GROUPS AND THEIR REPRESENTATIONS - FIFTH PILE. Olemme jo (harjoituksissa!) löytäneet Lien ryhmälle SL 2 (R) seuraavat redusoitumattomat esitykset:
|
|
- Kaarlo Jaakkola
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 GROUPS AND THEIR REPRESENTATIONS - FIFTH PILE KAREN E. SMITH 32. Ryhmän SL 2 (R) esitykset Example Palautamme mieleen, että { x y SL 2 (R) = A = det A = xw yz = 1} ja z w { a b sl 2 (R) = A = Tr A = a + d = 0} c d Olemme jo (harjoituksissa!) löytäneet Lien ryhmälle SL 2 (R) seuraavat redusoitumattomat esitykset: (1) Triviaali, siis yksiulotteinen esitys. (2) Tautologinen, tässä tapauksessa siis kaksiulotteinen esitys. (3) Edellisen symmetriset potenssit Sym d (R 2 ), missä d = 2, 3,.... Seuraavassa osoitetaan, että muita ei ole olemassa. Tämä asia on kaikkea muuta kuin itsestäänselvä. Todistuksen ideana on käyttää hyväksi tietoa, että Lien ryhmän G esitys on redusoitumaton, jos sen derivaatta on Lien algebran G redusoitumaton esitys ja osoittaa, että Lien algebralla sl 2 (R) ei ole muita redusoitumattomia esityksiä kuin edellä lueteltujen derivaatt. Tämä tapahtuu selvittämällä vastaavan kompleksisen Lien algebran sl 2 (C) kaikki redusoitumattomat esitykset. Proposition Lien ryhmän G redusoituvan äärellisulotteisen esityksen ρ : G GL(V ) derivaatta neuraalialkion kohdalla d e ρ : G gl(v ) on Lien algebran G redusoituva esitys eli Lien algebrahomomorfismi, jolla on epätriviaali aliesitys. 1 Todistus. Olkoon ρ : G GL(V ) Lien ryhmän G redusoituva esitys.redusoituvuus merkitsee, että on olemassa vektoriavaruuden V 1 ρ:n redusoitumattomuus ja d e ρ:n redusoitumattomuus ovat yhtäpitäviä, mutta sitä tietoa ei tarvita tässä. 1
2 2 KAREN E. SMITH aliavaruus W V siten, että ρ g (W ) W kaikilla g G, jolloin ρ W : g (ρ W g : W W ) on G:n esitys, alkuperäisen aliesitys. Tämän esityksen derivaatta d e ρ W : G gl(w ) on selvästikin derivaatan d e ρ : G gl(w ) aliesitys ja sellaisen olemassaolo merkitsee d e ρ:n redusoitumattomuutta. Seuraavaksi laskemme edellä mainitujen redusoitumattomien esitysten derivaatat. Luettelon lyhentämiseksi merkitään tautologista esitystä Sym 1 (R 2 ) ja triviaalia esitystä Sym [ 0 (R 2 ). Avaruuden [ R 2 standardikantavektoreita merkitsemme e 1 = ja e 1 0 0] 2 =, jolloin symmet- 1] risen tulon Sym d (R 2 ) kantavektorit ovat e d 1, e d 1 1 e 2, e d 2 1 e 2 2,..., e 1 e d 1 2 ja e d 2 ja matriisin A SL 2 (R) toiminta kantavektorilla e d i 1 e i 2 on x y (e z w d i 1 e i 2) = (Ae 1 ) d i (Ae 2 ) i = (xe 1 + ze 2 ) d i (ye 1 + we 2 ) i. Tämän derivointi sujuu käyttämällä toistuvasti bilineaarikuvauksen derivointia, josta saamme seuraavan lemman: Lemma Olkoot V ja W Lien ryhmän G esityksiä. (a) Olkoon V W esitysten tensoritulo, ts. g(v w) = gv gw kaikilla g G, v V, w W. Derivoimalla neutraalialkion kohdalla saatava vastaava Lien algeban G esitys on X(v v) = Xv w + v Xv, missä kukin X on asianomaisen ryhmäesityksen derivaatta. (b) Olkoon Sym d (V ) esityksen V symmetrinen potenssi. Tästä neutraalialkion kohdalla derivoimalla saatava Lien algeban G esitys on d X(e a 1 1 e a e a d d ) = a k e a 1 1 e a e a k 1 k... e a d d Xe k, k=1 missä on tulkittava mahdollisesti esiintyvät e 0 j puuttuviksi. Todistus. Väite (a) seuraa helposti bilineaarikuvauksen derivointikaavasta. Väite (b) palautuu induktiolla väitteeseen (a) ja pieneen tekijäavaruustarkasteluun. Määrätään ensimmäiseksi tautologisen esityksen toisen symmetrisen potenssin derivaatta d e ρ : sl 2 (R) gl(sym 2 (R 2 )).
