkeimpiä sioit sähkömgnetismiss. Tätä tphtuu koko jn rkisess ympäristössämme, vikk emme sitä välttämättä

Lisätiedot

Kohteen turvaluokitus on

Kohteen turvaluokitus on LVI 03-10517 SIT 13-610091 KH X4-00513 INFRA 053-710109 ST 41.01 HANKETIETOKORTTI HT12 Hnketietokortiss esitetään rkennuskohteen lähtötiedot j tiljn edellyttämä ltutso suunnittelun työmäärän rviointi vrten.

Lisätiedot

MATEMATIIKAN LATOMINEN LA T EXILLA, OSA 1

MATEMATIIKAN LATOMINEN LA T EXILLA, OSA 1 MATEMATIIKAN LATOMINEN LA T EXILLA, OSA 1 PEKKA SALMI Tämä dokumentti on johdatus matemaattisten termien kirjoittamiseen L A TEXilla. Tarkoituksena on esitellä yksinkertaisia matemaattisia konstruktioita

Lisätiedot

Sinilause ja kosinilause

Sinilause ja kosinilause Siniluse j kosiniluse GEOMETRI M3 Mikäli kolmion korkeus j knt tiedetään, voidn pint-l lske. Esimerkki: Lske kolmion l, kun 38 kulmn viereiset sivut ovt 8, j 6,8. Nyt knt tiedetään, korkeutt ei! 38 8,

Lisätiedot

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä?

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä? Relinen lukulue POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA Millinen on luku, joss on päättymätön j jksoton desimlikehitelmä? Onko sellisi? Trkstelln Pythgorn luseest stv yksikköneliön lävistäjää, luku + = x x =.

Lisätiedot

Johdatus L A TEXiin. 10. Matemaattisen tekstin kirjoittamisesta. Matemaattisten tieteiden laitos

Johdatus L A TEXiin. 10. Matemaattisen tekstin kirjoittamisesta. Matemaattisten tieteiden laitos Johdatus L A TEXiin 10. Matemaattisen tekstin kirjoittamisesta Matemaattisten tieteiden laitos Matemaattisesta tekstistä I Matemaattisella tekstillä tarkoitetaan tavallista (suomenkielisistä virkkeistä

Lisätiedot

Johdatus L A TEXiin. 9. Sivun mitat, ulkoasu ja kalvot. Matemaattisten tieteiden laitos

Johdatus L A TEXiin. 9. Sivun mitat, ulkoasu ja kalvot. Matemaattisten tieteiden laitos Johdatus L A TEXiin 9. Sivun mitat, ulkoasu ja kalvot Matemaattisten tieteiden laitos Sivun mitoista I L A TEXissa kaikki sivuasetukset (marginaalit, tekstin leveys, jne.) ovat mittoja Keskeisimmät mitat

Lisätiedot

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA MAA0 0. Määrätyn integrlin käyttö eräiden pint-lojen lskemisess 0. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA Edellä on todettu, että f (x)dx nt x-kselin j suorien x =, x = sekä funktion

Lisätiedot

Ankkurijärjestelmä Monotec Järjestelmämuotti Framax Xlife

Ankkurijärjestelmä Monotec Järjestelmämuotti Framax Xlife 999805711-02/2015 fi Muottimestrit. nkkurijärjestelmä Monotec Järjestelmämuotti rmx Xlife Käyttäjätieto sennus- j käyttöohje 9764-445-01 Johdnto Käyttäjätieto nkkurijärjestelmä Monotec dnto Joh- by ok

Lisätiedot

Johdatus L A TEXiin. 9. Sivun mitat, ulkoasu ja kalvot. Matemaattisten tieteiden laitos

Johdatus L A TEXiin. 9. Sivun mitat, ulkoasu ja kalvot. Matemaattisten tieteiden laitos Johdatus L A TEXiin 9. Sivun mitat, ulkoasu ja kalvot Matemaattisten tieteiden laitos Sivun mitoista I L A TEXissa kaikki sivuasetukset (marginaalit, tekstin leveys, jne.) ovat mittoja Sivun mitoista I

Lisätiedot

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus.

