Monitavoiteoptimointi
|
|
- Katariina Nurmi
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Monitavoiteoptimointi Useita erilaisia tavoitteita, eli useita objektifunktioita Tavoitteet yleensä ristiriitaisia ja yhteismitattomia Optimaalisuus tarkoittaa yleensä eri asiaa kuin yksitavoitteisessa optimoinnissa 1
2 Yleinen monitavoiteoptimointitehtävä: min {f 1 (x),..., f k (x)} kun x S Lineaarinen monitavoiteoptimointitehtävä: min { (c 1 ) T x,...,(c k ) T x } kun x S missä sallitun alueen S määräävät rajoitefunktiot ovat lineaarisia 2
3 Sallittu alue: S R n Sallitun alueen kuva-avaruus: Z R k Kriteeriarvot: z j = (c j ) T x = n i=1 c j i x i Kriteerivektori: z = (z 1,..., z k ) T Z 3
4 Pareto-optimaalisuus Piste x 0 S on Pareto-optimaalinen, jos ei ole olemassa toista sallittua pistettä x S siten, että ja ainakin yksi epäyhtälöistä on aito (c j ) T x (c j ) T x 0 j = 1,..., k Kriteerivektori z 0 Z on Pareto-optimaalinen, jos sitä vastaava x 0 S on Pareto-optimaalinen Pareto-optimaalinen joukko = Pareto-optimaalisten kriteerivektorien muodostama joukko 4
5 Ihanteellinen kriteerivektori: z Z = (z1,..., z k )T, missä zj on tehtävän min (c j ) T x kun x S optimaalinen objektifunktion arvo, ts. minimoidaan kukin objektifunktio erikseen Ihanteellinen kriteerivektori antaa alarajat Pareto-optimaaliselle joukolle Nadir-piste: Pareto-optimaalisen joukon ylärajat Nadir-pisteen laskeminen hankalaa, yleensä se joudutaan arvioimaan 5
6 Arvotaulukkoon lasketaan kaikkien objektifunktioiden arvot kaikissa niissä pisteissä, joissa kukin objektifunktio saa minimiarvonsa: f 1 f 2... f k x 1 z1 = f 1(x 1 ) f 2 (x 1 )... f k (x 1 ) x 2 f 1 (x 2 ) z 2 = f 2(x 2 )... f k (x 2 ).... x k f 1 (x k ) f 2 (x k )... z k = f k(x k ) missä x j on objektifunktion f j minimikohta Arvotaulukon diagonaali = ihanteellinen kriteerivektori Arvotaulukon sarakkeiden maksimiarvot = arvio nadir-pisteelle 6
7 Päätöksentekijä Monitavoiteoptimointitehtävän Pareto-optimaaliset ratkaisut ovat kaikki yhtä hyviä Tarvitaan päätöksentekijä, joka valitsee niistä mielestään parhaan tai parhaat Hyötyfunktio: Funktio U : R k R, jonka avulla päätöksentekijä asettaa kriteerivektorit paremmuusjärjestykseen Jos U on käytössä, monitavoiteoptimointitehtävä palautuu yksitavoitteiseksi optimointitehtäväksi = maksimoidaan U rajoitteiden suhteen Yleensä U on ainakin osittain tuntematon 7
8 Monitavoiteoptimoinnin menetelmiä Menetelmät perustuvat usein yksitavoitteisen optimoinnin menetelmiin Päätöksentekijän rooli vaihtelee eri menetelmissä Menetelmien luokittelua: määrätään Pareto-optimaaliset pisteet päätöksentekijää ei tarvita määrätään ennalta paremmuussuhteet interaktiiviset menetelmät 8
9 Painokerroinmenetelmä Määrätään painokertoimet w i 0, i = 1,..., k, siten, että k i=1 w i = 1 Ratkaistaan painokerrointehtävä: min k i=1 kun x S w i (c i ) T x Päätöksentekijä valitsee eri painokertoimilla lasketuista ratkaisuista mieleisensä 9
10 Painokerrointehtävän ratkaisu on Pareto-optimaalinen, jos kaikki painokertoimet ovat aidosti positiivisia Todistus: Vastaoletus: Painokerrointehtävän ratkaisu x S ei ole Pareto-optimaalinen = On olemassa toinen piste x S siten, että (c i ) T x (c i ) T x kaikilla i, ja ainakin yksi epäyhtälöistä on aito = Koska w i > 0 kaikilla i, niin k i=1 w i (c i ) T x < k i=1 w i (c i ) T x = Ristiriita, sillä x on ratkaisu = Vastaoletus väärä ja x Pareto-optimaalinen 10
11 Painokerrointehtävän ratkaisu on Pareto-optimaalinen, jos se on yksikäsitteinen Todistus: Harjoitustehtävä Jos x S on Pareto-optimaalinen ratkaisu, niin on olemassa painokertoimet siten, että x on painokerrointehtävän ratkaisu 11
