S MRI sovellukset Harjoitustehtävät. Ryhmä 1 Juha-Pekka Niskanen Eini Niskanen
|
|
- Jalmari Lattu
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 S MRI sovellukset Harjoitustehtävät Ryhmä 1 Juha-Pekka Niskanen Eini Niskanen
2 Tehtävä 8.3
3 Tehtävä Teoria Käytännössä MRI-kuvaan muodostuu aina virhettä rajallisen resoluution vuoksi Käytännössä ideaalinen pistemäinen objekti havaitaan kuvassa sumentuneena pisteenä Jos systeemiin lisätään toinen piste tarpeeksi lähelle ensimmäistä, jossain vaiheessa rajallisen resoluution vuoksi havaitaan kuvassa kahden pisteen sijaan vain yksi Kuvaussysteemin spatiaalinen resoluutio voidaankin määritellä pienimmäksi kahden pistelähteen etäisyydeksi, jolla ne lopullisessa kuvassa voidaan erottaa erillisiksi
4 Tehtävä Teoria Oletetaan, että objekti I(x) muodostaa kuvan î(x) ja kuvaussysteemi on lineaarinen Tällöin muodostunut kuva voidaan esittää suotimena impulssivasteen h(x) avulla: î(x) = I(x) * h(x), eli î(x) = h(x), kun I(x) = (x) Impulssivastetta h(x) kutsutaan nimellä Point Spread function (PSF) Kuvaussysteemin tuottama kuva vastaa siis täsmälleen kuvattavaa kohdetta vain jos h(x) = (x)
5 Tehtävä Teoria Laatikkofunktio PSF:n tapauksessa kaksi pistelähdettä voidaan erottaa toisistaan, kun niiden välinen etäisyys on suurempi kun PSF:n pituus Resoluutioraja on siis PSF:n pituus W h Yleisesti PSF:n efektiivinen pituus voidaan määritellä PSF:n puoliarvoleveydestä (Full Width at Half Maximum, FWHM)
6 Tehtävä Ratkaisu Assume that the point spread function of an unknown imaging system is (a) h(x) = (x), and (b) h(x) = (2x). For each case (a) Determine the resolution limit of the system (b) Sketch the resulting image if the true object function is (x) = (x) + (x 1)
7 Tehtävä Ratkaisu (x) = 0, x >1/2 1, x <1/2 (2x) = 1-2x, 2x <1 0, muulloin (x) = 1 - x, x <1 0, muulloin y y (x) 1 (2x) 1 (x) -1/2 0 1/2 x -1/2 0 1/2 x
8 Tehtävä Ratkaisu Kuvaussysteemin resoluutioraja resoluutioraja on laatikkofunktion (boxcar) (x) tapauksessa PSF:n pituus eli tässä tapauksessa W h = 1. jos PSF ei ole suorakulmainen, efektiivinen W h saadaan funktion puoliarvoleveydestä (Full Width at Half Maximum, FWHM). h(x) = (2x) tapauksessa saadaan geometrian nojalla W h = 1/2.
9 Tehtävä Ratkaisu Jos objektifunktion on (x) = (x) + (x 1) saadaan vastaaviksi kuviksi I(x) h(x) î(x) 1 * (x) x 1 * (2x) x
10 Tehtävä Pohdinta (x):n resoluutioraja on kaksi kertaa suurempi kuin (2x):n. Objekti (x) = (x) + (x 1) voidaan erottaa kahtena pisteenä, jos kuvaussysteemin h(x) = (2x). Vastaavasti h(x) = (x) tapauksessa kuvassa havaittaisiin vain yksi piste. PSF-formalismi olettaa, että kuvaussysteemi on lineaarinen, joka ei välttämättä käytännössä pidä paikkaansa. (x) ja (x) eivät ole kovinkaan käyttökelpoisia PSFestimaatteja MRI-laitteistolle. Esimerkiksi gaussinen PSF-estimaatti voisi olla lähempänä todellisuutta.