3 GROUPS AND THEIR REPRESENTATIONS - FIFTH PILE Lien algebralla sl 2 (R) on virittäjät X = ja Y = ja vektoriavaruutena kanta {X, Y, H}, missä H = [X, Y ] =. Lien algebran sl 2 (R) esitys Sym 2 (R 2 ) määräytyy täysin näiden kantavektorien (Itse asiassa jo X:n ja Y :n) vaikutuksesta avaruuden Sym 2 (R 2 ) kantavektoreihin e 2 1, e 1 e 2 ja e 2 2. Lasketaan ne käyttäen edellistä lemmaa??. X(e 2 1) = 2e 1 Xe 1 = 2e 1 0 = 0 X(e 2 1) = Xe 1 e 2 + e 1 Xe 2 = 0 e 2 + e 1 e 1 = e 2 1 X(e 2 2) = 2e 2 Xe 2 = 2e 2 e 1 = 2e 1 e 2. Näistä kantavektorien kuvista saadaan X:n vaikutuksen matriisi Mat(Sym 2 (X)) = Vastaavasti lasketaan Mat(Sym 2 (Y )) = Lien algebran kolmannen kantavektorin H vaikutus on X:n ja Y :n vaikutusten klassinen Lien sulku, mutta voimme päätellä vaikutuksen suoraankin, ja tästä päättelystä on hyötyä myöhemminkin, sillä laskemme sen samantien mielivaltaisen korkealle symmetriselle potenssille Sym d (H) ja mielivaltaiselle kantavektorille: H(e d i 1 e i 2) = (d i)e d i 1 1 e i 2He 1 + ie d i 1 e i 1 2 He 2 = (d i)e d i 1 1 e i 2e 1 ie d i 1 e i 1 2 e 2 = (d i)e d i 1 e i 2 ie d i 1 e i 2 = (d 2i) e d i 1 e i 2. Erityisesi tapauksessa d = 2 saadaan Mat(Sym 2 (H)) = ja yleisessäkin tapauksessa huomataan, että Mat(Sym d (H)) on tässä kannassa diagonaalinen ja diagonaalialkiot muodostavat tasavälisen jonon, jossa peräkkäiset alkiot eroavat toisistaan 2:lla: d 11 = d, d 2, d 4,..., d dd.
4 4 KAREN E. SMITH 1 0 Lemma Lien ryhmän sl 2 (R) kanta-alkio H = toimii 0 1 diagonaalisesti paitsi tautologisessa esityksessä, myös kaikissa muissa esityksissä. Todistus. Sivuutetaan kiireessä, ei toivottoman vaikea. Remark (Itse asiassa kaikilla sl, jopa kaikilla ns. puoliyksinkertaisilla eli semisimppeleillä Lien algebroilla on sellainen ominaisuus, että jos jokin sen alkio H toimii diagonaalisesti tautologisessa esityksessä, niin se toimii diagonaalisesti kaikissa muissakin esityksissä.) Seuraava tehtävä on osoittaa, että ei ole olemassa muita Lien algebran sl 2 (R) redusoitumattomia esityksiä kuin jo löytämämme. Koska kunnan C täydellisyyden takia on helpompi tutkia kompleksisia kuin reaalisia Lien algebroita, kompleksifioidaan SL 2 (R): Remark Olkoon V Lien algebran sl 2 (R) esitys. Silloin V C eli sama vektoriavaruus kompleksikertoimin on kompleksisen Lien algebran sl 2 (R) C esitys. Jos W on Lien algebran sl 2 (R) esityksen 2 V aliesitys, niin W C on Lien algebran sl 2 (R) C esityksen V C aliesitys. Jos siis V C on redusoitumaton, on siis myös alkuperäinen esitys V redusoitumaton. 