Marxilaista taloustiedettä visualisoimassa

Koko: px
Aloita esitys sivulta:

Download "Marxilaista taloustiedettä visualisoimassa"

Transkriptio

1 Marxilaista taloustiedettä visualisoimassa Saska Heino Uusklassinen taloustiede esittää asiansa usein kuvaajien avulla. Jokainen taloustieteen oppikirjoja lukenut tietää, että kuvaajien avulla on mahdollista esittää selkeästi asioita, joiden esittäminen kaavamuotoisena tuottaisi huomattavaa päänvaivaa. Marxilaisessa taloustieteessä ei juurikaan törmää kuvaajien käyttöön, vaan todistusten esittämisessä turvaudutaan lineaarialgebraan, jonka käyttö heikentää ymmärrettävyyttä usein liiallisesti. Mikäli kuvaajia on käytetty, niitä on käytetty ensisijaisesti yhteyksissä, joissa marxilaista teoriaa on koetettu sovittaa yhteen staattisen markkinatasapainoteorian kanssa. 1 En ole itse toistaiseksi vakuuttunut, miksi kuvaajamuotoisesta esittämisestä olisi pitäydyttävä lineaarialgebran hyväksi. Mielestäni ei ole pedagogisesti perusteltua pyrkiä mahdollisimman vaikeaan formaaliin todistamiseen, mikäli käytettävissä on selkeämpiä esitystapoja. Näin ollen esitän tässä kirjoituksessa kaavamuotoisena (i) voiton suhdeluvun laskutendenssin siten, että vaaka-akseli esittää aikaa t; ja (ii) voiton ja lisäarvon keskinäisen vuorovaikutuksen annettuna ajanhetkenä t. Mainitut esitykset ovat luonnollisesti teoreettisia yksinkertaistuksia, mutta uskon, että niiden avulla on mahdollista hahmottaa marxilaisen talousteorian keskeisintä väittämää, jonka mukaan voiton suhdeluku, so. liiketoiminnan kannattavuus, on laskeva tiettyjen ehtojen täyttyessä. Katsotaan aluksi vertailun vuoksi uusklassisen taloustieteen tapaa esittää kysynnän ja tarjonnan tasapainottuminen. Kuvaaja 1: kysynnän ja tarjonnan tasapaino p p 1 e 1 p 2 e 2 q 1 q 2 q

2 Kuvaajasta näemme, että pystyakselin tarjontakäyrä ja vaaka-akselin kysyntäkäyrä kohtaavat toisensa pisteissä e₁ ja e₂. Kysynnän muutos siten, että hinta p on laskenut pisteestä p₁ pisteeseen p₂ on johtanut kysynnän q kasvuun pisteestä q₁ pisteeseen q₂. Uusklassisen taloustieteen peruslogiikka pohjautuu hyvin pitkälti yllä esitettyyn kuvaajaan ja sen muunnoksiin. Kuviosta 1. on mahdollista laskea derivaatan avulla muutosnopeuksia eli kysynnän ja tarjonnan hintajoustoja. Tasapainopisteiden e₁ ja e₂ väliin jäävistä alueista on puolestaan mahdollisuus johtaa voiton ja tappion kaltaisia tekijöitä. Näin ollen kuvio 1. kaikesta yksinkertaisuudestaan huolimatta on välttämätön työkalu uusklassisen taloustieteen ymmärtämiselle. Uusklassisen taloustieteen piirissä erilaiset koulukunnat kiistelevät lähinnä siitä kumpaa, kysyntää vai tarjontaa, tulee korostaa. Keynesiläinen koulukunta korostaa kokonaiskysyntää (aggregate demand), kun taas walrasilainen 2 koulu näkee tarjonnan mahdollisimman tehokkaan kohdentumisen ja sen esteiden poiston tärkeimpänä. Vaikka keynesiläinen koulukunta mielellään harjoittaa rajanvetoa walrasilaiseen kouluun nähden, on kyse pikemminkin kolikon kääntöpuolista kuin kahdesta täysin erillisestä talousteoriasta. Omalaatuisen kysynnän ja tarjonnan tasapainomallista tekee sen staattisuus. Malli ei ota huomioon ajan vaikutusta, joka on ensisijainen marxilaisessa taloustieteessä. Mallin staattisuus on palautettavissa uusklassisen taloustieteen arvoteoriaan, jonka mukaan tuotteiden arvot ja määräytyvät kysynnän ja tarjonnan, eivät niihin käytetyn työajan mukaisesti. Ero on havaittavissa selkeästi seuraavasta kuvaajasta, joka esittää kohtaa (i). Kuvaaja 2. Voiton vaihteleva suhdeluku ja aika P(π,ρ) p max Σ p p min p max Σ p p min t 1 t 2 t Kuvaaja 2. kuvaa voiton suhdeluvun vaihtelua kahdella akselilla. Pystyakseli kuvaa voittoastetta P,