11 Tehtävä 9.6
12 Tehtävä Teoria MRI-kuvauksen suurimpia heikkouksia on sen hitaus T acq = N acq N enc T R N enc T R termiä halutaan saada pienennettyä Fast Spin Echo (FSE) on normaalista spin echosta johdettu kuvaussekvenssi, jolla voidaan merkittävästi lyhentää kuvausaikaa
13 Tehtävä Teoria FSE-kuvauksessa yhdellä RF pulssilla kerätään useita kaikuja k-avaruuden eri kohdista Vaihe kumuloituu Phase-rewinding eli vaihepakitus
14 Tehtävä Teoria Jos jokaisella RF eksitaatiolla kerätään M kaikua saadaan eksitaatioiden määräksi N ex =N enc /M Eli saavutetaan M-kertainen kuvausajan lyheneminen M:n arvoa rajoittaa käytännössä kuvattavan kohteen T 2, koska yhdellä RF eksitaatiolla saatava signaali relaksoituu eksponentiaalisesti T 2 -aikavakion mukaisesti Käytännössä M voi olla jopa yli 16 Vakiota M kutsutaan yleisesti termillä echo train length (ETL)
15 Tehtävä Teoria FSE-kuvauksessa jokainen kaiku-jonon kaiku kokee eripituisen TE-ajan E n =e -nte/t2 T 2 -relaksaation vuoksi myös SNR pienee kaiku-jonon kasvaessa Lopullisen kuvan kontrasti ja resoluutio riippuvat kaikujen sijainnista k-avaruudessa Perättäisten refokusoivien 180 -pulssien vuoksi myös rasva näkyy FSE-kuvissa hyvin rasvan spin-spin vuorovaikutus heikkenee ja rasvan T 2 -aika pitenee
16 Tehtävä Ratkaisu Tehtävä 9.6 Sketch the resulting T 2 -weighting function for the following phase-encoding ordering scheme for an FSE imaging sequence k mn = [(m - 1)N ex + n 1 N enc /2] k m = 1,2,,N ex n = 1,2,,M
17 Tehtävä Ratkaisu esim. N ex = 4, M = 4 k 11 = -N enc /2 k k 12 = [1 - N enc /2] k k 13 = [2 - N enc /2] k k 14 = [3 - N enc /2] k k 21 = [N ex N enc /2] k k 22 = [N ex + 1 N enc /2] k k 23 = [N ex + 2 N enc /2] k k 24 = [N ex + 3 N enc /2] k k 31 = [2N ex N enc /2] k k 32 = [2N ex + 1 N enc /2] k k 33 = [2N ex + 2 N enc /2] k k 34 = [2N ex + 3 N enc /2] k 4 th shot 3 rd shot 2 nd shot k y k x 1 st shot
18 Tehtävä Ratkaisu Vastaava T 2 painotus funktio w(k) k
19 Tehtävä Pohdinta Tehtävän FSE-koodausfunktiolla voi kerätä kaikki k-avaruuden viivat systemaattisesti vain jos N ex = M, sekä molemmat ovat parillisia Jos N ex < M, kerätään joitain kaikuja päällekäin Jos N ex > M, jää joitain kaikuja keräämättä Jos N ex ja M ovat parittomia jää k-avaruuden keskusta (ilman vaihekoodausgradientteja) keräämättä ja kontrasti heikkenee
20 Tehtävä Pohdinta FSE-kuvan efektiivinen (kontrastin määräävä) TE-aika on 0 k kaiun TE-aika Tässä 0 k kaiku osuu ensimmäiselle kaiulle, joten kuva ei ole kovin T 2 -painotteinen (lyhyt TE) T 1 -painotteinen kuva ei tällä koodausfunktiolla mahdollista, koska järkevän resoluution aikaansaaminen vaatisi pitkän kaikujonon pitkä TR (64*64 ja pienemmällä resoluutiolla T 1 - painotus ehkä vielä mahdollinen) Todennäköisesti muodostuva kuva olisi efektiivisesti lähempänä protonitiheyskuvaa (pitkä TR, lyhyt efektiivinen TE) Koska T 2 -painotusfunktio on paloittain piikikäs kärsisi muodostuva kuva todennäköisesti voimakkaasti blurraus ja ringing artefaktoista Artefaktoista ja epämääräisestä kontrastista johtuen tehtävän mukainen FSE-koodaus ei olisi todennäköisesti kovin käyttökelpoinen