3 Siksi sen näyttämiseen, että löytämämme Lien algebran sl 2 (R) redusoitumattomat esitykset ovat ovat ainoat, riittää todistaa, että niiden kompleksifioinnit ovat Lien algebran 4 sl 2 (R) C ainoat redusoitumattomat esitykset. Tämä on seuraavan lauseen sisältö. Theorem Lien algebran sl 2 (C) ainoat äärellisulotteiset redusoitumattomat esitykset ovat tautologisen esityksen symmetriset potenssit Sym d (C 2 ), (joiden esitysmatriisit ovat samat kuin vastaavat reaaliset, siis edellä tutkitut.) Todistus. Tarkastellaan Lien algebran sl 2 (C) äärellisulotteista kompleksista esitystä [ V.] Muistetaan, että Lien algebran sl 2 (C) generoivat matriisit X =, Y = ja H =. Selvitetään ensin H:n Eiköhän tähän sopisi minkä tahansa Lien algebran esitys. 3 Sama ei päde kääntäen; harjoitustehtävänä olemme jo konstruoineet Lien algebran sl 2 (R) redusoitumattoman esityksen, jonka kompleksifiointi on redusoituva. 4 joka on sama kuin sl 2 (C)
5 GROUPS AND THEIR REPRESENTATIONS - FIFTH PILE 5 toimintaa V :ssä. Lemman?? mukaan toiminta on diagonaalista, joten V hajoaa (äärelliseksi, tietenkin) suoraksi summaksi α C V α, missä H toimii aliavaruudessa H α kertomisena luvulla α eli V α on H:n ominaisavaruus ominaisarvolla α. Selvitetään seuraavaksi X:n toimintaa kussakin V α osoittamalla, että Xv V α+2, kun v V α. Tämä onkin ovela tarkastus: Olkoon v V α, jolloin Hv = αv. mutta ryhmässä GL 2 (R) on [H, X] = HXv = [H, X]v + XHv, = joten [H, X] = 2X pätee esitysmatriisellekin ja siis Siis Xv V α = 2X, 0 0 HXv = [H, X]v + XHv = 2Xv + Xαv = (2 + α)xv. Vastaavasti todetaan, että Y : V α V α 2. Näistä tiedoista voidaan tehdä huomattavia johtopäätöksiä: Olkoon α 0 C jokin H:n ominaisarvo eli V α0 {0}. Silloin suora summa m Z V α0 +2m V on V :n aliesitys, koska molemmat Lien algebran sl 2 (R) generaattorit 5 X ja Y kuvaavat sen itselleen. Mutta olemme olettaneet, että tutkittava esitys on redusoitumaton ja V α0 {0}. Siksi m Z V α0 +2m = V Koska V oletettiin äärellisulotteiseksi, jokainen H:n ominaisavaruus V α0 +2m on äärellisulotteinen ja vain äärellisen moni eroaa nolla-avaruudesta. Toisin sanoen V = V λ V λ+2 V λ+2n. Koska esitysmatriisit ovat kääntyviä, ovat V λ, V λ+2,..., V λ+2n = V µ nollasta eroavia. 6 Olkoon v V µ. Silloin v, Y v, Y v,..., Y n v = V, sillä tämäkin on tutkittavan redusoitumattoman esityksen invariantti alivaruus, mikä johtuu siitä, että Y ja H tietenkin kuvaavat sen itselleen, mutta myös X tekee niin, sillä X(Y p v) = p(µ p + 1)(Y p 1 v), 5 Määrittele, jos ei jo ole 6 Samalla perusteella kaikki V λ+2m {0}, missä m Z. Ristiriita! Missä virhe?