12 Rajoiteyhtälömenetelmä Valitaan yksi objektifunktio ensisijaiseksi tavoitteeksi ja asetetaan muille objektifunktiolle ylärajat Ylärajat määritellään esimerkiksi ε i = z i + δ i, missä δ i > 0 Ratkaistaan rajoiteyhtälötehtävä: min (c j ) T x kun (c i ) T x ε i x S i j Päätöksentekijä valitsee eri rajoiteyhtälötehtävien ratkaisuista mieleisensä 12
13 Rajoiteyhtälötehtävän ratkaisu x S on Pareto-optimaalinen, jos se on yksikäsitteinen, kun ε i = (c i ) T x kaikilla i j Todistus: Vastaoletus: Rajoiteyhtälötehtävän ratkaisu x S ei ole Pareto-optimaalinen = On olemassa toinen piste x S siten, että (c i ) T x (c i ) T x kaikilla i, ja ainakin yksi epäyhtälöistä on aito Toisaalta, x on yksikäsitteinen ratkaisu ja ε i = (c i ) T x = (c i ) T x ε i = (c i ) T x kaikilla i j ja (c j ) T x < (c j ) T x = Ristiriita = Vastaoletus väärä ja x Pareto-optimaalinen 13
14 Mitä tahansa ylärajoja käyttäen saatu rajoiteyhtälötehtävän ratkaisu on Pareto-optimaalinen, jos se on yksikäsitteinen Piste x S on Pareto-optimaalinen, jos ja vain jos se on rajoiteyhtälötehtävän ratkaisu kaikilla mahdollisilla j, kun ε i = (c i ) T x kaikilla i j 14
15 Globaalin tavoitteen menetelmä Minimoidaan etäisyys ihanteelliseen kriteerivektoriin: missä p 1 Päätöksentekijää ei tarvita min k i=1 kun x S (c i ) T x z i p 1/p Globaalin tavoitteen menetelmällä saatu ratkaisu on Pareto-optimaalinen Huom: Jos p = 1, tehtävä on lineaarinen mutta ei differentioituva Jos p > 1, tehtävä on differentioituva mutta ei lineaarinen 15
16 Leksikaalinen optimointi Päätöksentekijä määrää objektifunktioiden tärkeysjärjestyksen Minimoidaan tärkein objektifunktio rajoitteiden suhteen Jos ratkaisu on yksikäsitteinen, se on koko tehtävän ratkaisu Muuten minimoidaan toiseksi tärkein objektifunktio rajoitteiden suhteen siten, että edellinen objektifunktio säilyttää optimiarvonsa Näin jatketaan, kunnes saadaan yksikäsitteinen ratkaisu Leksikaalisella optimoinnilla saatu ratkaisu on Pareto-optimaalinen 16
17 Tavoiteoptimointi Päätöksentekijä määrää objektifunktioille tavoitetasot = tavoitteet (c i ) T x b i kaikilla i Poikkeamamuuttujat d i = b i (c i ) T x kertovat, paljonko tavoitteesta jäädään Koska d i voi olla 0 tai 0, niin d i = d i d + i, missä d i, d+ i 0 Saadaan (c i ) T x + d i d + i = b i Minimointitehtävä = riittää minimoida muuttujia d + i 17
18 Arkhimedinen tavoiteoptimointi: Minimoidaan muuttujien d + i painotettua summaa, missä painokertoimet ovat positiivisia Ratkaistaan tehtävä: min k w i + d+ i i=1 kun (c i ) T x d + i b i i = 1,..., k d + i 0 i = 1,..., k x S Tavoiteoptimoinnilla saatu ratkaisu on Pareto-optimaalinen, jos optimissa d + i > 0 kaikilla i tai jos tavoitetasoista muodostuva referenssipiste on Pareto-optimaalinen 18
19 Interaktiiviset menetelmät Päätöksentekijä osallistuu ratkaisun etsimiseen interaktiivisesti Päätöksentekijä antaa ratkaisuprosessin aikana informaatiota, joka vaikuttaa siihen, millä tavalla ratkaisun etsimistä jatketaan Esimerkiksi, hän tarkentaa objektifunktioiden paremmuussuhteita saatujen välitulosten perusteella Tai hän valitsee tarjotuista Pareto-optimaalisista pisteistä ne, joista ratkaisuprosessia jatketaan 19
20 NIMBUS-menetelmä Interaktiivinen menetelmä, joka soveltuu sekä lineaarisille, että epälineaarisille monitavoiteoptimointitehtäville ja erityisesti tehtäville, joissa on enemmän kuin kaksi objektifunktiota Perustuu objektifunktioiden luokitteluun 5 luokkaan: - funktiot, joiden arvoa halutaan parantaa mahdollisimman paljon - funktiot, joiden arvoa halutaan parantaa annetulle tavoitetasolle - funktiot, joiden arvo tällä hetkellä on hyvä - funktiot, joiden arvo voi huonontua annetulle ylärajalle asti - funktiot, joiden arvosta ei olla tällä hetkellä kiinnostuneita 20
21 Luokittelu järkevä vain, jos kahdessa ensimmäisessä sekä kahdessa viimeisessä luokassa on ainakin yksi funktioista Luokittelutiedon perusteella muodostetaan yksi objektifunktio, jonka ratkaisuna saadaan uusi Pareto-optimaalinen ratkaisu Ilmainen WWW-NIMBUS toteutus netissä: Lisätietoa Ralph Steuer: Multiple Criteria Optimization: Theory, Computation and Applications, 1986 Kaisa Miettinen: Nonlinear Multiobjective Optimization, 1999
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Optimaalisuus: objektiavaruus f 2 min Z = f(s) Parhaat arvot alhaalla ja vasemmalla
LisätiedotLuento 6: Monitavoiteoptimointi
Luento 6: Monitavoiteoptimointi Monitavoiteoptimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f 1,, f m Esimerkiksi opiskelija haluaa oppia mahdollisimman hyvin ja paljon mahdollisimman
LisätiedotMonitavoiteoptimoinnin ja erityisesti NIMBUS-menetelmän hyödyntäminen monitavoitteisessa päätöksenteossa.
Monitavoiteoptimoinnin ja erityisesti NIMBUS-menetelmän hyödyntäminen monitavoitteisessa päätöksenteossa. Ellemari Teinilä Pro gradu -tutkielma Heinäkuu 2019 MATEMATIIKAN JA TILASTOTIETEEN LAITOS TURUN
LisätiedotLuento 6: Monitavoitteinen optimointi
Luento 6: Monitavoitteinen optimointi Monitavoitteisessa optimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f,,f m Esimerkki ortfolion eli arvopaperijoukon optimoinnissa: f
LisätiedotPiiri K 1 K 2 K 3 K 4 R R
Lineaarinen optimointi vastaus, harj 1, Syksy 2016. 1. Teollisuuslaitos valmistaa piirejä R 1 ja R 2, joissa on neljää eri komponenttia seuraavat määrät: Piiri K 1 K 2 K 3 K 4 R 1 3 1 2 2 R 2 4 2 3 0 Päivittäistä
LisätiedotTIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Käytännön optimointiongelmien ratkaiseminen Käytännön optimointiongelmien ratkaiseminen
LisätiedotTIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 PO pisteiden määräämismenetelmät Idea: tuotetaan erilaisia PO ratkaisuita, joista
LisätiedotTIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Yleistä https://korppi.jyu.fi/kotka/r.jsp?course=96762 Sisältö Johdanto yksitavoitteiseen
LisätiedotOptimaalisuusehdot. Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0
Optimaalisuusehdot Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0 i = 1,..., m j = 1,..., l missä f : R n R, g i : R n R kaikilla i = 1,..., m, ja h j : R n R kaikilla j = 1,..., l
LisätiedotTIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Evoluutiopohjainen monitavoiteoptimointi MCDM ja EMO Monitavoiteoptimointi kuuluu
LisätiedotMat Optimointiopin seminaari kevät Monitavoiteoptimointi. Tavoitteet
Mat-2.142 Optimointiopin seminaari kevät 2000 Monitavoiteoptimointi Optimointiopin seminaari - Kevät 2000 / 1 Tavoitteet Monitavoitteisten optimointitehtävien ratkaisukäsitteet ja soveltamismahdollisuudet
LisätiedotLuento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään
LisätiedotTIES483 Epälineaarinen optimointi. Monitavoiteoptimointi Syksy 2012
TIES483 Epälineaarinen optimointi Monitavoiteoptimointi jussi.hakanen@jyu.fi Syksy 2012 Sisältö Johdanto monitavoiteoptimointiin Monitavoiteoptimoinnin käsitteitä Menetelmätyypit Käytännön sovellusesimerkkejä
LisätiedotOptimointi. Etsitään parasta mahdollista ratkaisua annetuissa olosuhteissa. Ongelman mallintaminen. Mallin ratkaiseminen. Ratkaisun analysointi
Optimointi Etsitään parasta mahdollista ratkaisua annetuissa olosuhteissa Ongelman mallintaminen Mallin ratkaiseminen Ratkaisun analysointi 1 Peruskäsitteitä Muuttujat: Sallittu alue: x = (x 1, x 2,...,
LisätiedotLuento 9: Yhtälörajoitukset optimoinnissa
Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon
LisätiedotLuento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään
LisätiedotKimppu-suodatus-menetelmä
Kimppu-suodatus-menetelmä 2. toukokuuta 2016 Kimppu-suodatus-menetelmä on kehitetty epäsileiden optimointitehtävien ratkaisemista varten. Menetelmässä approksimoidaan epäsileitä funktioita aligradienttikimpulla.
LisätiedotOsakesalkun optimointi
Osakesalkun optimointi Anni Halkola Epäsileä optimointi Turun yliopisto Huhtikuu 2016 Sisältö 1 Johdanto 1 2 Taustatietoja 2 3 Laskumetodit 3 3.1 Optimointiongelmat........................ 4 4 Epäsileän
LisätiedotLineaaristen monitavoiteoptimointitehtävien
Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Jerri Nummenpalo 17.09.2012 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.
LisätiedotTIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Tasaväliset PO pisteet? Painokerroinmenetelmä: muutetaan painoja systemaattisesti
LisätiedotJYVÄSKYLÄN YLIOPISTO. 3. Luennon sisältö
JYVÄSKYLÄN YLIOPISTO 3. Luennon sisältö Lineaarisen optimointitehtävän sallittu alue Optimointitehtävien muunnoksia Lineaarisen yhtälöryhmän perusmuoto ja perusratkaisut Lineaarisen optimointitehtävän
LisätiedotOsakesalkun optimointi. Anni Halkola Turun yliopisto 2016
Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.
LisätiedotLuento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu
Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) vasemman puolen
Lisätiedot6. Luennon sisältö. Lineaarisen optimoinnin duaaliteoriaa
JYVÄSKYLÄN YLIOPISTO 6. Luennon sisältö Lineaarisen optimoinnin duaaliteoriaa työkalu ratkaisun analysointiin Jälki- ja herkkyysanalyysiä mitä tapahtuu optimiratkaisulle, jos tehtävän vakiot hieman muuttuvat
Lisätiedotmin x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4
LisätiedotJälki- ja herkkyysanalyysi. Tutkitaan eri kertoimien ja vakioiden arvoissa tapahtuvien muutosten vaikutusta optimiratkaisuun
Jälki- ja herkkyysanalyysi Tutkitaan eri kertoimien ja vakioiden arvoissa tapahtuvien muutosten vaikutusta optimiratkaisuun 1 Hinnat ja varjohinnat Objektifunktio c T x = Kerroin c j ilmoittaa, paljonko
LisätiedotLineaarinen optimointitehtävä
Lineaarinen optimointitehtävä Minimointitehtävä yhtälörajoittein: min kun n j=1 n j=1 c j x j a ij x j = b i x j 0 j = 1,..., n i = 1,..., m Merkitään: z = alkuperäisen objektifunktion arvo käsiteltävänä
LisätiedotTIES483 Epälineaarinen optimointi
TIES483 Epälineaarinen optimointi Käytännön optimointiongelmien ratkaiseminen jussi.hakanen@jyu.fi Syksy 2012 Käytännön optimointiongelmien ratkaiseminen Käytännössä tulee kiinnittää huomiota ainakin seuraaviin
LisätiedotMalliratkaisut Demot
Malliratkaisut Demot 1 23.1.2017 1. Päätösmuuttujiksi voidaan valita x 1 : tehtyjen peruspöytin lukumäärä x 2 : tehtyjen luxuspöytien lukumäärä. Optimointitehtäväksi tulee max 200x 1 + 350x 2 s. t. 5x
LisätiedotHarjoitus 4: Matlab - Optimization Toolbox
Harjoitus 4: Matlab - Optimization Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen
LisätiedotTIES483 Epälineaarinen optimointi
TIES483 Epälineaarinen optimointi Käytännön optimointiongelmien ratkaiseminen jussi.hakanen@jyu.fi Syksy 2012 Käytännön optimointiongelmien ratkaiseminen Käytännössä tulee kiinnittää huomiota ainakin seuraaviin
LisätiedotReferenssipiste- ja referenssisuuntamenetelmät
Referenssipiste- ja referenssisuuntamenetelmät Optimointiopin seminaari - Kevät 2000 / 1 Esitelmän sisältö Menetelmien ideat Menetelmien soveltaminen Menetelmien ominaisuuksia Optimointiopin seminaari
LisätiedotTIES483 Epälineaarinen optimointi. Syksy 2012
TIES483 Epälineaarinen optimointi jussi.hakanen@jyu.fi Syksy 2012 Yleistä Tietotekniikan syventävä kurssi, 5 op Pakollinen laskennallisten tieteiden FMopinnoissa (ent. simulointi ja optimointi) https://korppi.jyu.fi/kotka/r.jsp?course=134562
LisätiedotMalliratkaisut Demot
Malliratkaisut Demot 3.2.27 Tehtävä. Valmisohjelmistolla voidaan ratkaista tehtävä min c T x s. t. Ax b x, missä x, c ja b R n ja A R m n. Muunnetaan tehtävä max x + 2x 2 + 3x 3 + x s. t. x + 3x 2 + 2x
Lisätiedot4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä
JYVÄSKYLÄN YLIOPISTO 4. Luennon sisältö Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä kevät 2012 TIEA382 Lineaarinen ja diskreetti optimointi Lineaarinen optimointitehtävä Minimointitehtävä
Lisätiedot1 Kertaus. Lineaarinen optimointitehtävä on muotoa:
1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n
LisätiedotDemo 1: Pareto-optimaalisuus
MS-C2105 Optimoinnin perusteet Malliratkaisut 6 Ehtamo Demo 1: Pareto-optimaalisuus Tunnista Pareto-optimaaliset ratkaisut. a) Risk FTW solutions ltd. Creative Solutions ltd. Focus inc. SoftCorp inc. Tull
LisätiedotDemo 1: Simplex-menetelmä
MS-C2105 Optimoinnin perusteet Malliratkaisut 3 Ehtamo Demo 1: Simplex-menetelmä Muodosta lineaarisen tehtävän standardimuoto ja ratkaise tehtävä taulukkomuotoisella Simplex-algoritmilla. max 5x 1 + 4x
LisätiedotHarjoitus 8: Excel - Optimointi
Harjoitus 8: Excel - Optimointi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Lineaarisen optimointimallin muodostaminen
Lisätiedot1 Johdanto LP tehtävän luonteen tarkastelua Johdanto herkkyysanalyysiin Optimiarvon funktio ja marginaalihinta
Sisältö Johdanto 2 LP tehtävän luonteen tarkastelua 3 Johdanto herkkyysanalyysiin 5 2 Optimiarvon funktio ja marginaalihinta 5 3 Johdanto duaaliteoriaan 6 2 LP-tehtävän standardimuoto 9 Johdanto Optimoinnista
LisätiedotTalousmatematiikan perusteet: Luento 15. Rajoitettu optimointi Lagrangen menetelmä Lagrangen kerroin ja varjohinta
Talousmatematiikan perusteet: Luento 15 Rajoitettu optimointi Lagrangen menetelmä Lagrangen kerroin ja varjohinta Viime luennolla Tarkastelimme usean muuttujan funktioiden rajoittamatonta optimointia:
LisätiedotTaustatietoja ja perusteita
Taustatietoja ja perusteita Vektorit: x R n pystyvektoreita, transpoosi x T Sisätulo: x T y = n i=1 x i y i Normi: x = x T x = ni=1 x 2 i Etäisyys: Kahden R n :n vektorin välinen etäisyys x y 1 Avoin pallo:
LisätiedotMalliratkaisut Demot
Malliratkaisut Demot 5 2.2.28 Tehtävä a) Tehtävä voidaan sieventää muotoon max 5x + 9x 2 + x 3 s. t. 2x + x 2 + x 3 x 3 x 2 3 x 3 3 x, x 2, x 3 Tämä on tehtävän kanoninen muoto, n = 3 ja m =. b) Otetaan
LisätiedotLuento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu
Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) on voimassa
LisätiedotTIEA382 Lineaarinen ja diskreetti optimointi
TIEA382 Lineaarinen ja diskreetti optimointi Jussi Hakanen Tietotekniikan laitos jussi.hakanen@jyu.fi AgC 426.3 Yleiset tiedot Tietotekniikan kandidaattiopintojen valinnainen kurssi http://users.jyu.fi/~jhaka/ldo/
LisätiedotLineaarinen optimointi. Harjoitus 6-7, Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän. c T x = min!
Lineaarinen optimointi Harjoitus 6-7, 016. 1. Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän c T x = min! (T) Ax b x 0 duaalitehtävän duaali on tehtävä (T). Ratkaisu. (P) c T x = min! Ax b x
Lisätiedot2 Konveksisuus ja ratkaisun olemassaolo
2 Konveksisuus ja ratkaisun olemassaolo Ratkaisun olemassaolon tutkimiseen tarvitaan perustietoja konvekseista joukoista ja lineaarialgebrasta. Niitä tarvitaan myös ratkaisualgoritmin ymmärtämiseen. Tutkitaan
LisätiedotDemo 1: Pareto-optimaalisuus
MS-C2105 Optimoinnin perusteet Harjoitus 6 Ehtamo Oppimistavoitteet: ˆ Pareto-optimaalisuus ˆ Monitavoiteoptimointitehtävän ratkaiseminen Demo 1: Pareto-optimaalisuus Tunnista Pareto-optimaaliset ratkaisut.
LisätiedotMalliratkaisut Demo 1
Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,
LisätiedotLineaarisen kokonaislukuoptimointitehtävän ratkaiseminen
Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Jos sallittuja kokonaislukuratkaisuja ei ole kovin paljon, ne voidaan käydä kaikki läpi yksitellen Käytännössä tämä ei kuitenkaan ole yleensä mahdollista
LisätiedotTeollinen optimointi: avain yritysten kilpailukykyyn
Teollinen optimointi: avain yritysten kilpailukykyyn Professori Kaisa Miettinen, JY, virkaanastujaisesitelmä 14.5.2008 Johdattelu optimointiin Teollinen optimointi viittaa optimoinnin soveltamiseen erityisesti
Lisätiedot1. Lineaarinen optimointi
0 1. Lineaarinen optimointi 1. Lineaarinen optimointi 1.1 Johdatteleva esimerkki Esimerkki 1.1.1 Giapetto s Woodcarving inc. valmistaa kahdenlaisia puuleluja: sotilaita ja junia. Sotilaan myyntihinta on
LisätiedotIV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee
LisätiedotParetoratkaisujen visualisointi. Optimointiopin seminaari / Kevät 2000 Esitelmä 11 Petteri Kekäläinen 45305L
Paretoratkaisujen visualisointi Optimointiopin seminaari / Kevät 2000 Esitelmä 11 Petteri Kekäläinen 45305L 1. Johdanto Monitavoiteoptimointitehtävät ovat usein laajuutensa takia vaikeasti hahmotettavia
LisätiedotLineaarinen optimointitehtävä
Lineaarinen optimointitehtävä min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2. a m1 x 1 + a m2 x 2 + + a mn x n b m x 1, x 2,..., x n 0 1
LisätiedotTIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Monitavoiteoptimointi Mitä monitavoitteisuus tarkoittaa? Halutaan saavuttaa
LisätiedotTäydellisyysaksiooman kertaus
Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja
Lisätiedot4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen
4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen Käypä kantaratkaisu löytyy helposti, esimerkiksi tapauksessa Ax b, b 0 x 0 jolloin sen määräävät puutemuuttujat. Tällöin simplex-menetelmän alustus
LisätiedotHaitallinen valikoituminen: Kahden tyypin malli
Haitallinen valikoituminen: Kahden tyypin malli Mat-2.4142 Optimointiopin seminaari Mikko Hyvärinen 29.1.2008 Haitallinen valikoituminen kahden tyypin malli Haitallinen valikoituminen tarkoittaa että päämies
Lisätiedot8. Ensimmäisen käyvän kantaratkaisun haku
38 8. Ensimmäisen käyvän kantaratkaisun haku Edellä kuvattu simplex-algoritmi tarvitsee alkuratkaisuksi käyvän kantaratkaisun eli käyvän joukon kärkipisteen. Sellaisen voi konstruoida seuraavilla tavoilla:
LisätiedotLineaarisen ohjelman määritelmä. Joonas Vanninen
Lineaarisen ohjelman määritelmä Joonas Vanninen Sisältö Yleinen optimointitehtävä Kombinatorinen tehtävä Optimointiongelman tapaus Naapurusto Paikallinen ja globaali optimi Konveksi optimointitehtävä Lineaarinen
LisätiedotTIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 NSGA-II Non-dominated Sorting Genetic Algorithm (NSGA) Ehkä tunnetuin EMO-menetelmä
Lisätiedot2 Osittaisderivaattojen sovelluksia
2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä
LisätiedotLineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla
Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla Juho Andelmin 21.01.2013 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Raimo P. Hämäläinen Työn saa tallentaa ja julkistaa Aalto-yliopiston
Lisätiedotsaadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 209 4 Funktion raja-arvo 4. Määritelmä. Funktion raja-arvon määritelmän ehdosta ε > 0: δ > 0: f) A < ε aina, kun 0 < a < δ, saadaan kvanttorien järjestystä vaihtamalla
LisätiedotMaksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta
Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti
Lisätiedot1 sup- ja inf-esimerkkejä
Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat
Lisätiedotmissä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!
Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja
LisätiedotTalousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta
Talousmatematiikan perusteet: Luento 14 Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Viime luennolla Tarkastelimme usean muuttujan funktioiden
Lisätiedot12. Hessen matriisi. Ääriarvoteoriaa
179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä
LisätiedotTalousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla
Talousmatematiikan perusteet: Luento 12 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,
LisätiedotLuento 3: Simplex-menetelmä
Luento 3: Simplex-menetelmä Kuten graafinen tarkastelu osoittaa, LP-tehtävän ratkaisu on aina käyvän alueen kulmapisteessä, eli ekstreemipisteessä (extreme point). Simplex-menetelmässä ekstreemipisteitä,
Lisätiedot3 Lukujonon raja-arvo
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 208 3 Lukujonon raja-arvo 3 Määritelmä Osoita, että 6n + 2n + 3 3 < 4 n ja määritä jokin sellainen n 0 Z +, että 6n + 2n + 3 3 < 0 87 aina, kun n > n 0 2 Olkoon x n
Lisätiedotsaadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 208 4 Funktion raja-arvo 4 Määritelmä Funktion raja-arvon määritelmän ehdosta ε > 0: δ > 0: fx) A < ε aina, kun 0 < x a < δ, saadaan kvanttorien järjestystä vaihtamalla
LisätiedotLuento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli.
Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. LP-malli Esimerkki. Maalitehdas valmistaa ulko- ja sisämaalia raaka-aineista M1 ja M2. Sisämaalin maksimikysyntä on 2 tonnia/päivä. Sisämaalin
LisätiedotMiksi kompromissi on parempi kuin optimi? Uusia monitavoiteoptimoinnin menetelmiä päätöksentekoon
Miksi kompromissi on parempi kuin optimi? Uusia monitavoiteoptimoinnin menetelmiä päätöksentekoon Kaisa Miettinen Johdantoa optimointiin Optimointi tarkoittaa systemaattisia tapoja taata parhaan mahdollisen
LisätiedotRatkaisu: Ensimmäinen suunta. Olkoon f : R n R m jatkuva eli kaikilla ε > 0 on olemassa sellainen δ > 0, että. kun x a < δ. Nyt kaikilla j = 1,...
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 2017 Harjoitus 1 Ratkaisuehdotukset 11 Osoita, että vektorifunktio f = (f 1,, f m ): R n R m, on jatkuva, jos ja vain jos jokainen komponenttifunktio
Lisätiedotk=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu
LIS AYKSI A kirjaan Reaalimuuttujan analyysi 1.6. Numeerinen integrointi: Gaussin kaavat Edella kasitellyt numeerisen integroinnin kaavat eli kvadratuurikaavat Riemannin summa, puolisuunnikassaanto ja
LisätiedotMonitavoitteiseen optimointiin soveltuvan evoluutioalgoritmin tarkastelu
Monitavoitteiseen optimointiin soveltuvan evoluutioalgoritmin tarkastelu (Valmiin työn esittely) 11.4.2011 Ohjaaja: Ville Mattila Valvoja: Raimo Hämäläinen Työn tavoite Tutkia evoluutioalgoritmia (Lee
LisätiedotKokonaislukuoptimointi
Kokonaislukuoptimointi Optimointitehtävät, joissa muuttujat tai osa niistä voivat saada vain kokonaislukuarvoja Puhdas kokonaislukuoptimointitehtävä: Kaikki muuttujat kokonaislukuja Sekoitettu kokonaislukuoptimointitehtävä:
LisätiedotMalliratkaisut Demo 4
Malliratkaisut Demo 4 1. tehtävä a) f(x) = 2x + 21. Funktio on lineaarinen, joten se on unimodaalinen sekä maksimoinnin että imoinnin suhteen. Funktio on konveksi ja konkaavi. b) f(x) = x (pienin kokonaisluku
LisätiedotMat Lineaarinen ohjelmointi
Mat-2.3140 Lineaarinen ohjelmointi 4.10.2007 Luento 4 Ekstreemipisteiden optimaalisuus ja Simplex (kirja 2.4-2.6, 3.1-3.2) Lineaarinen ohjelmointi - Syksy 2007 / 1 Luentorunko Degeneroituvuus Ekstreemipisteiden
LisätiedotKombinatorinen optimointi
Kombinatorinen optimointi Sallittujen pisteiden lukumäärä on äärellinen Periaatteessa ratkaisu löydetään käymällä läpi kaikki pisteet Käytännössä lukumäärä on niin suuri, että tämä on mahdotonta Usein
Lisätiedot1 Rajoitettu optimointi I
Taloustieteen mat.menetelmät 2017 materiaali II-1 1 Rajoitettu optimointi I 1.1 Tarvittavaa osaamista Matriisit ja vektorit, matriisien de niittisyys Derivointi (mm. ketjusääntö, Taylorin kehitelmä) Implisiittifunktiolause
Lisätiedot3 Lukujonon raja-arvo
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 209 3 Lukujonon raja-arvo 3 Määritelmä Osoita, että 6n + 2n + 3 3 < 4 n ja määritä jokin sellainen n 0 Z +, että 6n + 2n + 3 3 < 0 87 aina, kun n > n 0 2 Olkoon x n
Lisätiedot, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 017 Harjoitus 4 Ratkaisuehdotukset 4.1. Osoita, että tasa-arvojoukko S F (0), F : R 3 R, F (x) = 3x 1 x 3 + e x + x e x 3, on säännöllinen
LisätiedotLuento 9: Newtonin iteraation sovellus: optimointiongelma
Luento 9: Newtonin iteraation sovellus: optimointiongelma ilman rajoitusehtoja Optimointiongelmassa tehtävänä on löytää annetun reaaliarvoisen jatkuvan funktion f(x 1,x,,x n ) maksimi tai minimi jossain
LisätiedotOPTIMOINNIN JA PÄÄTÖKSENTEON MAISTERI- KOULUTUS (OPTI)
OPTIMOINNIN JA PÄÄTÖKSENTEON MAISTERI- KOULUTUS (OPTI) 24.10.2013 JYVÄSKYLÄN YLIOPISTO INFORMAATIOTEKNOLOGIAN TIEDEKUNTA 2013 1. AJANKOHTAISUUS Kilpailu kiristyy kaikilla elämänalueilla koko ajan asiat
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 10 1 Lokaalit ääriarvot Yhden muuttujan funktion f (x) lokaali maksimi on piste x 0, jossa f (x) on suurempi kuin muualle pisteen x 0 ympäristössä, eli kun f (x 0 )
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:
LisätiedotPartikkelit pallon pinnalla
Simo K. Kivelä, 14.7.2004 Partikkelit pallon pinnalla Tehtävänä on sijoittaa annettu määrä keskenään identtisiä partikkeleita mahdollisimman tasaisesti pallon pinnalle ja piirtää kuvio syntyvästä partikkelikonfiguraatiosta.
LisätiedotTalousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla
Talousmatematiikan perusteet: Luento 11 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi
LisätiedotAnalyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu.
Analyysi Harjoituksia lukuihin 3 / Syksy 204. Osoita täsmällisesti perustellen, että joukko { 2x A = x ]4, [. x 4 ei ole ylhäältä rajoitettu. 2. Anna jokin ylä- ja alaraja joukoille { x( x) A = x ], [,
LisätiedotMalliratkaisut Demo 4
Malliratkaisut Demo 4 1. tehtävä a) () = 2+1. Funktio on lineaarinen, joten se on unimodaalinen sekä maksimoinnin että minimoinnin suhteen. Funktio on konveksi ja konkaavi. b) () = (suurin kokonaisluku
LisätiedotSekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä
Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja
LisätiedotKaksiluokkainen tapaus, lineaarinen päätöspinta, lineaarisesti erottuvat luokat
1 Tukivektoriluokittelija Tukivektorikoneeseen (support vector machine) perustuva luoikittelija on tilastollisen koneoppimisen teoriaan perustuva lineaarinen luokittelija. Perusajatus on sovittaa kahden
Lisätiedotmissä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!
Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja
LisätiedotLuento 4: Lineaarisen tehtävän duaali
Luento 4: Lineaarisen tehtävän duaali Käsittelemme seuraavaksi lineaarisen optimoinnin duaaliteoriaa. Kuten luennossa 2 esitettiin, kohdefunktion optimiarvon herkkyys z, kun rajoitusyhtälön i, 1 i m, oikea
LisätiedotValintakoe
Valintakoe 7.3.05 Kokeessa saa käyttää kirjoitusvälinewiden lisäksi ainoastaan kokeessa jaettavaa funktiolaskinta ja taulukkoa Pisteytys 8*3p=4p. Tehtävien alakohtien pistemäärät voivat poiketa toisistaan..
Lisätiedot