S Magneettikuvauksen sovellukset Viikkoharjoitukset
S-66.3326 Magneettikuvauksen sovellukset Viikkoharjoitukset Tehtävät 8.16, 8.17 ja 9.33 Ryhmä 11: Jukka Remes, Tuomas Svärd ja Tuomo Starck Radiologian klinikka, 26.5.2010 OULUN YLIOPISTOLLINEN SAIRAALA
Tuomo Saloheimo SYVENTÄVÄÄ MAGNEETTIKUVAUKSEN FYSIIKKAA JA LAITEOPPIA
Tuomo Saloheimo SYVENTÄVÄÄ MAGNEETTIKUVAUKSEN FYSIIKKAA JA LAITEOPPIA 14.8.2015 8. Nopeat kuvausmenetelmät Perinteisessä SE-kuvauksessa kuvauksessa yhdellä sekvenssillä pystytään ottamaan informaationa
Odotusarvo. Odotusarvon ominaisuuksia Satunnaismuuttujien ominaisuuksia 61
3.3. Satunnaismuuttujien ominaisuuksia 61 Odotusarvo Määritelmä 3.5 (Odotusarvo) Olkoon X diskreetti satunnaismuuttuja, jonka arvojoukko on S ja todennäköisyysfunktio f X (x). Silloin X:n odotusarvo on
Suodatus ja näytteistys, kertaus
ELEC-C7230 Tietoliikenteen siirtomenetelmät Luento 6: Kantataajuusvastaanotin AWGN-kanavassa II: Signaaliavaruuden vastaanotin a Olav Tirkkonen Aalto, Tietoliikenne- ja tietoverkkotekniikan laitos a [10.6.3-10.6.6;
Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot
3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,
3 Ikkunointi. Kuvio 1: Signaalin ikkunointi.
3 Ikkunointi Puhe ei ole stationaarinen signaali, vaan puheen ominaisuudet muuttuvat varsin nopeasti ajan myötä. Tämä on täysin luonnollinen ja hyvä asia, mutta tämä tekee sellaisten signaalinkäsittelyn
MAA02. A-osa. 1. Ratkaise. a) x 2 + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x
MAA0 A-osa. Ratkaise. a) x + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x a) Kirjoitetaan summa x + 6x yhteisen tekijän avulla tulomuotoon ja ratkaistaan yhtälö tulon nollasäännön avulla. x + 6x = 0 x(x + 6) =
4 Yleinen potenssifunktio ja polynomifunktio
4 Yleinen potenssifunktio ja polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Tutkitaan yhtälöiden ratkaisuja piirtämällä funktioiden f(x) = x, f(x) = x 3, f(x) = x 4 ja f(x) = x 5 kuvaajat. Näin nähdään, monessako
CCD-kamerat ja kuvankäsittely
CCD-kamerat ja kuvankäsittely Kari Nilsson Finnish Centre for Astronomy with ESO (FINCA) Turun Yliopisto 6.10.2011 Kari Nilsson (FINCA) CCD-havainnot 6.10.2011 1 / 23 Sisältö 1 CCD-kamera CCD-kameran toimintaperiaate
Radiointerferometria II
Radiointerferometria II Kolme ALMA-antennia ALMA tulevaisuudessa Puuttuva informaatio Epätäydellinen uv-tason peitto: 1. Keskusaukko : pintamaisen lähteen kokonaisvuontiheys jää mittaamatta, V (0, 0) =
YHDEN RAON DIFFRAKTIO. Laskuharjoitustehtävä harjoituksessa 11.
YHDEN RAON DIFFRAKTIO Laskuharjoitustehtävä harjoituksessa 11. Vanha tenttitehtävä Kapean raon Fraunhoferin diffraktiokuvion irradianssijakauma saadaan lausekkeesta æsin b ö I = I0 ç b è ø, missä b = 1
isomeerejä yhteensä yhdeksän kappaletta.
Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua
Visibiliteetti ja kohteen kirkkausjakauma
Visibiliteetti ja kohteen kirkkausjakauma Interferoteriassa havaittava suure on visibiliteetti V (u, v) = P n (x, y)i ν (x, y)e i2π(ux+vy) dxdy kohde Taivaannapa m Koordinaatisto: u ja v: B/λ:n projektioita
Infarktialueen määrittäminen T 1ρ -, T RAFF - ja T 2 -relaksaatiomenetelmillä sekä gadolinium-myöhäistehostuman avulla
Infarktialueen määrittäminen T 1ρ -, T RAFF - ja T 2 -relaksaatiomenetelmillä sekä gadolinium-myöhäistehostuman avulla Elias Ylä-Herttuala Pro gradu-tutkielma Sovelletun fysiikan koulutusohjelma Itä-Suomen
Yhden muuttujan funktion minimointi
Yhden muuttujan funktion minimointi Aloitetaan yhden muuttujan tapauksesta Tarpeellinen myös useamman muuttujan tapauksessa Tehtävä on muotoa min kun f(x) x S R 1 Sallittu alue on muotoa S = [a, b] tai
Y ja
1 Funktiot ja raja-arvot Y100 27.10.2008 ja 29.10.2008 Aki Hagelin aki.hagelin@helsinki.fi Department of Psychology / Cognitive Science University of Helsinki 2 Funktiot (Lue Häsä & Kortesharju sivut 4-9)
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN
H7 Malliratkaisut - Tehtävä 1
H7 Malliratkaisut - Tehtävä Eelis Mielonen 7. lokakuuta 07 a) Palautellaan muistiin Maclaurin sarjan määritelmä (Taylorin sarja origon ympäristössä): f n (0) f(x) = (x) n Nyt jos f(x) = ln( + x) saadaan
Funktioiden approksimointi ja interpolointi
Funktioiden approksimointi ja interpolointi Keijo Ruotsalainen Division of Mathematics interpolaatio-ongelma 8 Eksponenttifunktion exp(x) interpolointi 3.5 Funktion e^{0.25x} \sin(x) interpolointi 7 3
MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai
MATP15 Approbatur 1B Ohjaus Keskiviikko 4.11. torstai 5.11.015 1. (Opiskeluteht. 6 s. 0.) Määritä sellainen vakio a, että polynomilla x + (a 1)x 4x a on juurena luku x = 1. Mitkä ovat tällöin muut juuret?.
Luento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r
Luento 14: Periodinen liike, osa 2 Vaimennettu värähtely Pakkovärähtely Resonanssi θ F µ F t F r m g 1 / 20 Luennon sisältö Vaimennettu värähtely Pakkovärähtely Resonanssi 2 / 20 Vaimennettu värähtely
MRI-sovellukset. Ryhmän 6 LH:t (8.22 & 9.25)
MRI-sovellukset Ryhmän 6 LH:t (8.22 & 9.25) Ex. 8.22 Ex. 8.22 a) What kind of image artifact is present in image (b) Answer: The artifact in the image is aliasing artifact (phase aliasing) b) How did Joe
Optimaalisuusehdot. Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0
Optimaalisuusehdot Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0 i = 1,..., m j = 1,..., l missä f : R n R, g i : R n R kaikilla i = 1,..., m, ja h j : R n R kaikilla j = 1,..., l
Monitavoiteoptimointi
Monitavoiteoptimointi Useita erilaisia tavoitteita, eli useita objektifunktioita Tavoitteet yleensä ristiriitaisia ja yhteismitattomia Optimaalisuus tarkoittaa yleensä eri asiaa kuin yksitavoitteisessa
Shrödingerin yhtälön johto
Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä
ABHELSINKI UNIVERSITY OF TECHNOLOGY
Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä
Kuljetustehtävä. Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan. Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij
Kuljetustehtävä Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij Lähtöpaikan i kapasiteetti on a i (oletetaan, että a i > 0
33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ
TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien
Luento 11: Rajoitusehdot. Ulkopistemenetelmät
Luento 11: Rajoitusehdot. Ulkopistemenetelmät ja sisäpistemenetelmät Lagrangen välttämättömien ehtojen ratkaiseminen Newtonin menetelmällä Jos tehtävässä on vain yhtälörajoituksia, voidaan minimipistekandidaatteja
Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.