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus. KOLMIULOTTEISI KPPLEIT Tsogeometriss käsiteltiin kuvioit vin ydessä tsoss. vruusgeometriss tsoon tulee kolms ulottuvuus, jolloin sdn kppleen tilvuus. SUORKULMINEN SÄRMIÖ Suorkulmisess särmiössä kikki kulmt

Lisätiedot

2.4 Pienimmän neliösumman menetelmä

2.4 Pienimmän neliösumman menetelmä 2.4 Pienimmän neliösummn menetelmä Optimointimenetelmiä trvitn usein kokeellisen dtn nlysoinniss. Mittuksiin liittyy virhettä, joten mittus on toistettv useit kertoj. Oletetn, että mittn suurett c j toistetn

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 6 / vko 13

Diskreetin matematiikan perusteet Laskuharjoitus 6 / vko 13 MS-A040 Diskreetin mtemtiikn perusteet, IV/07 Kngslmpi / Jkosson Diskreetin mtemtiikn perusteet Lskuhrjoitus / vko Tuntitehtävät 4-4 lsketn lkuviikon hrjoituksiss j tuntitehtävät 45-4 loppuviikon hrjoituksiss.

Lisätiedot

Kieli, merkitys ja logiikka, kevät 2011 HY, Kognitiotiede. Vastaukset 2.

Kieli, merkitys ja logiikka, kevät 2011 HY, Kognitiotiede. Vastaukset 2. Kieli, merkitys j logiikk, kevät 2011 HY, Kognitiotiede stukset 2. ** Kikiss utomteiss lkutil on. 1.. nn äärelliset utomtit luseille (1-c), jokiselle omns. (1).. c. q3 q4 q3 q4 q5 q6. Muodost äärellinen

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 22. syyskuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 22. syyskuuta 2016 lusekkeet, lusekkeet, TIEA241 Automtit j kieliopit, syksy 2016 Antti-Juhni Kijnho lusekkeet j smuus TIETOTEKNIIKAN LAITOS 22. syyskuut 2016 Sisällys lusekkeet, lusekkeet lusekkeet j smuus j smuus lusekkeet

Lisätiedot

Differentiaali- ja integraalilaskenta 1 (CHEM) Laskuharjoitus 4 / vko 47, mallivastaukset

Differentiaali- ja integraalilaskenta 1 (CHEM) Laskuharjoitus 4 / vko 47, mallivastaukset Differentili- j integrlilskent (CHEM) Lskuhrjoitus / vko 7, mllivstukset Johdntotehtävä x dx = ln.693, joten rvo ln voidn pproksimoid integroimll numeerisesti funktiot x välillä [,]. Jetn väli [,] khteen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 4 Tilvuuden j vipn ln lskeminen Kuten iemmin käsittelimme, määrätyn integrlin vull voi lske pintloj j tilvuuksi. Tyypillisenä sovelluksen tilvuuden lskemisest on tpus, joss

Lisätiedot

Tuen rakenteiden toteuttaminen Pispalan koulussa. Rehtorin näkökulma arjen työhön Rehtori Satu Sepänniitty- Valkama

Tuen rakenteiden toteuttaminen Pispalan koulussa. Rehtorin näkökulma arjen työhön Rehtori Satu Sepänniitty- Valkama Tuen rkenteiden toteuttminen Pispln kouluss Rehtorin näkökulm ren työhön Rehtori Stu Sepänniitty- Vlkm Pispln koulu Khdess toimipisteessä Pispl vl 1.-6. oppilit 232 Hyhky vl 1.-6. oppilit 164 yht. 396

Lisätiedot

Itseopiskeluohje to

Itseopiskeluohje to Itseopiskeluohje to 5.1.2018 Yleistä Torstin 5.1.2018 luennoitsijnne on Mtemtiikn päivillä Joensuuss vetämässä sessiot mtemtiikn opetuksest. Näin ollen luento ei pietä, vn trkoitus on itse käyä läpi kksi

Lisätiedot

2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:

2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita: 2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:

Lisätiedot

Excelin käyttö mallintamisessa. Regressiosuoran määrittäminen. Käsitellään tehtävän 267 ratkaisu.