6 6 KAREN E. SMITH joka vaatii pienen perustelun vaikkapa induktiolla: Tapaus p=0: Huomataan, että XY p v = XY 0 v = Xv = 0, sillä oletettiin, että v V µ. Siis väite pätee, kun p = 0. Induktioaskel: Oletetaan, että XY p 1 v = (p 1)(µ (p 2))Y p 2 v. Lasketaan käyttäen induktio-oletusta ja tietoa Y : V α V α 2 : XY p v = XY Y p 1 v = [X, Y ]Y p 1 v + (XY [X, Y ])Y p 1 v = [X, Y ]Y p 1 v + (Y X)Y p 1 v = [X, Y ]Y p 1 v + Y XY p 1 v = HY p 1 v + Y (p 1)(µ (p 2))Y p 2 v = (µ 2(p 1))Y p 1 v + (p 1)(µ (p 2))Y p 1 v = ( (µ 2(p 1)) + (p 1)(µ (p 2)) ) Y p 1 v = ( µp p 2 + p + 0 ) Y p 1 v = p(µ p + 1)Y p 1 v, joka on induktioaskelen väite. Tulos v, Y v, Y v,..., Y n v = V merkitsee, että avaruudet V α ovat yksiulotteisia. Valitsemalla p = ( 1 2 (µ λ) + 1) saadan Y p 1 v V λ, siis Y p v = 0 ja 0 = X(0) = X(Y p v) = p(µ p + 1)(Y p 1 v), josta (µ p + 1) = 0 eli 0 = (µ 1(µ λ) 1 + 1) = 1 (µ + λ), toisin sanoen λ = µ, joten V on seuraavanlainen summa H:n yksiulotteisista 2 2 ominaisavaruuksista: V = V µ V µ+2 V µ 2 V µ. Erityisesti ominaisarvot ovat kaikki parillisia tai kaikki paritomia kokonaislukuja sen mukaan onko 0 ominaisarvo vai ei. Nyt on täysin selvitetty lien algebran gl 2 (C) redusoitumattomien esitysten rakenne. Tästä voi päätellä, että ne ovat edellä konstruoidut eikä muita ole. (Harjoitustehtävä: Tee se!
7 GROUPS AND THEIR REPRESENTATIONS - FIFTH PILE 7 H:n ominaisvektorin v V α ominaisarvoa sanotaan muuten yleensä sen painoksi. Luku µ N on tutkittavan esityksen suurin paino. Mikä on sen yhteys esitystä vastaavan symmetrisen tulon potenssiin?)
Lineaarikuvauksen R n R m matriisi
Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:
Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.
LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,
1 Avaruuksien ja lineaarikuvausten suora summa
MAT-33500 Differentiaaliyhtälöt, kevät 2006 Luennot 27.-28.2.2006 Samuli Siltanen 1 Avaruuksien ja lineaarikuvausten suora summa Tämä asialöytyy myös Hirschin ja Smalen kirjasta, luku 3, pykälä 1F. Olkoon
1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
Ortogonaalisen kannan etsiminen
Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,
802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
Avaruuden R n aliavaruus
Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
Ominaisvektoreiden lineaarinen riippumattomuus
Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin
{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja
5. Aliryhmät Luvun 4 esimerkeissä esiintyy usein ryhmä (G, ) ja jokin vakaa osajoukko B G siten, että (B, B ) on ryhmä. Määrittelemme seuraavassa käsitteitä, jotka auttavat tällaisten tilanteiden käsittelyssä.
Ominaisarvo ja ominaisvektori
Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
Lineaariset Lien ryhmät / Ratkaisut 6 D 381 klo
JYVÄSKYLÄN YLIOPISO MAEMAIIKAN JA ILASOIEEEN LAIOS Lineaariset Lien ryhmät 27.2.2012 / t 6 D 381 klo. 16-18. 1. Matriisiryhmällä U(n) on epätriviaali normaali aliryhmä SU(n), joka on homomorfismin det
Similaarisuus. Määritelmä. Huom.
Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP
Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.
1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:
Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)
Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe 26.10.2017 Ratkaisuehdotus 1. (35 pistettä) (a) Seuraavat matriisit on saatu eräistä yhtälöryhmistä alkeisrivitoimituksilla. Kuinka monta ratkaisua yhtälöryhmällä
Lien ryhmät, Lien algebrat ja esitysteoria
Lien ryhmät, Lien algebrat ja esitysteoria Heikki Orelma 14. marraskuuta 2010 Sisältö 1 Johdanto 1 2 Lien (matriisi)ryhmät 2 2.1 Määritelmiä............................ 2 2.2 Esimerkkejä............................