Tehtävä 1 Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. 1 Jos 1 < y < 3, niin kaikilla x pätee x y x 1. 2 Jos x 1 < 2 ja y 1 < 3, niin x y
2 Osittaisderivaattojen sovelluksia
2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä
Missä mennään. systeemi. identifiointi. mallikandidaatti. validointi. malli. (fysikaalinen) mallintaminen. mallin mallin käyttötarkoitus, reunaehdot
Missä mennään systeemi mallin mallin käyttötarkoitus, reunaehdot käyttö- (fysikaalinen) mallintaminen luonnonlait yms. yms. identifiointi kokeita kokeita + päättely päättely vertailu mallikandidaatti validointi
2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet
Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 5 (viikko 9) Ratkaisuehdotuksia (Laura Tuohilampi). Jatkoa HT 4.5:teen. Määrää E(X) ja D (X). E(X) = 5X p i x i =0.8 0+0.39 +0.4 +0.4 3+0.04
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)
7.4 Fotometria CCD kameralla
7.4 Fotometria CCD kameralla Yleisin CCDn käyttötapa Yleensä CCDn edessä käytetään aina jotain suodatinta, jolloin kuvasta saadaan siistimpi valosaaste UV:n ja IR:n interferenssikuviot ilmakehän dispersion
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 14..016 Kertaus K1. a) b) x 18 ( x 9) ( x ) ( x+ ) lim = lim = lim x+ x+ ( x + ) x x x = lim (x 6) = ( ) 6 = 1 x x + 6 ( ) + 6 0 lim = =
Spektri- ja signaalianalysaattorit
Spektri- ja signaalianalysaattorit Pyyhkäisevät spektrianalysaattorit Suora pyyhkäisevä Superheterodyne Reaaliaika-analysaattorit Suora analoginen analysaattori FFT-spektrianalysaattori DFT FFT Analysaattoreiden
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10 13
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 2 x 2 3 2 3 x 1 4, (b) (x + 1)(x 2)
Dynaamisten systeemien identifiointi 1/2
Dynaamisten systeemien identifiointi 1/2 Mallin rakentaminen mittausten avulla Epäparametriset menetelmät: tuloksena malli, joka ei perustu parametreille impulssi-, askel- tai taajusvaste siirtofunktion
Matematiikan peruskurssi (MATY020) Harjoitus 10 to
Matematiikan peruskurssi (MATY00) Harjoitus 10 to 6.3.009 1. Määrää funktion f(x, y) = x 3 y (x + 1) kaikki ensimmäisen ja toisen kertaluvun osittaisderivaatat. Ratkaisu. Koska f(x, y) = x 3 y x x 1, niin
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN
Cubature Integration Methods in Non-Linear Kalman Filtering and Smoothing (valmiin työn esittely)
Cubature Integration Methods in Non-Linear Kalman Filtering and Smoothing (valmiin työn esittely) Ohjaaja: Valvoja: TkT Simo Särkkä Prof. Harri Ehtamo 13.9.2010 Aalto-yliopiston teknillinen korkeakoulu
Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu.
Analyysi Harjoituksia lukuihin 3 / Syksy 204. Osoita täsmällisesti perustellen, että joukko { 2x A = x ]4, [. x 4 ei ole ylhäältä rajoitettu. 2. Anna jokin ylä- ja alaraja joukoille { x( x) A = x ], [,
Kohina. Havaittujen fotonien statistinen virhe on kääntäen verrannollinen havaittujen fotonien lukumäärän N neliö juureen ( T 1/ N)
Kohina Havaittujen fotonien statistinen virhe on kääntäen verrannollinen havaittujen fotonien lukumäärän N neliö juureen ( T 1/ N) N on suoraan verrannollinen integraatioaikaan t ja havaittuun taajuusväliin
Talousmatematiikan perusteet: Luento 5. Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus
Talousmatematiikan perusteet: Luento 5 Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus Tähän mennessä Funktiolla f: A B, y = f x kuvataan muuttujan y B riippuvuutta muuttujasta x A Jotta funktio
Luento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään
KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n.
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.139 Optimointioppi Kimmo Berg 7. harjoitus - ratkaisut 1. Oletetaan aluksi, että epäyhtälöt eivät ole aktiivisia p i > 0. Tässä tapauksess KKTehdot
Luento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään
1 Rajoittamaton optimointi
Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y
Kannattaa opetella parametrimuuttujan käyttö muidenkin suureiden vaihtelemiseen.