Excelin käyttö mallintamisessa. Regressiosuoran määrittäminen. Käsitellään tehtävän 267 ratkaisu. Excelin käyttö mallintamisessa Regressiosuoran määrittäminen Käsitellään tehtävän 267 ratkaisu. 1)Kirjoitetaan arvot taulukkoon syvyys (mm) ikä 2 4 3 62 6 11 7 125 2) Piirretään graafi, valitaan lajiksi

Lisätiedot

Sangen lyhyt L A T E X-johdatus

Sangen lyhyt L A T E X-johdatus Sangen lyhyt L A T E X-johdatus Lari Koponen, Eetu Ahonen ja Timo Voipio 11. maaliskuuta 2013 Koulutuksen tavoitteet Koulutuksen jälkeen pystyy kirjoittamaan työselostuksen L A T E X:illa, eli Dokumentin

Lisätiedot

Numeerinen integrointi.

Numeerinen integrointi. Numeerinen integrointi. Differentili- j integrlilskent 1, syksy 2015 Hrri Vrpnen Mtemtiikn j systeeminlyysin litos Alto-yliopisto Tiisti 6.10.2015 Sisältö Tylor-menetelmä. Käyttökelpoinen silloin, kun

Lisätiedot

Kustaankartanon vanhustenkeskus Vanhainkoti Päivätoiminta Palvelukeskus

Kustaankartanon vanhustenkeskus Vanhainkoti Päivätoiminta Palvelukeskus Kustnkrtnon vnhustenkeskus Vnhinkoti Päivätoimint Plvelukeskus 1 Kustnkrtnoss tärkeinä pidettyjä sioit: sukkn hyvä olo hyvä elämä hyvä yhteistyö omisten knss gerontologisen hoidon osminen työntekijöiden

Lisätiedot

Puolijohdekomponenttien perusteet A Ratkaisut 6, Kevät 2016

Puolijohdekomponenttien perusteet A Ratkaisut 6, Kevät 2016 OY/PJKOMP R6 016 Puolijohekoponenttien peruteet 51071A Rtkiut 6, Kevät 016 1. MOS-konenttori (Metl-Oxie-Seiconuctor) kootuu nienä ukieti etlliet hilt, okii-eriteetä j ouptut puolijohteet (Kuv 1). Ielieti

Lisätiedot

6 Integraalilaskentaa

6 Integraalilaskentaa 6 Integrlilskent 6. Integrlifunktio Funktion f integrlifunktioksi snotn funktiot F, jonk derivtt on f. Siis F (x) = f (x) määrittelyjoukon jokisell muuttujn rvoll x. Merkitään F(x) = f (x) dx. Integrlifunktion

Lisätiedot

T Kevät 2009 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (Predikaattilogiikka )

T Kevät 2009 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (Predikaattilogiikka ) T-79.3001 Kevät 2009 Logiikk tietotekniikss: perusteet Lskuhrjoitus 7 (Predikttilogiikk 9.1 10.2) 19.3. 23.3. 2009 Rtkisuj demotehtäviin Tehtävä 9.1 Rtkisuss on käytetty usen otteeseen rjoitettuj universli-

Lisätiedot

7 Funktiosarjoista. 7.1 Funktiosarjojen suppeneminen

7 Funktiosarjoista. 7.1 Funktiosarjojen suppeneminen 7 Funktiosrjoist 7. Funktiosrjojen suppeneminen Seurvksi trkstelln srjoj, joiden termit ovt (lukujen sijst) jollkin välillä I määriteltyjä funktioit. Täsmällisemmin funktiosrjll (ti lyhyemmin srjll) trkoitetn