802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
1 Tensoriavaruuksista..
1 Tensoriavaruuksista.. Käydään läpi kirjan (1) sivut 126-133. 19.02.2007 Palautetaaieleen viime kerran tärkeä määritelmä: (kirja, Määr. 5.12). Määritelmä 1.1 Olkoon T vektoriavaruus ja Φ : V 1 V 2 V m
Kanta ja dimensio 1 / 23
1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio
Kantavektorien kuvavektorit määräävät lineaarikuvauksen
Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin
(1.1) Ae j = a k,j e k.
Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim
x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Ratkaisuluonnoksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:
8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden
Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit
Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit Antti Rasila 2016 Ominaisarvot ja ominaisvektorit 1/5 Määritelmä Skalaari λ C on matriisin A C n n ominaisarvo ja vektori v C n sitä
x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
Determinantti 1 / 30
1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen
Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2014 Harjoitus 4 Ratkaisujen viimeinen palautuspäivä: pe 662014 klo 1930 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun
Tensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0
Tensorialgebroista Esitysteorian kesäopintopiiri, Turun yliopisto, 2012 Jyrki Lahtonen Olkoon k jokin skalaarikunta. Kerrataan k-algebran käsite: A on k-algebra, jos se on sekä rengas että vektoriavaruus
Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }?
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus
Sisätuloavaruudet. 4. lokakuuta 2006
Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä
6. OMINAISARVOT JA DIAGONALISOINTI
0 6 OMINAISARVOT JA DIAGONALISOINTI 6 Ominaisarvot ja ominaisvektorit Olkoon V äärellisulotteinen vektoriavaruus, dim(v ) = n ja L : V V lineaarikuvaus Määritelmä 6 Skalaari λ R on L:n ominaisarvo, jos
MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48
MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?
on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään
5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}
H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.
10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas
rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.
9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat
Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa. väite P(n) on totta kaikille n = 0,1,2,...
Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P(n) on totta kaikille n = 0,1,2,.... Tässä väite P(n) riippuu n:n arvosta. Todistuksessa
Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?
Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi
Lineaarialgebra II P
Lineaarialgebra II 89P Sisältö Vektoriavaruus Sisätuloavaruus 8 3 Lineaarikuvaus 5 4 Ominaisarvo 5 Luku Vektoriavaruus Määritelmä.. Epätyhjä joukko V on vektoriavaruus, jos seuraavat ehdot ovat voimassa:.
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden
6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio
6 Vektoriavaruus R n 6.1 Lineaarikombinaatio Määritelmä 19. Vektori x œ R n on vektorien v 1,...,v k œ R n lineaarikombinaatio, jos on olemassa sellaiset 1,..., k œ R, että x = i v i. i=1 Esimerkki 30.
Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.
Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin
Ominaisarvot ja ominaisvektorit 140 / 170
Ominaisarvot ja ominaisvektorit 140 / 170 Seuraavissa luvuissa matriisit ja vektori ajatellaan kompleksisiksi, ts. kertojakuntana oletetaan olevan aina kompleksilukujoukko C Huomaa, että reaalilukujoukko
Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.
Matematiikan ja tilastotieteen laitos Lineaarialgebra ja matriisilaskenta II Ylimääräinen harjoitus 6 Ratkaisut A:n karakteristinen funktio p A on λ p A (λ) det(a λi ) 0 λ ( λ) 0 5 λ λ 5 λ ( λ) (( λ) (
JAKSO 2 KANTA JA KOORDINAATIT
JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause
Ominaisarvo-hajoitelma ja diagonalisointi
Ominaisarvo-hajoitelma ja a 1 Lause 1: Jos reaalisella n n matriisilla A on n eri suurta reaalista ominaisarvoa λ 1,λ 2,...,λ n, λ i λ j, kun i j, niin vastaavat ominaisvektorit x 1, x 2,..., x n muodostavat
ominaisvektorit. Nyt 2 3 6