25 Mikäli tehtävässä piti määrittää R3:lle sellainen arvo, että siinä kuluva teho saavuttaa maksimiarvon, pitäisi variointirajoja muuttaa ( ja ehkä tarkentaa useampaankin kertaan ) siten, että R3:ssä kulkeva
Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )
Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään
esimerkkejä erilaisista lohkokoodeista
6.2.1 Lohkokoodit tehdään bittiryhmälle bittiryhmään lisätään sovitun algoritmin mukaan ylimääräisiä bittejä [k informaatiobittiä => n koodibittiä, joista n-k lisäbittiä], käytetään yleensä merkintää (n,k)-koodi
x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu
2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)
Kokonaislukuoptiomointi Leikkaustasomenetelmät
Kokonaislukuoptiomointi Leikkaustasomenetelmät Systeemianalyysin Laboratorio 19.3.2008 Sisällys Leikkaustasomenetelmät yleisesti Leikkaustasomenetelmät generoivilla kokonaislukujoukoilla Gomoryn leikkaavat
4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt
4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt 4.1 Homogeeniset lineaariset differentiaaliyhtälöt Homogeeninen yhtälö on muotoa F(x, y,, y (n) ) = 0. (1) Yhtälö on lineaarinen, jos se voidaan
4.2 Akustista fonetiikkaa
4.2 Akustista fonetiikkaa Akustisessa fonetiikassa tutkitaan puheen akustisia ominaisuuksia ja sitä miten ne seuraavat puheentuottomekanismin toiminnasta. Aiheen tarkka käsitteleminen vaatisi oman kurssinsa,
Dynaamiset regressiomallit
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Viikko 6: 1 Kalmanin suodatin Aiemmin käsitellyt
infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1
infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.
Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)
Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto
Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Datan käsittely ja tallentaminen Käytännössä kaikkien mittalaitteiden ensisijainen signaali on analoginen Jotta tämä
Capacity Utilization
Capacity Utilization Tim Schöneberg 28th November Agenda Introduction Fixed and variable input ressources Technical capacity utilization Price based capacity utilization measure Long run and short run
Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.
Väitelause Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta. Tässä P:tä kutsutaan oletukseksi ja Q:ta väitteeksi. Jos yllä oleva väitelause on totta, sanotaan, että P:stä
Muuttujan vaihto. Viikon aiheet. Muuttujan vaihto. Muuttujan vaihto. ) pitää muistaa lausua t:n avulla. Integroimisen työkalut: Kun integraali
Viikon aiheet Integroimisen työkalut: Rationaalifunktioiden jako osamurtoihin Rekursio integraaleissa CDH: Luku 4, Prujut206: Luvut 4-4.2.5, Prujut2008: s. 89-6 Kun integraali h(x) ei näytä alkeisfunktioiden
Reaalilukuvälit, leikkaus ja unioni (1/2)
Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut
MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 25.9.2017 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
BM20A0900, Matematiikka KoTiB3
BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden
1 sup- ja inf-esimerkkejä
Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R
w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.
Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)
1 Vastaa seuraaviin. b) Taajuusvasteen
Vastaa seuraaviin a) Miten määritetään digitaalisen suodattimen taajuusvaste sekä amplitudi- ja vaihespektri? Tässä riittää sanallinen kuvaus. b) Miten viivästys vaikuttaa signaalin amplitudi- ja vaihespektriin?
Esimerkkejä kokonaislukuoptimointiongelmista
Esimerkkejä kokonaislukuoptimointiongelmista (eli mitä kaikkea kokonaisluvuilla voi mallintaa) 27. marraskuuta 2013 Pääoman budjetointiongelma Kulut Projekti Vuosi 1 Vuosi 2 Vuosi 3 Tuotto 1 5 1 8 20 2
DIAGNOSOINTI MAGNEETTITUTKIMUKSELLA KORKEAN B ARVON DIFFUUSIOKUVAUKSELLA
Pro gradu tutkielma Fysiikan opettajan suuntautumisvaihtoehto DIAGNOSOINTI MAGNEETTITUTKIMUKSELLA KORKEAN B ARVON DIFFUUSIOKUVAUKSELLA Touko Kaasalainen 20.12.2007 Ohjaaja: FT Veli Pekka Poutanen Tarkastajat:
y=-3x+2 y=2x-3 y=3x+2 x = = 6
MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+
JYVÄSKYLÄN YLIOPISTO. 3. Luennon sisältö
JYVÄSKYLÄN YLIOPISTO 3. Luennon sisältö Lineaarisen optimointitehtävän sallittu alue Optimointitehtävien muunnoksia Lineaarisen yhtälöryhmän perusmuoto ja perusratkaisut Lineaarisen optimointitehtävän
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-1200 Signaalinkäsittelyn menetelmät, Tentti 21.3.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
Taustatietoja ja perusteita
Taustatietoja ja perusteita Vektorit: x R n pystyvektoreita, transpoosi x T Sisätulo: x T y = n i=1 x i y i Normi: x = x T x = ni=1 x 2 i Etäisyys: Kahden R n :n vektorin välinen etäisyys x y 1 Avoin pallo:
Kvanttilaskenta - 1. tehtävät
Kvanttilaskenta -. tehtävät Johannes Verwijnen January 9, 0 edx-tehtävät Vastauksissa on käytetty edx-kurssin materiaalia.. Problem False, sillä 0 0. Problem False, sillä 0 0 0 0. Problem A quantum state
Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5.
3.4 Kvanttorit Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5. Kaikilla reaaliluvuilla x pätee x+1 >
Talousmatematiikan perusteet: Luento 5. Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus
Talousmatematiikan perusteet: Luento 5 Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus Tähän mennessä Funktiolla f: A B, y = f x kuvataan muuttujan y B riippuvuutta muuttujasta x A Jotta funktio
Tiedonkeruu ja analysointi
Tiedonkeruu ja analysointi ViDRoM Virtual Design of Rotating Machines Raine Viitala 30.9.2015 ViDRoM Virtual Design of Rotating Machines Mitataan dynaamista käyttäytymistä -> nopeuden funktiona Puhtaat
Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77
Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ.0.08 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden
Kustannusten minimointi, kustannusfunktiot
Kustannusten minimointi, kustannusfunktiot Luvut 20 ja 21 Marita Laukkanen November 3, 2016 Marita Laukkanen Kustannusten minimointi, kustannusfunktiot November 3, 2016 1 / 17 Kustannusten minimointiongelma
Tekijä Pitkä matematiikka
K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π
Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti
14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on
k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu
LIS AYKSI A kirjaan Reaalimuuttujan analyysi 1.6. Numeerinen integrointi: Gaussin kaavat Edella kasitellyt numeerisen integroinnin kaavat eli kvadratuurikaavat Riemannin summa, puolisuunnikassaanto ja
min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila
5 Lineaariset yhtälöryhmät
5 Lineaariset yhtälöryhmät Edellisen luvun lopun esimerkissä päädyttiin yhtälöryhmään, jonka ratkaisemisesta riippui, kuuluuko tietty vektori eräiden toisten vektorien virittämään aliavaruuteen Tämäntyyppisiä
Reuna-arvotehtävien ratkaisumenetelmät
Reuna-arvotehtävien ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Malliprobleema Kahden pisteen reuna-arvotehtävä u (x) = f (x) (1) u() = u(1) = Jos u C ([,1]) ratkaisu, niin missä x u(x)
Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007
Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear
Tekijä Pitkä Matematiikka 11 ratkaisut luku 2
Tekijä Pitkä matematiikka 11 0..017 170 a) Koska 8 = 4 7, luku 8 on jaollinen luvulla 4. b) Koska 104 = 4 6, luku 104 on jaollinen luvulla 4. c) Koska 4 0 = 80 < 8 ja 4 1 = 84 > 8, luku 8 ei ole jaollinen
58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia
58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli
XXIII Keski-Suomen lukiolaisten matematiikkakilpailu 23.1.2014, tehtävien ratkaisut
XXIII Keski-Suomen lukiolaisten matematiikkakilpailu 23.1.2014, tehtävien ratkaisut 1. Avaruusalus sijaitsee tason origossa (0, 0) ja liikkuu siitä vakionopeudella johonkin suuntaan, joka ei muutu. Tykki
Outoja funktioita. 0 < x x 0 < δ ε f(x) a < ε.
Outoja funktioita Differentiaalilaskentaa harjoitettiin miltei 200 vuotta ennen kuin sen perustana olevat reaaliluvut sekä funktio ja sen raja-arvo määriteltiin täsmällisesti turvautumatta geometriseen
Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus
Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus 1. (5:7) Olkoon E normiavaruus, I = [0, 1] ja f, g : I E jatkuvia. Osoita, että yhtälön h(s, t) = (1 t)f(s) + tg(s) määrittelemä kuvaus h : I 2 E on
TAITAJA 2007 ELEKTRONIIKKAFINAALI 31.01-02.02.07 KILPAILIJAN TEHTÄVÄT. Kilpailijan nimi / Nro:
KILPAILIJAN TEHTÄVÄT Kilpailijan nimi / Nro: Tehtävän laatinut: Hannu Laurikainen, Deltabit Oy Kilpailutehtävä Kilpailijalle annetaan tehtävässä tarvittavat ohjelmakoodit. Tämä ohjelma on tehty laitteen