Lisätiedot

Mat Dynaaminen optimointi, mallivastaukset, kierros 8

Mat Dynaaminen optimointi, mallivastaukset, kierros 8 Mt-.148 Dynminen optimointi, mllivstukset, kierros 8 1. Idelisess tsvirtmoottoriss vääntömomentti on suorn verrnnollinen virtn. Moottori pyörittää ikiliikkuj (ei kitk- ti sähkömgneettisi vstusvoimi). Moottorin

Lisätiedot

Vuokrahuoneistojen välitystä tukeva tietojärjestelmä.

Vuokrahuoneistojen välitystä tukeva tietojärjestelmä. Kertusesimerkki: Vuokrhuoneistojen välitystä tukev tietojärjestelmä. Esimerkin trkoituksen on on hvinnollist mllinnustekniikoiden käyttöä j suunnitteluprosessin etenemistä tietojärjestelmän kehityksessä.

Lisätiedot

Sangen lyhyt L A T E X-johdatus

Sangen lyhyt L A T E X-johdatus Sangen lyhyt L A T E X-johdatus Lari Koponen ja Eetu Ahonen 23.1.2013 Koulutuksen tavoitteet Koulutuksen jälkeen pystyy kirjoittamaan työselostuksen L A T E X:illa, eli Dokumentin rakenne tutuksi Tekstin

Lisätiedot

AHX640W AHX640W VOX400 VOX400 [UUSIA RATKAISUJA VALURAUTOJEN JYRSINTÄÄN] ] [UUSIA RATKAISUJA PROMOTION JYRSIMET VALURAUDOILLE

AHX640W AHX640W VOX400 VOX400 [UUSIA RATKAISUJA VALURAUTOJEN JYRSINTÄÄN] ] [UUSIA RATKAISUJA PROMOTION JYRSIMET VALURAUDOILLE PROMOTION JYRSIMET VALURAUDOILLE NEW CAST IRON FACE MILLING CUTTERS FI-00 AHX0W AHX l Uui tehok -ärmäinen kääntöterä. AHX0W [UUSIA RATKAISUJA [UUSIA RATKAISUJA VALURAUTOJEN JYRSINTÄÄN] ] JYRSINTÄÄN VALURAUTOJEN

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 9: Integroimismenetelmät Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 10.10.2016 Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto,

Lisätiedot

TYÖ 30. JÄÄN TIHEYDEN MÄÄRITYS. Tehtävänä on määrittää jään tiheys.

TYÖ 30. JÄÄN TIHEYDEN MÄÄRITYS. Tehtävänä on määrittää jään tiheys. TYÖ 30 JÄÄN TIHEYDEN MÄÄRITYS Tehtävä älineet Tusttietoj Tehtävänä on äärittää jään tiheys Byretti (51010) ti esi 100 l ittlsi (50016) j siihen sopivi jääploj, lkoholi (sopii jäähdytinneste lsol), nlyysivk

Lisätiedot

Paraabelikin on sellainen pistejoukko, joka määritellään urakäsitteen avulla. Paraabelin jokainen piste toteuttaa erään etäisyysehdon.