Esimerkki 2 6 8 Olkoon A = 40 0 6 5. Etsitäänmatriisinominaisarvotja 0 0 2 ominaisvektorit. Nyt 2 0 2 6 8 2 6 8 I A = 40 05 40 0 6 5 = 4 0 6 5 0 0 0 0 2 0 0 2 15 / 172 Täten c A ( )=det( I A) =( ) ( 2)
OMINAISARVOISTA JA OMINAISVEKTOREISTA
1 OMINAISARVOISTA JA OMINAISVEKTOREISTA Olkoon x = (x 1,..., x n ) avaruuden R n piste (l. vektori). Vektori x samaistetaan n 1-matriisin (x 1 x 2... x n ) T kanssa, ts. voidaan yhtä hyvin kirjoittaa x1
sitä vastaava Cliffordin algebran kannan alkio. Merkitään I = e 1 e 2 e n
Määritelmä 1.1 Algebran A keskus C on joukko C (A) = {a A ax = xa x A}. Lause 1. Olkoon Cl n Cliffordin algebra, jonka generoi joukko {e 1,..., e n }. Jos n on parillinen, niin C (Cl n ) = {λ λ R}. Jos
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
1 Ominaisarvot ja ominaisvektorit
1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin
C = {(x,y) x,y R} joiden joukossa on määritelty yhteen- ja kertolasku seuraavasti
Vaasan yliopiston julkaisuja 189 9 OMINAISARVOTEHTÄVÄ Ch:EigSystem Sec:CMatrix 9.1 Kompleksinen lineaariavaruus 9.1.1 Kompleksiluvut Pian tulemme tarvitsemaan kompleksisen lineaariavaruuden alkeita. Tätä
Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )
Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä
Miten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
1. Tarkastellaan esimerkissä 4.9 esiintynyttä neliön symmetriaryhmää
Ryhmäteoreettinen näkökulma Rubikin kuutioon Matematiikan ja tilastotieteen laitos Syksy 2010 Harjoitus 2 Ratkaisuehdotus 1. Tarkastellaan esimerkissä 4.9 esiintynyttä neliön symmetriaryhmää D 8 = { id,
7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi
7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi Z p [x]/(m), missä m on polynomirenkaan Z p [x] jaoton polynomi (ks. määritelmä 3.19).
Ominaisarvo ja ominaisvektori
Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
Ratkaisu: Käytetään induktiota propositiolauseen A rakenteen suhteen. Alkuaskel. A = p i jollain i N. Koska v(p i ) = 1 kaikilla i N, saadaan
HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 2 Ratkaisuehdotukset 1. Olkoon totuusjakauma v sellainen että v(p i ) = 1 kaikilla i N ja A propositiolause, jossa
Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle
Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka
MS-A0004/A0006 Matriisilaskenta
4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin
Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista
Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen
Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.
Väitelause Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta. Tässä P:tä kutsutaan oletukseksi ja Q:ta väitteeksi. Jos yllä oleva väitelause on totta, sanotaan, että P:stä
Lineaarikuvaukset. 12. joulukuuta F (A r ) = F (A r ) r .(3) F (s) = s. (4) Skalaareille kannattaa määritellä lisäksi seuraavat tulot:
Lineaarikuvaukset 12. joulukuuta 2005 1 Yleistys multivektoreille Olkoon F lineaarikuvaus vektoriavaruudessa. Yleistetään F luonnollisella tavalla terille F (a 1 a n ) = F (a 1 ) F (a n ), (1) sekä terien
1 Sisätulo- ja normiavaruudet
1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v
802320A LINEAARIALGEBRA OSA III LINEAR ALGEBRA PART III
802320A LINEAARIALGEBRA OSA III LINEAR ALGEBRA PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 Contents 1 Lineaarikuvaus 2 1.1 Määritelmä............................ 2 1.2 Matriisiesitys/Matrix
R 1 = Q 2 R 2 + R 3,. (2.1) R l 2 = Q l 1 R l 1 + R l,
2. Laajennettu Eukleideen algoritmi Määritelmä 2.1. Olkoot F kunta ja A, B, C, D F [x]. Sanotaan, että C jakaa A:n (tai C on A:n jakaja), jos on olemassa K F [x] siten, että A = K C; tällöin merkitään
Esko Turunen Luku 3. Ryhmät
3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,
2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)
Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee
5 OMINAISARVOT JA OMINAISVEKTORIT
5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön
802320A LINEAARIALGEBRA OSA II
802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen
5 Ominaisarvot ja ominaisvektorit
5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A
802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO Syksy 2017 LINEAARIALGEBRA 1 / 59 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVÄT 2019 LINEAARIALGEBRA 1 / 60 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
HN = {hn h H, n N} on G:n aliryhmä.