3 joka koostuu sekä arvomuotoisesta voitosta, so. lisäarvosta (S = π) ja siitä realisoitavasta rahamuotoisesta voitosta ρ. Yhtäläisyys S = π kuvaa arvontuotantoa: lisäarvokin on tuotettavaa arvoa ja sen on oltava tietyllä tasolla, että kapitalisti pystyy paitsi uusintamaan tuotantoprosessinsa, myös tekemään voittoa. Vaaka-akseli kuvaa tässä aikaa t. Kuvaajassa 2. havaitaan, että voiton suhdeluku on pisteessä t₁ kasvussa. Kapitalistit pystyvät tuottamaan kasvavan lisäarvon suhdeluvun ja realisoitava voitto vastaa aggregaattitasapainon ΣS = s ΣP(π,ρ) mukaisesti lisäarvon suhdelukua C+V. Koska kuvaamme kuvaajassa 2. aggregaattitason voiton suhdeluvun kehitystä, esitetään hajonta suurimman saavutettavan hinnan p max ja pienimmän hinnan, jolla kapitalisti pysyy markkinoilla p min, välillä. Keskimääräinen voitto, jonka tulee vastata aggregaattitasapainoa ΣS = ΣP(π,ρ), toteutuu tässä kolmen kapitalistin mallissa käyrällä Σ p. Kapitalistien pääoman elimellinen koostumus K = C/V on pisteessä t₁ lisäarvon tuotannon kannalta K₁ = C < V, jolloin lisäarvon suhdeluku on kasvussa, mutta työläiset (V) tuottavat arvoa ja lisäarvoa kasvusuuntaisesti. Syitä tälle ei tässä kohtaa tarvitse selvittää, vaan tilanne otetaan annettuna (c.p.). Pisteessä t₂ pääoman elimellinen koostumus on muuttunut siten, että K₂ = C > V. Tämä on johtanut jälleen annettujen olosuhteiden mukaisesti voiton suhdeluvun muutokseen, tällä kertaa laskuun. Tässä kohtaa on muistettava, että kuvaajan 2. käyrien jyrkkyydet ovat likiarvoisia ja yksinkertaistettuja ymmärrettävyyden lisäämiseksi. Kun verrataan kuvaajia 1. ja 2., niin havaitaan, että ensimmäinen ei suoraan ota kantaa liiketoiminnan kannattavuuteen, sillä se mittaa ainoastaan kysynnän ja tarjonnan tasapainoa sekä sen muutosta pisteiden e₁ ja e₂ välillä. Kuvaaja 2. sen sijaan kuvaa samoin kahden akselin muodostamalla kentällä voiton vaihtelevaa suhdelukua, joka kuvaajassa 1. ei ole edes mahdollista, sillä arvot ja hinnat muodostuvat uusklassisessa teoriassa pelkästään kysynnän ja tarjonnan pohjalta, eivät työnarvoteorian mukaisesti. Mikäli arvot ja hinnat muodostuvat vain kysynnän ja tarjonnan mukaisesti, ei voiton suhdeluku pitkällä aikavälillä voi laskea aggregaattitasolla. Sen sijaan kannattavuuden voidaan uusklassisessa mallissa katsoa olevan vakio ajasta riippumatta eli staattisesti. Kuvaajaan 1. voitaisiin lisätä pystyakselille jana, joka kuvaisi tuotantokustannusten kattamishintaa ja esittäisi täten markkinoille tulon ja sieltä poistumisen pistettä. Tämän janan hinta vaihtelisi tällaisessa kuviossa tuotantokustannusten mukaisesti. Tällainenkaan kuvaaja ei kuitenkaan pystyisi ottamaan huomioon voiton suhdeluvun vaihtelua, sillä uusklassinen taloustiede ei tunne koko käsitettä tai sen määräytymisperusteita eli pääoman elimellistä koostumusta tai lisäarvon suhdelukua. Marxilaisen kriisiteorian kannalta kuvaajan 2. käyrien ääripisteet muodostavat kiintoisan tarkastelukulman. Kun voittoaste saavuttaa huippunsa, kapitalistit tuottavat maksimimäärän lisäarvoa ilman, että heidän olisi kilpailun vuoksi pitänyt alkaa alentaa hintojansa alle saavutetun lisäarvontuotannon hyödyn tason. Huipun jälkeen kapitalistien on kuitenkin kilpailun vuoksi ryhdyttävä alentamaan hintojaan eli laskemaan tuotetta kohden käytettyä arvoa luovaa työaikaa työntekijää kohden. Tämä kuitenkin vaikuttaa myös heidän voittoasteeseensa, kun saavutettu myynnin määrän kasvu ei enää tuo lisää rahamuotoista voittoa kokonaiskustannuksiin nähden. Kun kapitalistien voiton suhdeluku laskee tietyn, tässä määrittelemättömän tason alapuolelle, niin

4 talous (joka tässä koostuu vain kolmesta kapitalistista) ajautuu kriisiin: kapitalistit eivät enää pysty tuottamaan tarpeeksi lisäarvoa saavuttaakseen voittoa samalla, kun heidän tuotteidensa hinnat ovat painuneet tuotannon uusintamiskustannusten kattamisen alapuolelle. Syntyy kriisi, jossa suuri osa kapitalisteista joutuu poistumaan markkinoilta, irtisanomaan työvoimansa ja realisoimaan kiinteää pääomaansa usein erittäin tappiollisesti. Katsotaan seuraavaksi rahamuotoisen voiton ja lisäarvon välistä keskinäisriippuvuutta, joka esittää kohtaa (ii). Kuvaaja 3. Hinnat ja voiton laskeva suhdeluku p ρ t +n ρ min S min S t+n S Kuvaajan 3. pystyakseli p kuvaa annetun tuotteen hintaa ja vaaka-akseli lisäarvon suhdelukua, joka vastaa myös aggregaattitasapainon ΣS = ΣP(π,ρ) mukaisesti voittoastetta. Oletetaan, että kapitalisti pystyy realisoimaan, so. muuntamaan arvomuotoisen lisäarvonsa kokonaan rahamuotoiseksi voitoksi ρ. Havaitsemme, että hinnalla ρ t+n kapitalisti pystyy tuottamaan maksimimäärän lisäarvoa pisteessä S t +n. Alaindeksit kuvaavat aikaa, jota ei tässä määritetä, mutta jonka olemassaolosta muistutetaan kuitenkin erotuksena uusklassisen taloustieteen staattisista malleista. Periaatteessa kuvaajan 3. pystyy käsittämään hyvin ilmankin niitä. Tarkastellaan kuvaajan origoa. Havaitaan, että hinnalla ρ min, joka on pystyakselilla, ei tuoteta lisäarvoa, vaan kapitalisti pystyy ainoastaan kattamaan tuotantokustannuksensa. Täten vähimmäislisäarvo voiton tuottamiselle alkaa pisteestä S min. Origossa kapitalisti ei tee voittoa. Piste ρ t+n S t+n kuvaa täten kuvaajan 2. käyrien huippupistettä, jossa jos em. piste kuvaa vaikkapa aggregaattivoittoa lisäarvoa tuotetaan maksimimäärä. Kun siirrytään pisteen ρ t+n S t+n oikealle puolelle, niin hintojen lineaarinen

5 s laskeminen ei enää tuota lisävoittoa, sillä lisäarvon suhdeluku ei enää kasva, kun C+V pääoman elimellisen koostumuksen suora vaikutus lisäarvontuotantoon otetaan annettuna. 3 Vaakaakselin oikeassa päässä laskeva hinta ja lisäarvo kohtaavat jälleen. Väliin muodostuva alue S min S muodostaa kohdan, jossa kapitalistin tuotanto on kannattavaa. Toisin kuin uusklassisessa taloustieteessä, jossa kapitalisti voi siirtää tuotantoaan melko vapaasti annetun kaltaisella akselistolla, ei kapitalisti kuvaajassa 2. pysty noin vain siirtämään tuotantoaan kannattavammaksi. Kuvaajan 2. ympäristö on kilpailullinen eli kapitalistit kilpailevat toistensa kanssa hinnoista. Mikäli kapitalisti päättää nostaa hintojaan realisoidakseen enemmän lisäarvoa, tekee hän tappiota, kun hänen myyntimääränsä laskevat. Kuvaajan 2. ympäristössä kapitalistin on pakko pysyä kilpailussa mukana, vaikka se selkeästi (meille, ei kapitalistille!) johtaa voiton suhdeluvun P= s C+V laskuun 4. Se, että vaaka-akselin käyrä S on kaareva, on vain esitystekninen kysymys. Hinnanlasku kuvataan tässä lineaarisesti, sillä kyse on annetusta, numeerisesta hinnasta. Lisäarvon S tasaisempi muutos kuvaa hinnan ja arvon välisen vaihtelun keskinäisriippuvuutta, mutta jättää varaa niiden poikkeavuudelle, sillä hinnat eivät yleensä vastaa suoraan arvoja. Miksei näinkin? Olen yllä pyrkinyt todistamaan, että myös marxilaista taloustiedettä on mahdollista käsitellä kuvaajien avulla. Uskon, että tarve laajalle marxilaisen talousteorian visualisoinnille on olemassa sikäli, kun sitä halutaan ymmärrettävällä tavalla esittää uusklassista taloustiedettä opiskelleille sekä marxilaisesta taloustieteestä muutoin kiinnostuneille. Kuten todettua, kuvaajat ovat aina yksinkertaistuksia, todellisuuden abstraktiksi tekemistä. Tämä on kuitenkin välttämätöntä, kun halutaan ymmärtää taloutta, joka itsessään on valtavan monimutkainen. Vanha poliittinen taloustiede puhuu laeista, ja vaikka sanaa tässä yhteydessä vierastaisikin, on ymmärrettävä, että taloustieteen tarkoitus on yksinkertaistaa, tehdä ymmärrettäväksi. Luonnontieteissä lait toteutuvat vain tietyissä olosuhteissa taloustieteessä sanapari ceteris paribus (c.p.) ajaa saman asian. Olen pyrkinyt ottamaan huomioon esityksessäni nämä taloustieteelle luontaiset rajat ilman, että todistuksieni voima olisi heikentynyt turhalla relativismilla.

6 1 Kts. Desai Meghnad, Marxian Economics. Basil Blackwell Publisher, England Léon Walras ( ), ranskalainen taloustieteilijä ja yleisen tasapainoteorian (general equilibrium theory) edelläkävijä. 3 Tässä oletetaan, että työläiset tuottavat vakioidun määrän lisäarvoa, eikä kapitalisti vaikkapa työtahtia kiristämällä, palkkoja laskemalla tai muilla keinoin pysty lisäarvon suhdeluvun kasvattamiseen kuin pääoman elimellistä koostumusta muuttamalla siten, että C > V. 4 Huomaa ero voiton P= s C+V ja lisäarvon s suhdelukujen välillä. Tässä otetaan annettuna, että C+V voitto = lisäarvo, P = S.

Lainalaisuuksia ja vastakkaisia tekijöitä marxilaisessa taloustieteessä

Lainalaisuuksia ja vastakkaisia tekijöitä marxilaisessa taloustieteessä Lainalaisuuksia ja vastakkaisia tekijöitä marxilaisessa taloustieteessä Saska Heino Tämä kirjoitus jatkaa siitä, mihin edelliset kirjoitukset Marxilaista taloustiedettä visualisoimassa ja Tunteeko marxilainen

Lisätiedot

Tunteeko marxilainen taloustiede uusklassista kriisin käsitettä?

Tunteeko marxilainen taloustiede uusklassista kriisin käsitettä? Tunteeko marxilainen taloustiede uusklassista kriisin käsitettä? Saska Heino Vuoden 2008 jälkeiset maailmantaloudelliset tapahtumat on lähes kaikkialla pyritty ymmärtämään käsitteen kriisi avulla. Sanakirjamaisesti

Lisätiedot

4 Kysyntä, tarjonta ja markkinatasapaino

4 Kysyntä, tarjonta ja markkinatasapaino 4 Kysyntä, tarjonta ja markkinatasapaino (Taloustieteen oppikirja, luku 4) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen

Lisätiedot

Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016

Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016 tudent: ate: Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 016 Assignment: 016 www 1. Millä seuraavista tuotteista on itseisarvoltaan pienin kysynnän hintajousto? A. Viini B. Elokuvat

Lisätiedot

TU Kansantaloustieteen perusteet Syksy www-harjoitusten mallivastaukset

TU Kansantaloustieteen perusteet Syksy www-harjoitusten mallivastaukset TU-91.1001 Kansantaloustieteen perusteet Syksy 2017 5. www-harjoitusten mallivastaukset Tehtävä 1: Tuotteen X kysyntäkäyrä on P = 25-2Q ja tarjontakäyrä vastaavasti P = Q + 10. Mikä on markkinatasapinopiste

Lisätiedot

12 Oligopoli ja monopolistinen kilpailu

12 Oligopoli ja monopolistinen kilpailu 12 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, 2nd ed., chs 16-17; Taloustieteen oppikirja, s. 87-90) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä

Lisätiedot

Voidaan laskea siis ensin keskimääräiset kiinteät kustannukset AFC: 100 000 /10000=10

Voidaan laskea siis ensin keskimääräiset kiinteät kustannukset AFC: 100 000 /10000=10 Harjoitukset 3 Taloustieteen perusteet Ratkaisuehdotukset Kesäyliopisto 2014 1. a) Autonrenkaita valmistavalla yhtiöllä on 100 000 :n kiinteät kustannukset vuodessa. Kun yritys tuottaa 10 000 rengasta,

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE 5.6.2014 MALLIVASTAUKSET

KANSANTALOUSTIETEEN PÄÄSYKOE 5.6.2014 MALLIVASTAUKSET KANSANTALOUSTIETEEN ÄÄSYKOE 5.6.2014 MALLIVASTAUKSET Jokaisen tehtävän perässä on pistemäärä sekä sivunumero (Matti ohjola, Taloustieteen oppikirja, 2012) josta vastaus löytyy. (1) (a) Suppea raha sisältää

Lisätiedot

Osa 12b Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Chs 16-17)

Osa 12b Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Chs 16-17) Osa 12b Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Chs 16-17) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä valintojen seurauksien eli voittojen

Lisätiedot

Taloustieteen perusteet 31A Ratkaisut 3, viikko 4

Taloustieteen perusteet 31A Ratkaisut 3, viikko 4 Taloustieteen perusteet 31A00110 2018 Ratkaisut 3, viikko 4 1. Tarkastellaan pulloja valmistavaa yritystä, jonka päiväkohtainen tuotantofunktio on esitetty alla olevassa taulukossa. L on työntekijöiden

Lisätiedot

Harjoitustehtävät 6: mallivastaukset

Harjoitustehtävät 6: mallivastaukset Harjoitustehtävät 6: mallivastaukset Niku Määttänen & Timo Autio Makrotaloustiede 31C00200, talvi 2018 1. Maat X ja Y ovat muuten identtisiä joustavan valuuttakurssin avotalouksia, mutta maan X keskuspankki

Lisätiedot

ESIMERKKEJÄ JA HARJOITUKSIA

ESIMERKKEJÄ JA HARJOITUKSIA ESIMERKKEJÄ JA HARJOITUKSIA OSA I: MATEMAATTISTEN MERKINTÖJEN JA KIRJAINSYMBOLIEN KÄYTTÖÄ (ja tutustumista tilinpitoon ja keynesiläiseen malliin) Harjoitellaan seuraavassa kirjainsymbolien käyttöä ja yhtälöiden

Lisätiedot

TU Kansantaloustieteen perusteet Syksy 2016

TU Kansantaloustieteen perusteet Syksy 2016 TU-91.1001 Kansantaloustieteen perusteet Syksy 2016 5. www-harjoitusten mallivastaukset Tehtävä 1 Ratkaistaan tasapainopiste yhtälöparista: P = 25-2Q P = 10 + Q Ratkaisu on: Q = 5, P = 15 Kuluttajan ylijäämä

Lisätiedot

Jos Q = kysytty määrä, Q = kysytyn määrän muutos, P = hinta ja P = hinnan muutos, niin hintajousto on Q/Q P/P

Jos Q = kysytty määrä, Q = kysytyn määrän muutos, P = hinta ja P = hinnan muutos, niin hintajousto on Q/Q P/P Osa 5. Joustoista Kysynnän hintajousto (price elasticity of demand) mittaa, miten kysynnän määrä reagoi hinnan muutokseen = kysytyn määrän suhteellinen muutos jaettuna hinnan suhteellisella muutoksella

Lisätiedot

ja nyt tässä tapauksessa a = 1, b=4 ja c= -5, ja x:n paikalle ajattelemme P:n.

ja nyt tässä tapauksessa a = 1, b=4 ja c= -5, ja x:n paikalle ajattelemme P:n. Harjoitukset 2, vastauksia. Ilmoittakaa virheistä ja epäselvyyksistä! 1. b (kysyntäkäyrä siirtyy vasemmalle) 2. c (kysyntäkäyrä siirtyy oikealle) 3. ei mikään edellisistä; oikea vastaus olisi p 2

Lisätiedot

MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI

MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI 1a. Täydellisen kilpailun vallitessa yrityksen A tuotteen markkinahinta on 18 ja kokonaiskustannukset

Lisätiedot

Kun uutta työtä ei synny marxilainen taloustiede, tietokoneistaminen ja työpaikat. Saska Heino

Kun uutta työtä ei synny marxilainen taloustiede, tietokoneistaminen ja työpaikat. Saska Heino Kun uutta työtä ei synny marxilainen taloustiede, tietokoneistaminen ja työpaikat Saska Heino i. Aluksi Syys lokakuussa 2013 maailmalla uutisoitiin laajalti tutkimuksesta, jonka mukaan puolet yhdysvaltalaisista

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE 6.6.2013: MALLIVASTAUKSET

KANSANTALOUSTIETEEN PÄÄSYKOE 6.6.2013: MALLIVASTAUKSET KANSANTALOUSTIETEEN ÄÄSYKOE 6.6.013: MALLIVASTAUKSET Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti ohjola, Taloustieteen oppikirja, 01] sivuihin. (1) (a) igou -verot: Jos markkinoilla

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Osa 11. Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14)

Osa 11. Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Osa 11. Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, että jokainen pitää markkinoilla määräytyvää hintaa omista

Lisätiedot

Voiton suhdeluku Suomessa laskumenetelmiä ja tuloksia

Voiton suhdeluku Suomessa laskumenetelmiä ja tuloksia Voiton suhdeluku Suomessa laskumenetelmiä ja tuloksia Saska Heino Teoria Marxilainen voiton suhdeluku on käsite, jota ei voida suoraan johtaa kansantalouden tilinpidosta. 1 Yksikään kansantalous ei harjoita

Lisätiedot

https://xlitemprod.pearsoncmg.com/api/v1/print/en-us/econ

https://xlitemprod.pearsoncmg.com/api/v1/print/en-us/econ Page 1 of 5 Student: Date: Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 201 Assignment: 201 www5 1. Tuotteen X kysyntäkäyrä on P=25 2 Q ja tarjontakäyrä vastaavasti P=Q+10. Mikä

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset KANSANTALOUSTIETEEN PÄÄSYKOE.6.016: Mallivastaukset Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti Pohjola, Taloustieteen oppikirja, 014] sivuihin. (1) (a) Julkisten menojen kerroin (suljetun

Lisätiedot

Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016

Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016 Student: Date: Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016 Assignment: 2016 www1 1. Mitkä seuraavista asioista kuuluvat mikrotaloustieteen ja mitkä makrotaloustieteen piiriin?

Lisätiedot

4. www-harjoitusten mallivastaukset 2017

4. www-harjoitusten mallivastaukset 2017 TU-91.1001 Kansantaloustieteen perusteet 4. www-harjoitusten mallivastaukset 2017 Tehtävä 1. Oikea vastaus: C Voitto maksimoidaan, kun MR=MC. Kyseisellä myyntimäärällä Q(m) voittomarginaali yhden tuotteen

Lisätiedot

3. www-harjoitusten mallivastaukset 2017

3. www-harjoitusten mallivastaukset 2017 TU-91.1001 Kansantaloustieteen perusteet 3. www-harjoitusten mallivastaukset 2017 Tehtävä 1. Reaalitulo perunoina on 0 = 40 20*P, mistä seuraa 2 perunaa. Reaalitulo makkaroina on M = 40-0*P = 40 makkaraa.

Lisätiedot

3. www-harjoitusten mallivastaukset 2016

3. www-harjoitusten mallivastaukset 2016 TU-91.1001 Kansantaloustieteen perusteet 3. www-harjoitusten mallivastaukset 2016 Tehtävä 1. Reaalitulo perunoina on 0 = 40 20*P, mistä seuraa 2 perunaa. Reaalitulo korkokenkinä on M = 40-0*P = 40 makkaraa.

Lisätiedot

11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17)

11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) 11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä valintojen seurauksien eli voittojen riippuvan

Lisätiedot

4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5)

4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5) 4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen

Lisätiedot

(Taloustieteen oppikirja, luku 5; Mankiw & Taylor, 2nd ed., ch 15)

(Taloustieteen oppikirja, luku 5; Mankiw & Taylor, 2nd ed., ch 15) 12 Monopoli (Taloustieteen oppikirja, luku 5; Mankiw & Taylor, 2nd ed., ch 15) Monopoli on tilanne, jossa markkinoilla on vain yksi myyjä, jonka valmistamalle tuotteelle ei ole läheistä substituuttia yritys

Lisätiedot

TENTTIKYSYMYKSET 8.12.2006

TENTTIKYSYMYKSET 8.12.2006 MIKROTALOUSTEORIA (PKTY1) TuKKK Porin yksikkö/avoin yliopisto Ari Karppinen TENTTIKYSYMYKSET 8.12.2006 OHJE: Tentin läpäisee 9 pisteellä. Vastaa tehtäväpaperiin ja palauta se, vaikket vastaisi yhteenkään

Lisätiedot

Kuluttaja valitsee erilaisten hyödykekorien välillä. Kuluttajan preferenssijärjestyksen perusoletukset ovat

Kuluttaja valitsee erilaisten hyödykekorien välillä. Kuluttajan preferenssijärjestyksen perusoletukset ovat Kuluttajan valinta KTT Olli Kauppi Kuluttaja valitsee erilaisten hyödykekorien välillä. Kuluttajan preferenssijärjestyksen perusoletukset ovat 1. Täydellisyys: kuluttaja pystyy asettamaan mitkä tahansa

Lisätiedot

Makrotaloustiede 31C00200

Makrotaloustiede 31C00200 Makrotaloustiede 31C00200 Kevät 2017 Harjoitus 4 Arttu Kahelin arttu.kahelin@aalto.fi Tehtävä 1 a) Kokonaistarjonta esitetään AS-AD -kehikossa tuotantokuilun ja inflaation välisenä yhteytenä. Tämä saadaan

Lisätiedot

3d) Yes, they could: net exports are negative when imports exceed exports. Answer: 2182.

3d) Yes, they could: net exports are negative when imports exceed exports. Answer: 2182. . Se talous, jonka kerroin on suurempi, reagoi voimakkaammin eksogeenisiin kysynnän muutoksiin. Investointien, julkisen kysynnän tai nettoviennin muutokset aiheuttavat sitä suuremman muutoksen tasapainotulossa,

Lisätiedot

Y55 Kansantaloustieteen perusteet sl 2010 tehtävät 2 Mallivastaukset

Y55 Kansantaloustieteen perusteet sl 2010 tehtävät 2 Mallivastaukset Y55 Kansantaloustieteen perusteet sl 2010 tehtävät 2 Mallivastaukset 1 Tehtävä 1 Lähde M&T (2006, 84, luku 4 tehtävä 1, muokattu ja laajennettu) Selitä seuraavat väittämät hyödyntämällä kysyntä- ja tarjontakäyrän

Lisätiedot

Mikä on paras hinta? Hinnoittele oikein. Tommi Tervanen, Kotipizza Group

Mikä on paras hinta? Hinnoittele oikein. Tommi Tervanen, Kotipizza Group Mikä on paras hinta? Hinnoittele oikein Tommi Tervanen, Kotipizza Group v VAIN 54 % YRITTÄJISTÄ OSAA HINNOITELLA TUOTTEEN TAI PALVELUN OIKEIN. LÄHDE: Y-STUDION HALLITSE TALOUTTASI -TESTI Hinnoittelun perusteet

Lisätiedot

4. www-harjoitusten mallivastaukset 2016

4. www-harjoitusten mallivastaukset 2016 TU-91.1001 Kansantaloustieteen perusteet 4. www-harjoitusten mallivastaukset 2016 Tehtävä 1. Oikea vastaus: C Voitto maksimoidaan, kun MR=MC. Kyseisellä myyntimäärällä Q(m) voittomarginaali yhden tuotteen

Lisätiedot

Arkijärjen koettelua. Saska Heino

Arkijärjen koettelua. Saska Heino Arkijärjen koettelua Saska Heino Ajatellaan niin sanotulla arkijärjellä. Kumpi ala kuulostaa kannattavammalta: korkean tuottavuuden pääomavaltainen ja matalien työvoimakustannusten paperiteollisuus vai

Lisätiedot

TENTTIKYSYMYKSET

TENTTIKYSYMYKSET MIKROTALOUSTEORIA (PKTY1) Ari Karppinen TENTTIKYSYMYKSET 20.10.2006 OHJE: Tentin läpäisee 9 pisteellä. Vastaa tehtäväpaperiin ja palauta se, vaikket vastaisi yhteenkään kysymykseen! Muista kirjoittaa nimesi

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 6 1 Korkolaskentaa Oletetaan, että korkoaste on r Jos esimerkiksi r = 0, 02, niin korko on 2 prosenttia Tätä korkoastetta käytettään diskonttaamaan tulevia tuloja ja

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE 4.6.2015 MALLIVASTAUKSET

KANSANTALOUSTIETEEN PÄÄSYKOE 4.6.2015 MALLIVASTAUKSET KANSANTALOUSTIETEEN ÄÄSYKOE 4.6.05 MALLIVASTAUKSET Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti ohjola, Taloustieteen oppikirja,. painos, 04] sivuihin. () (a) Bretton Woods -järjestelmä:

Lisätiedot

Prof. Marko Terviö Assist. Jan Jääskeläinen

Prof. Marko Terviö Assist. Jan Jääskeläinen Harjoitukset 3. 1. (a) Dismalandissa eri puolueiden arvostukset katusiivoukselle ovat Q A (P ) = 60 6P P A (Q) = 10 Q/6 Q B (P ) = 80 5P P B (Q) = 16 Q/5 Q C (P ) = 50 2P P C (Q) = 25 Q/2 Katusiivous on

Lisätiedot

Vaikuttaako kokonaiskysyntä tuottavuuteen?

Vaikuttaako kokonaiskysyntä tuottavuuteen? Vaikuttaako kokonaiskysyntä tuottavuuteen? Jussi Ahokas Itä-Suomen yliopisto Sayn laki 210 vuotta -juhlaseminaari Esityksen sisällys Mitä on tuottavuus? Tuottavuuden määritelmä Esimerkkejä tuottavuudesta

Lisätiedot

Viime kerralta Luento 9 Myyjän tulo ja kysynnän hintajousto

Viime kerralta Luento 9 Myyjän tulo ja kysynnän hintajousto Viime kerralta Luento 9 Markkinatasapaino Markkinakysyntä kysyntöjen aggregointi Horisontaalinen summaaminen Eri kuluttajien kysynnät eri hintatasoilla Huom! Kysyntöjen summaaminen käänteiskysyntänä Jousto

Lisätiedot

Dynaaminen hintakilpailu ja sanattomat sopimukset

Dynaaminen hintakilpailu ja sanattomat sopimukset Dynaaminen hintakilpailu ja sanattomat sopimukset Pasi Virtanen 12.3.2003 Johdanto Hintakilpailu jossa pelaajat kohtaavat toisensa toistuvasti Pelaajien on otettava hintaa valittaessa huomioon hintasodan

Lisätiedot

Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi

Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi 1 Luku 26 Tuotannontekijämarkkinat Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi TYÖMARKKINOIDEN toiminta on keskeisessä asemassa tulonjaon ja työllisyyden suhteen. Myös muut tuotannontekijämarkkinat

Lisätiedot

Luku 22 Yrityksen tarjonta. Nyt kiinnostava kysymys on, kuinka yrityksen tarjonta määräytyy. Yrityksen on periaatteessa tehtävä kaksi päätöstä:

Luku 22 Yrityksen tarjonta. Nyt kiinnostava kysymys on, kuinka yrityksen tarjonta määräytyy. Yrityksen on periaatteessa tehtävä kaksi päätöstä: 1 Luku 22 Yrityksen tarjonta Edellisissä luvuissa olemme yrityksen teoriasta tarkastelleet yrityksen tuotantopäätöstä, ts. panosten optimaalista valintaa, yrityksen voiton maksimoinnin ja kustannusten

Lisätiedot

Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi

Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi 1 Luku 26 Tuotannontekijämarkkinat Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi TYÖMARKKINOIDEN toiminta on keskeisessä asemassa tulonjaon ja työllisyyden suhteen. Myös muut tuotannontekijämarkkinat

Lisätiedot

talletetaan 1000 euroa, kuinka paljon talouteen syntyy uutta rahaa?

talletetaan 1000 euroa, kuinka paljon talouteen syntyy uutta rahaa? TALOUSTIETEEN PÄÄSYKOE 1.6.2017 1. Kerro lyhyesti (korkeintaan kolmella lauseella ja kaavoja tarvittaessa apuna käyttäen), mitä tarkoitetaan seuraavilla käsitteillä: (a) moraalikato (moral hazard) (b)

Lisätiedot

1. Lineaarinen optimointi

1. Lineaarinen optimointi 0 1. Lineaarinen optimointi 1. Lineaarinen optimointi 1.1 Johdatteleva esimerkki Esimerkki 1.1.1 Giapetto s Woodcarving inc. valmistaa kahdenlaisia puuleluja: sotilaita ja junia. Sotilaan myyntihinta on

Lisätiedot

8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14)

8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) 8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, että jokainen pitää markkinoilla määräytyvää hintaa omista toimistaan

Lisätiedot

Luentorunko 12: Lyhyen ja pitkän aikavälin makrotasapaino, AS

Luentorunko 12: Lyhyen ja pitkän aikavälin makrotasapaino, AS Luentorunko 12: Lyhyen ja pitkän aikavälin makrotasapaino, AS-AD-malli Niku, Aalto-yliopisto ja Etla Makrotaloustiede 31C00200, Talvi 2018 Johdanto IS-TR-IFM: Lyhyen aikavälin makrotasapaino, kiinteät

Lisätiedot

Kilpailulliset markkinat Taloustieteen perusteet Matti Sarvimäki

Kilpailulliset markkinat Taloustieteen perusteet Matti Sarvimäki Johdanto Kilpailulliset markkinat Taloustieteen perusteet Matti Sarvimäki Tähän mennessä valinta niukkuuden vallitessa strateginen kanssakäyminen, instituutiot, yritykset hinnat ja määrät kun yrityksellä

Lisätiedot

KYSYNTÄ, TARJONTA JA HINTA. Tarkastelussa käsitellään markkinoiden toimintaa tekijä kerrallaan MARKKINAT

KYSYNTÄ, TARJONTA JA HINTA. Tarkastelussa käsitellään markkinoiden toimintaa tekijä kerrallaan MARKKINAT KYSYNTÄ, TARJONTA JA HINTA Tarkastelussa käsitellään markkinoiden toimintaa tekijä kerrallaan MARKKINAT Paikka, jossa ostaja ja myyjä kohtaavat, voivat hankkia tietoa vaihdettavasta tuotteesta sekä tehdä

Lisätiedot

Kilpailulliset markkinat. Taloustieteen perusteet Matti Sarvimäki

Kilpailulliset markkinat. Taloustieteen perusteet Matti Sarvimäki Kilpailulliset markkinat Taloustieteen perusteet Matti Sarvimäki Johdanto Tähän mennessä valinta niukkuuden vallitessa strateginen kanssakäyminen, instituutiot, yritykset hinnat ja määrät kun yrityksellä

Lisätiedot

1. Hyödykkeen tarjonta on p = 10 + q ja kysyntä puolestaan p = 40-2q. Markkinatasapainossa kysynnän hintajousto on

1. Hyödykkeen tarjonta on p = 10 + q ja kysyntä puolestaan p = 40-2q. Markkinatasapainossa kysynnän hintajousto on 1. Hyödykkeen tarjonta on p = 10 + q ja kysyntä puolestaan p = 40-2q. Markkinatasapainossa kysynnän hintajousto on D. ε = 1 Ratkaistaan ensin markkinatasapaino asettamalla kysyntä ja tarjonta yhtä suuriksi.

Lisätiedot

11 Yritys kilpailullisilla markkinoilla

11 Yritys kilpailullisilla markkinoilla 11 Yritys kilpailullisilla markkinoilla (Talous3eteen oppikirja, luku 5; Mankiw & Taylor 2nd ed., ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, efä jokainen pitää markkinoilla

Lisätiedot

Yritystoiminta Pia Niuta HINNOITTELU

Yritystoiminta Pia Niuta HINNOITTELU HINNOITTELU Hinta on keskeinen kilpailukeino. sen muutoksiin asiakkaat ja kilpailijat reagoivat herkästi. toimii tuotteen arvon mittarina. vaikuttaa yrityksen imagoon. on tuotteen/palvelun arvo rahana

Lisätiedot

1. Arvioi kummalla seuraavista hyödykkeistä on hintajoustavampi kysyntä

1. Arvioi kummalla seuraavista hyödykkeistä on hintajoustavampi kysyntä 0 5 Nauris 10 15 20 MIKROTALOUSTIEDE A31C00100 Kevät 2017 HARJOITUKSET II Palautus 24.1.2017 klo 16:15 mennessä suoraan luennoitsijalle (esim. harjoitusten alussa) tai sähköpostitse (riku.buri@aalto.fi).

Lisätiedot

Pilkeyrityksen liiketoiminnan kehittäminen

Pilkeyrityksen liiketoiminnan kehittäminen Pilkeyrityksen liiketoiminnan kehittäminen Mari Hakkarainen, Jyväskylän ammattikorkeakoulu Laskelmapohjat: Timo Värre, JAMK Esimerkki hyvästä tuotteistamisesta Menestyvän yrityksen talous Kasvu - Onko

Lisätiedot

VILJAMARKKINAT 19.03.2015 Riskienhallinta ja Markkinaseuranta. Max Schulman / MTK

VILJAMARKKINAT 19.03.2015 Riskienhallinta ja Markkinaseuranta. Max Schulman / MTK VILJAMARKKINAT 19.03.2015 Riskienhallinta ja Markkinaseuranta Max Schulman / MTK Viljan hintoihin vaikuttavat tekijät Tarjonta ja kysyntä tuotannon ja kulutuksen tasapaino Varastotilanne Valuuttakurssit

Lisätiedot

10 Monopoli (Mankiw & Taylor, Ch 15)

10 Monopoli (Mankiw & Taylor, Ch 15) 10 Monopoli (Mankiw & Taylor, Ch 15) Monopoli on tilanne, jossa markkinoilla on vain yksi myyjä, jonka valmistamalle tuotteelle ei ole läheistä substituuttia yritys voi itse asettaa hinnan eli se on price

Lisätiedot

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Syksy 2017 Assist. Jan Jääskeläinen Kauppakorkeakoulu

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Syksy 2017 Assist. Jan Jääskeläinen Kauppakorkeakoulu Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Syksy 2017 Assist. Jan Jääskeläinen Kauppakorkeakoulu Harjoitukset 1. Kysynnän ja tarjonnan perusteet (kertausta ja lämmittelyä). 1. Jampan

Lisätiedot

Hyvän vastauksen piirteet

Hyvän vastauksen piirteet Hyvän vastauksen piirteet Hakukohteen nimi: Taloustieteen kandiohjelma Kokeen päivämäärä ja aika: 7.5.2019 kl. 9.00-13.00 1. Määrittele lyhyesti seuraavat käsitteet. (a) Suhteellinen etu (comparative advantage)

Lisätiedot

https://xlitemprod.pearsoncmg.com/api/v1/print/en-us/econ

https://xlitemprod.pearsoncmg.com/api/v1/print/en-us/econ 06 www4 Page of 5 Student: Date: Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 06 Assignment: 06 www4. Mikä seuraavista alueista vastaa voittoa maksimoivan monopoliyrityksen ylisuuria

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

Ohjeita fysiikan ylioppilaskirjoituksiin

Ohjeita fysiikan ylioppilaskirjoituksiin Ohjeita fysiikan ylioppilaskirjoituksiin Kari Eloranta 2016 Jyväskylän Lyseon lukio 11. tammikuuta 2016 Kokeen rakenne Fysiikan kokeessa on 13 tehtävää, joista vastataan kahdeksaan. Tehtävät 12 ja 13 ovat

Lisätiedot

suurtuotannon etujen takia yritys pystyy tuottamaan niin halvalla, että muut eivät pääse markkinoille

suurtuotannon etujen takia yritys pystyy tuottamaan niin halvalla, että muut eivät pääse markkinoille KILPAILUMUODOT Kansantaloustieteen lähtökohta on täydellinen kilpailu. teoreettinen käsitteenä tärkeä Yritykset ovat tuotantoyksiköitä yhdistelevät tuotannontekijöitä o työvoimaa o luonnon varoja o koneita

Lisätiedot

Luentorunko 9: Lyhyen aikavälin makrotasapaino, IS-TR-malli

Luentorunko 9: Lyhyen aikavälin makrotasapaino, IS-TR-malli Luentorunko 9: Lyhyen aikavälin makrotasapaino, Niku, Aalto-yliopisto ja Etla Makrotaloustiede 31C00200, Talvi 2018 Luentorunko 9: Lyhyen aikavälin makrotasapaino, Johdanto Kysyntä ja IS-käyrä Lyhyen aikavälin

Lisätiedot

Kasvu, Lewisin piste, tuloerot ja Suomi. Saska Heino

Kasvu, Lewisin piste, tuloerot ja Suomi. Saska Heino Kasvu, Lewisin piste, tuloerot ja Suomi Saska Heino i. Saatteeksi Minkä vuoksi ansiot ja niiden kansantuoteosuus kohosivat Suomessa toisen maailmansodan jälkeen? Ovatko kasvaneet palkat kutistaneet kapitalistien

Lisätiedot

Y56 Laskuharjoitukset 4 Palautus viim. ti klo (luennolla!) Opiskelijan nimi. Opiskelijanumero

Y56 Laskuharjoitukset 4 Palautus viim. ti klo (luennolla!) Opiskelijan nimi. Opiskelijanumero Y56 Kevät 2010 1 Y56 Laskuharjoitukset 4 Palautus viim. ti 30.3. klo 12-14 (luennolla!) Opiskelijan nimi Opiskelijanumero Harjoitus 1. Tuotantoteknologia Tavoitteena on oppia hahmottamaan yrityksen tuotantoa

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto)

Lisätiedot

1 Komparatiivinen statiikka ja implisiittifunktiolause

1 Komparatiivinen statiikka ja implisiittifunktiolause Taloustieteen matemaattiset menetelmät 27 materiaali 4 Komparatiivinen statiikka ja implisiittifunktiolause. Johdanto Jo opiskeltu antaa nyt valmiu tutkia taloudellisia malleja Kiinnostava malli voi olla

Lisätiedot

Talousmatematiikan perusteet: Luento 8. Tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto

Talousmatematiikan perusteet: Luento 8. Tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto Talousmatematiikan perusteet: Luento 8 Tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto Viime luennoilla Derivointisääntöjä eri funktiotyypeille: Polynomifunktio Potenssifunktio Eksponenttifunktio

Lisätiedot

Luku 14 Kuluttajan ylijäämä

Luku 14 Kuluttajan ylijäämä Luku 4 Kuluttajan ylijäämä Tähän asti johdettu kysyntä hyötyfunktioista ja preferensseistä, nyt päinvastainen ongelma: eli kuinka estimoida hyöty havaitusta kysynnästä. Mitattavat ja estimoitavat kysyntäkäyrät

Lisätiedot

Panos-tuotos -analyysi ja omakustannusarvo, L28b

Panos-tuotos -analyysi ja omakustannusarvo, L28b , L28b -analyysi (Input-output analysis) Menetelmän kehitti Wassily Leontief (1905-1999). Venäläissyntyinen ekonomisti. Yleisen tasapainoteorian kehittäjä. 1953: Studies in the Structure of the American

Lisätiedot

a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää.

a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää. .. Markkinakysyntä ja joustot a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää. Markkinoiden kysyntäkäyrä saadaan laskemalla

Lisätiedot

Etäisyys katoaa! Purkautuvatko kaupungit? Antti Kurvinen

Etäisyys katoaa! Purkautuvatko kaupungit? Antti Kurvinen Etäisyys katoaa! Purkautuvatko kaupungit? Antti Kurvinen 2.2.2017 Kaupungistumisen perusta taloustieteen näkökulma Jos erikoistumisesta ei ole hyötyä eikä tuotannossa ole mahdollista saavuttaa mittakaavaetuja

Lisätiedot

Kirjallisuuskoe. Valtiotieteellinen tiedekunta Taloustieteen ja tilastotieteen valintakoe Arvosteluperusteet Kesä 2016 TEHTÄVÄ 1

Kirjallisuuskoe. Valtiotieteellinen tiedekunta Taloustieteen ja tilastotieteen valintakoe Arvosteluperusteet Kesä 2016 TEHTÄVÄ 1 Valtiotieteellinen tiedekunta Taloustieteen ja tilastotieteen valintakoe Arvosteluperusteet Kesä 2016 Kirjallisuuskoe TEHTÄVÄ 1 a) Pohjola (s. 198 alkaen, kuvio 12.1) määrittelee noususuhdanteen (laskusuhdanteen)

Lisätiedot

Panoskysyntä. Luku 26. Marita Laukkanen. November 15, Marita Laukkanen Panoskysyntä November 15, / 18

Panoskysyntä. Luku 26. Marita Laukkanen. November 15, Marita Laukkanen Panoskysyntä November 15, / 18 Panoskysyntä Luku 26 Marita Laukkanen November 15, 2016 Marita Laukkanen Panoskysyntä November 15, 2016 1 / 18 Monopolin panoskysyntä Kun yritys määrittää voitot maksimoivia panosten määriä, se haluaa

Lisätiedot

2. Hyödykkeen substituutit vaikuttavat kyseisen hyödykkeen kysynnän hintajoustoon.

2. Hyödykkeen substituutit vaikuttavat kyseisen hyödykkeen kysynnän hintajoustoon. TU-91.1001 Kansantaloustieteen perusteet WWW-harjoitus 2, syksy 2016 Vastaukset 1. Millä hyödykkeistä on pienin kysynnän hintajousto? V: D. Maito. Pienin kysynnän hintajousto (eli hinnanmuutoksen vaikutus

Lisätiedot

Kysyntä (D): hyötyfunktiot, hinta, tulot X = X(P,m) Tarjonta (S): tuotantofunktiot, hinta, panoshinta y = y(p,w)

Kysyntä (D): hyötyfunktiot, hinta, tulot X = X(P,m) Tarjonta (S): tuotantofunktiot, hinta, panoshinta y = y(p,w) 4. MARKKINOIDEN TASAPAINOTTUMINEN 4.1. Tasapainoperiaate Kysyntä (D): hyötyfunktiot, hinta, tulot X = X(P,m) Tarjonta (S): tuotantofunktiot, hinta, panoshinta y = y(p,w) Markkinat tasapainossa, kun löydetään

Lisätiedot

Osa 8. Markkinoiden tehokkuusanalyysin sovelluksia (M & T, Chs 6, 8-9, Pohjola)

Osa 8. Markkinoiden tehokkuusanalyysin sovelluksia (M & T, Chs 6, 8-9, Pohjola) Osa 8. Markkinoiden tehokkuusanalyysin sovelluksia (M & T, Chs 6, 8-9, Pohjola) Hyvinvointiteoria tarkastelee sitä, miten resurssien allokoituminen kansantaloudessa vaikuttaa ihmisten hyvinvointiin Opimme

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot Harri Hakula Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2018 1 Perustuu Antti Rasilan luentomonisteeseen

Lisätiedot

- kaupunkialueen tuotanto voidaan jakaa paikalliseen käyttöön jäävään ja alueen ulkopuolelle menevään vientiin

- kaupunkialueen tuotanto voidaan jakaa paikalliseen käyttöön jäävään ja alueen ulkopuolelle menevään vientiin 76 9. Kaupunkialueiden kasvu - talouskasvu: kaupunkialueen työllisyyden (ja tuotannon) kasvu, jonka taustalla on - kaupungin tuottamien hyödykkeiden kysynnän kasvu ---> työvoiman kysynnän kasvu - työvoiman

Lisätiedot

Moraalinen uhkapeli: laajennuksia ja sovelluksia

Moraalinen uhkapeli: laajennuksia ja sovelluksia Moraalinen uhkapeli: laajennuksia ja sovelluksia Sisältö Kysymysten asettelu Monen tehtävän malli Sovellusesimerkki: Vakuutus Sovellusesimerkki: Palkkion määrääminen Johtajan palkitseminen Moraalisen uhkapelin

Lisätiedot

ehdolla y = f(x1, X2)

ehdolla y = f(x1, X2) 3.3. Kustannusten minimointi * Voiton maksimointi: panosten määrän sopeuttaminen -----> tuotanto * Kustannusten minimointi: tiett tuotannon taso -----> etsitään optimaalisin panoskombinaatio tuottamaan

Lisätiedot

Vähäpäästöisen talouden haasteita. Matti Liski Aalto-yliopiston kauppakorkeakoulu Kansantaloustiede (economics)

Vähäpäästöisen talouden haasteita. Matti Liski Aalto-yliopiston kauppakorkeakoulu Kansantaloustiede (economics) Vähäpäästöisen talouden haasteita Matti Liski Aalto-yliopiston kauppakorkeakoulu Kansantaloustiede (economics) Haaste nro. 1: Kasvu Kasvu syntyy työn tuottavuudesta Hyvinvointi (BKT) kasvanut yli 14-kertaiseksi

Lisätiedot

Talousmatematiikan perusteet: Luento 7. Derivointisääntöjä Yhdistetyn funktion, tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto

Talousmatematiikan perusteet: Luento 7. Derivointisääntöjä Yhdistetyn funktion, tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto Talousmatematiikan perusteet: Luento 7 Derivointisääntöjä Yhdistetyn funktion, tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto Viime luennolla Funktion Derivaatta f (x) kuvaa funktion

Lisätiedot

4. Funktion arvioimisesta eli approksimoimisesta

4. Funktion arvioimisesta eli approksimoimisesta 4. Funktion arvioimisesta eli approksimoimisesta Vaikka nykyaikaiset laskimet osaavatkin melkein kaiken muun välttämättömän paitsi kahvinkeiton, niin joskus, milloin mistäkin syystä, löytää itsensä tilanteessa,

Lisätiedot

Hintadiskriminaatio 2/2

Hintadiskriminaatio 2/2 Hintadiskriminaatio 2/2 Matti Hellvist 12.2.2003 Toisen asteen hintadiskrimiaatio eli tuotteiden kohdennus Toisen asteen hintadiskriminaatio toimii tilanteessa, jossa kuluttajat ovat keskenään erilaisia

Lisätiedot

Luento 5: Peliteoriaa

Luento 5: Peliteoriaa Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan hieman peliteoriaan. Keskeisiä asioita ovat Nash-tasapaino ja sekastrategia. Cournot n duopolimalli vuodelta 1838 toimii oivallisena havainnollistuksena

Lisätiedot

Monopoli 2/2. S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

Monopoli 2/2. S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu Monopoli / Monopolimarkkinat - oletuksia Seuraavissa tarkasteluissa oletetaan, että monopolisti tuntee kysyntäkäyrän täydellisesti monopolisti myy suoraan tuotannosta, ts. varastojen vaikutusta ei huomioida

Lisätiedot

Informaatio ja Strateginen käyttäytyminen

Informaatio ja Strateginen käyttäytyminen Informaatio ja Strateginen käyttäytyminen Nuutti Kuosa 2.4.2003 Sisältö Johdanto Duopoli ja epätietoisuutta kilpailijan kustannuksista Kilpailijan tietämyksen manipulointi Duopoli ja epätietoisuutta kysynnästä

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

a(t) = v (t) = 3 2 t a(t) = 3 2 t < t 1 2 < 69 t 1 2 < 46 t < 46 2 = 2116 a(t) = v (t) = 50

a(t) = v (t) = 3 2 t a(t) = 3 2 t < t 1 2 < 69 t 1 2 < 46 t < 46 2 = 2116 a(t) = v (t) = 50 BM0A5810 - Differentiaalilaskenta ja sovellukset Harjoitus 1, Syksy 015 1. (a) Kiihtyvyys on nopeuden derivaatta, eli a(t) v (t) 3 t 1 + 1 Nyt on siis selvitettävä, milloin kiihtyvyys kasvaa itseisarvoltaan

Lisätiedot

Luku 14 Kuluttajan ylijäämä

Luku 14 Kuluttajan ylijäämä 56 Luku 4 Kuluttajan ylijäämä Kuluttajan ylijäämän käsite on erittäin aljon käytetty hyvinvointitaloustieteessä. Käsite erustuu hyödyn maksimoinnin ja kysyntäkäyrän väliseen yhteyteen, eli siihen, että

Lisätiedot

TALOUSTIETEEN LUENTOJEN TEHTÄVÄT

TALOUSTIETEEN LUENTOJEN TEHTÄVÄT TALOUSTIETEEN LUENTOJEN TEHTÄVÄT 1. Suhteellisen edun periaate 1. Maassa A: 1 maito ~ 3 leipää 1 leipä ~ 0,33 maitoa Maassa B: a. b. 3 maitoa ~ 5 leipää 1 maito ~ 1,67 leipää 1 leipä ~ 0,6 maitoa i. Maalla

Lisätiedot