Paraabelikin on sellainen pistejoukko, joka määritellään urakäsitteen avulla. Paraabelin jokainen piste toteuttaa erään etäisyysehdon. 5. Prbeli Prbelikin on sellinen pistejoukko, jok määritellään urkäsitteen vull. Prbelin jokinen piste toteutt erään etäissehdon. ********************************************** MÄÄRITELMÄ : Prbeli on tson

Lisätiedot

FB00329-EN. OHJELMOINTI MTMA/01 MTMV/01 FI Suomi

FB00329-EN.  OHJELMOINTI MTMA/01 MTMV/01 FI Suomi FB00329-EN www.vlrm.fi OHJELMOINTI MTMA/01 MTMV/01 FI Suomi Yleiset vroitukset Lue ohjeet huolellisesti ennen sennuksen loittmist j noudt vlmistjn ohjeit. Asennuksen, ohjelmoinnin, käyttöönoton j huollon

Lisätiedot

Johdatus L A TEXiin. 8. Sekalaisia asioita. Matemaattinen teksti. Markus Harju. Matemaattiset tieteet

Johdatus L A TEXiin. 8. Sekalaisia asioita. Matemaattinen teksti. Markus Harju. Matemaattiset tieteet Johdatus L A TEXiin 8. Sekalaisia asioita. Matemaattinen teksti. Markus Harju Matemaattiset tieteet Kirjasintyypit a Leipätekstin kirjasimen tyyppiä voi muuttaa seuraavilla komennoilla: \textrm{} antiikva

Lisätiedot

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 9: Integroimismenetelmät Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 27, 2017 Pekk Alestlo,

Lisätiedot

Harjoitus 1: Matlab. Harjoitus 1: Matlab. Mat Sovelletun matematiikan tietokonetyöt 1. Syksy 2006

Harjoitus 1: Matlab. Harjoitus 1: Matlab. Mat Sovelletun matematiikan tietokonetyöt 1. Syksy 2006 Harjoitus 1: Matlab Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen Matlab-ohjelmistoon Laskutoimitusten

Lisätiedot

Koestusnormit: VDE 0660 osa 500/IEC Suoritettu koestus: Nimellinen virtapiikkien kestävyys I pk. Ip hetkellinen oikosulkuvirta [ka]

Koestusnormit: VDE 0660 osa 500/IEC Suoritettu koestus: Nimellinen virtapiikkien kestävyys I pk. Ip hetkellinen oikosulkuvirta [ka] Oikosulkukestoisuus EC:n mukn Oikosulkukestoisuus DN EN 439-1/EC 439-1:n mukn Tyyppikoestus DN EN 439-1 Järjestelmän tyyppikoestuksen yhteyessä suoritettiin seurvt Rittl-virtkiskojärjestelmien sekä vstvien

Lisätiedot

Korkotuettuja osaomistusasuntoja

Korkotuettuja osaomistusasuntoja Korkotuettuj osomistussuntoj Hvinnekuv suunnitelmst. Titeilijn näkemys Asunto Oy Espoon Stulmkri Stulmkrintie 1, 02780 ESOO Asunto Oy Espoon Stulmkri Kerv Kuklhti Iso Mntie 2 Espoo Vihdintie Keh III Hämeenlinnnväylä

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa II

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa II MS-A7 ifferentili- j integrlilskent (Chem Yhteenveto, os II G. Gripenberg Alto-yliopisto 9. helmikuut 16 G. Gripenberg (Alto-yliopisto MS-A7 ifferentili- j integrlilskent (Chem Yhteenveto, 9. helmikuut

Lisätiedot

KAPPALEMUOTOILUT. Word Kappalemuotoilut

KAPPALEMUOTOILUT. Word Kappalemuotoilut Word 2013 Kappalemuotoilut KAPPALEMUOTOILUT KAPPALEMUOTOILUT... 1 Tekstin tasaaminen... 1 Sisentäminen... 1 Koko kappaleen sisentäminen... 2 Sisennyksen poistaminen... 2 Riippuva sisennys (sivuotsikko)...

Lisätiedot

Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:

Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita: 2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:

Lisätiedot

Säännöllisten operaattoreiden täydentäviä muistiinpanoja

Säännöllisten operaattoreiden täydentäviä muistiinpanoja Säännöllisten operttoreiden täydentäviä muistiinpnoj Antti-Juhni Kijnho 1. huhtikuut 2011 Vnht määritelmät Määritelmä 1. Äärellinen epätyhjä joukko on merkistö, j sen lkioit kutsutn merkeiksi. Määritelmä

Lisätiedot

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita.

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita. T-79.8 Syksy 22 Tietojenkäsittelyteorin perusteet Hrjoitus 5 Demonstrtiotehtävien rtkisut Säännölliset lusekkeet määritellään induktiivisesti: j kikki Σ ovt säännöllisiä lusekkeit. Mikäli α j β ovt säännöllisiä

Lisätiedot

Valmennuksen ja arvioinnin tukijärjestemä (VAT)

Valmennuksen ja arvioinnin tukijärjestemä (VAT) Vlmennuksen j rvioinnin tukijärjestemä (VAT) Työhön kuntoutuksen trkoitus on utt sikst kuntoutumn siten, että siirtyminen koulutukseen ti työelämään on mhdollist. VAT -järjestelmä on kehitetty kuntoutumisen

Lisätiedot

Ruokakauppa. Tavallista parempi. Katso itsenäisyyspäivän 6.12. kauppakohtaiset aukioloajat k-supermarket.fi. -24 % Etu K-Plussa-kortilla -21 %

Ruokakauppa. Tavallista parempi. Katso itsenäisyyspäivän 6.12. kauppakohtaiset aukioloajat k-supermarket.fi. -24 % Etu K-Plussa-kortilla -21 % VK 49/15, UUSIMAA Tvllist prempi Ruokkupp hyvää itsenäisyyspäivää Ktso itsenäisyyspäivän 6.12. kuppkohtiset ukiolojt k-supermrket.fi -21 % KG 599 HK Ryipos kinkkurull nhton, tuoresuolttu n. 2-4 RS 599HK

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Peruslaskutoimitukset. Isto Jokinen 2015

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Peruslaskutoimitukset. Isto Jokinen 2015 MATEMATIIKKA Mtemtiikk pintkäsittelijöille Peruslskutoimitukset Isto Jokinen 01 SISÄLTÖ 1. Lskujärjestys 1. Murtoluvuill lskeminen. Suureet j mittyksiköt. Potenssi. Juuri 6. Tekijäyhtälöiden rtkiseminen

Lisätiedot

laite paketista ja tarkista pakkauksen sisältö Sähköjohto Siirtotasku / Muovikortin siirtotasku

laite paketista ja tarkista pakkauksen sisältö Sähköjohto Siirtotasku / Muovikortin siirtotasku Pik-sennusops ADS-2100e/ADS-2600We Aloit tästä ADS-2100e ADS-2600We Brother Industries, Ltd. 15-1, Neshiro-cho, Mizuho-ku, Ngoy 467-8561, Jpn Kiitos, että vlitsit Brother-tuotteen. Antmsi tuki on tärkeää,

Lisätiedot

Riemannin integraalista

Riemannin integraalista TAMPEREEN YLIOPISTO Pro grdu -tutkielm Aij Stenberg Riemnnin integrlist Mtemtiikn j tilstotieteen litos Mtemtiikk Syyskuu 2010 2 Tmpereen yliopisto Mtemtiikn j tilstotieteen litos STENBERG, AIJA: Riemnnin

Lisätiedot

θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö

θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö 22 LINSSIT JA LINSSIJÄRJSTLMÄT 22. Linssien kuvusyhtälö Trkstelln luksi vlon tittumist pllopinnll (krevuussäde R j krevuuskeskipiste C) kuvn mukisess geometriss. Tässä vlo siis tulee ineest ineeseen 2

Lisätiedot

Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja.

Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja. DI mtemtiikn opettjksi: Täydennyskurssi, kevät Luentorunko j hrjoituksi viikolle : ti 9.. klo :-5:, to.. klo 9:5-: j klo 4:5-6: Käydään läpi: äärirvo trkstelu, L Hospitl, integrli j srjoj.. Kerrtn äärirvojen

Lisätiedot