Matematiikan ja tilastotieteen laitos Algebra I Ratkaisuehdoituksia harjoituksiin 8, 23.27.3.2009 5 sivua Rami Luisto 1. Osoita, että kullakin n N + lukujen n 5 ja n viimeiset numerot kymmenkantaisessa
Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila
Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin
Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on
13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu
Ratkaisu: a) Kahden joukon yhdisteseen poimitaan kaikki alkiot jotka ovat jommassakummassa joukossa (eikä mitään muuta).
Matematiikan laitos Johdatus Diskreettiin Matematiikaan Harjoitus 1 03.11.2010 Ratkaisuehdotuksia Aleksandr Nuija 1. Tarkastellaan joukkoja A = {1,3,4}, B = {2,3,7,9} ja C = {2, 5, 7}. Määritä joukot (a)
Kanta ja Kannan-vaihto
ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V
Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto
Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,
GROUPS AND THEIR REPRESENTATIONS - FOURTH PILE
GROUPS AND THEIR REPRESENTATIONS - FOURTH PILE KAREN E. SMITH 22. Äärettömistä ryhmistä Example 22.1. Äärettömille ryhmille on olemassa esitysteoriaa ja sellainen on tarpeen, sillä monet, ehkäpä useimmat,
LINEAARIALGEBRA A 2016 TOMI ALASTE EDITED BY T.M. FROM THE NOTES OF
LINEAARIALGEBRA 83A 6 EDITED BY T.M. FROM THE NOTES OF TOMI ALASTE SISÄLTÖ Sisältö Lineaariavaruus eli Vektoriavaruus Sisätuloavaruus 3 Lineaarikuvaus 4 Ominaisarvo 34 5 Esimerkkejä 44 . Lineaariavaruus
Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.
Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot
Esimerkki 4.4. Esimerkki jatkoa. Määrää matriisin ominaisarvot ja -vektorit. Ratk. Nyt
Esimerkki 4.4. Määrää matriisin 2 2 1 A = 1 3 1 2 4 3 ominaisarvot ja -vektorit. Ratk. Nyt det(a λi ) = 1 + 2 λ 2 1 + 1 λ 1 λ 1 3 λ 1 = 1 3 λ 1 2 4 3 λ 2 4 3 λ 1 λ = 1 4 λ 1 = (1 λ)( 1)1+1 4 λ 1 2 6 3
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 16 R. Kangaslampi Vektoriavaruudet Lineaarikuvaus
Esko Turunen MAT Algebra1(s)
Määritelmä (4.1) Olkoon G ryhmä. Olkoon H G, H. Jos joukko H varustettuna indusoidulla laskutoimituksella on ryhmä, se on ryhmän G aliryhmä. Jos H G on ryhmän G aliryhmä, merkitään usein H G, ja jos H
Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1
Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon
Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut
Insinöörimatematiikka D, 06 laskuharjoituksien esimerkkiratkaisut Alla olevat esimerkkiratkaisut ovat melko ksitiskohtaisia Tenttivastauksissa ei leensä tarvitse muistaa lauseiden, määritelmien, esimerkkien
MS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä
Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma
Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen
Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen
Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen anton.mallasto@aalto.fi. 1. 2. Muista. Ryhmän G aliryhmä H on normaali aliryhmä, jos ah = Ha kaikilla a G. Toisin
4 Matemaattinen induktio
4 Matemaattinen induktio Joidenkin väitteiden todistamiseksi pitää näyttää, että kaikilla luonnollisilla luvuilla on jokin ominaisuus P. Esimerkkejä tällaisista väitteistä ovat vaikkapa seuraavat: kaikilla
Kertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:
Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44
Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.
Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8
Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Tuntitehtävät 1-2 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 5- loppuviikon harjoituksissa. Kotitehtävät 3-4 tarkastetaan loppuviikon
Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 4 Ratkaisut palautettava viimeistään maanantaina 862015 klo 1615 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin
Analyysi III. Jari Taskinen. 28. syyskuuta Luku 1
Analyysi III Jari Taskinen 28. syyskuuta 2002 Luku Sisältö Sarjat 2. Lukujonoista........................... 2.2 Rekursiivisesti määritellyt lukujonot.............. 8.3 Sarja ja sen suppenminen....................
Koodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 3.5 Reedin-Mullerin koodit Olkoon tässä kappaleessa F = F2 = Z2 ja n = 2 m. Määritellään avaruuteen F n kertolasku koordinaateittain:
Ensimmäinen induktioperiaate
1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla