FYSA240/3 (FYS242/3) HÖYRYNPAINE JA HÖYRYSTYMINEN
|
|
- Väinö Korhonen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 FYSA240/3 (FYS242/3) HÖYRYNPAINE JA HÖYRYSYMINEN 1. Johdanto 1.1. Höyrystyminen arkastellaan nesteen ja kaasun, esim. veden ja ilman rajaintaa. Nesteen molekyylit ovat lämöliikkeessä toistensa vetovoimakentässä. Rajainnassa vetovoimat ilmenevät intajännityksenä. Osalla nestemolekyyleistä on riittävästi liike-energiaa, ks. kuva 1, ja riittävä noeuskomonentti nesteinnan normaalin suuntaan, jotta ne ystyvät irtoamaan kaasutilaan. Vastaavasti osa kaasutilaan siirtyneistä molekyyleistä saattaa törmätä rajaintaan ja joutua takaisin nesteeseen. Kuva 1. Molekyylien energiajakauma Suljetussa tilassa saavutetaan kutakin lämötilaa vastaava dynaaminen tasaainotila, jossa edellä kuvatut haihtumista ja tiivistymistä vastaavat hiukkasvirrat ovat yhtä suuret. Kaasutilassa olevien nesteen molekyylien keskimääräinen lukumäärä on tällöin vakio;
2 FYS242/3 Höyrynaine ja höyrystymislämö 2 kaasutila on ko. nesteen höyryn kyllästämä. Höyryn aiheuttamaa osaainetta sanotaan höyrynaineeksi P h = P h (), ks. kuva 2. Kuva 2. Veden höyrynainekäyrä Sen sijaan avoimessa tilassa osa oissiirtyneistä nestemolekyyleistä jää alaamatta, jolloin neste vähenee haihtumalla. ällaisten energiajakauman louäätä, kuva 1, vastaavien hiukkasten oistuessa jakauma muuttuu ja siten lämötila laskee, ellei neste saa muualta riittävää energiakomensaatiota. Viimeksi mainitussa taauksessa vastaa ulkoisen lämmitystehon arvoa dynaaminen tasaainotila, jossa haihtuneiden nestemolekyylien viemän energiavirran ja järjestelmän lämöhäviöiden energiavirran summa on tuotu teho P. Kun ulkoista tehoa lisätään riittävästi, energiajakauma muuttuu; lämötila kasvaa ja haihtuminen kiihtyy, kunnes saavutetaan kiehumisiste. ällöin höyrynaine = ulkoinen aine ja haihtumista taahtuu nesteen sisässäkin, syntyy kulia nimenomaan lämmönlähteen innalle. Kiehumistaahtumassa nesteen saama ulkoinen energia kuluu (häviöitä lukuun ottamatta) kokonaan molekyylien irrottamiseen, eikä lämötila enää nouse.
3 FYS242/3 Höyrynaine ja höyrystymislämö Höyrystymislämö Höyrystymislämö on se lämömäärä, joka tarvitaan muuttamaan massayksikkö nestettä samassa lämötilassa höyryksi. Merkitään: höyrystymislämö = L 23, jos massayksikkönä on kilogramma höyrystymislämö = l 23, jos massayksikkönä on mooli. Höyrystymislämö on kullekin nesteelle ominainen suure. Se ienenee lämötilan kasvaessa, koska kuumassa nesteessä molekyylien keskimääräinen energia on korkeami kuin kylmässä nesteessä. Kuva 3 esittää veden höyrystymislämmön L 23 riiuvuuden lämötilasta. Kun lämötila on noin 643 K, höyrystymislämö tulee nollaksi aineen ollessa tällöin noin 220 MPa. ätä tilannetta vastaa PV -innalla ns. kriittinen iste. ätä korkeammissa lämötiloissa ei kaasua saada nesteeksi enää missään aineessa. Kuva 3. Veden höyrystymislämmön riiuvuus lämötilasta. ässä työssä mitataan nimenomaan veden höyrystymisominaisuuksia ja siksi teoreettinenkin tarkastelu esitetään vettä silmälläitäen lähellä ns. normaaliolosuhteita.
4 FYS242/3 Höyrynaine ja höyrystymislämö 4 2. eoreettinen tarkastelu Vakioaineisen nesteen kiehuessa vakiolämötilassa kyseessä on isobaarinen ja isoterminen faasimuutos (faasi 2 = neste) (faasi 3 = höyry). Vakiolämötilassa taahtuvaa faasimuutosta kuvaa Clausiuksen-Claeyronin yhtälö ([1], sivu 228) dp d L = ΔV 23, joka moolia kohti kirjoitettuna ja siksi osittain ienin symbolein esitettynä on d d l = 23. (1) ( v v2 ) 3 Kiehumisessa höyrytilavuus v 3 on aljon suuremi kuin nestetilavuus v 2. Vedellä normaaliaineessa ero on yli 1000-kertainen. Ideaalikaasun tilayhtälöä soveltamalla saadaan (v 3 v 2 ) v 3 = R/ (R = 8,3144 J/mol K on yleinen kaasuvakio). Siten ätee d l23 =, d 2 R josta saadaan lähekkäiset lämötilat 0 ja ja vastaavat höyrynaineet 0 ja toisiinsa sitova integraaliyhtälö d 1 d = l ( ) R. (2) Alhaisessa lämötilassa höyrystymislämö ienenee likimain lineaarisesti lämötilan kasvaessa (vrt. kuva 3). Kaealla lämötilavälillä muutos voidaan esittää lausekkeen 1 l23( ) = α + β avulla, missä α ja β ovat vakioita. Sijoittamalla tämä yhtälöön (2) ja integroimalla saadaan β β 1 1 ln = α + = α + +. R R Koska 0, on hakasulkulauseke likimain l 23 (). Siten saadaan
5 FYS242/3 Höyrynaine ja höyrystymislämö 5 l ln 23 = a b R = (3) ämä kuvastaa höyrynaineen muutosta ienellä lämötilavälillä, kun vertailuiste 0 ja vastaava lämötila 0 tunnetaan. Jo muutaman kymmenen asteen lämötilavälillä itää lauseke muuttaa matemaattisesti täsmällisemään muotoon lisäämällä siihen toisen asteen termi. ällöin vertailuaineena voidaan käyttää vaikkaa vallitsevaa normaali-ilmanainetta n. Näin ainesuhteen logaritmiksi saadaan ln n 1 1 a + b + c 2 =, (4) missä a, b ja c ovat kussakin taauksessa sovitettavia vakioita. Lausekkeesta (3) ratkaistaan höyrystymislämö l R 0 23 = ln. (5) ( 0 ) 0 Painesuhteen logaritmi voidaan kirjoittaa muotoon n ln = ln = ln ln 0. 0 n 0 n n Sijoittamalla tähän lausekkeen (4) mukaiset sarjakehitelmät saadaan ln 1 1 = a + b + c 1 ( a + b + c ) = b( ) + c( Kun vielä muistetaan, että 0, sijoitus ja sievennys antavat höyrystymislämmölle lausekkeen l 23 = R b + c( + ) R( b + c ). (6) 0 Näin saadaan vakioille α ja β esitykset α = -Rb ja β = -2Rc. 1 ).
6 FYS242/3 Höyrynaine ja höyrystymislämö 6 3. yö käytännössä Höyrystymislämö voidaan määrittää suoraan unnitsemalla höyrystyneen nestemäärän massa ja mittaamalla tämän nestemäärän höyrystämiseen tarvittu energia, L 23 = Q/m. Energiamittaus tehdään heloimmin nesteen ollessa kiehumisisteessä. ällöin koko järjestelmään tuotu energia kuluu eriaatteessa vain höyrystymiseen, mutta käytännössä myös lämöhäviöihin. Lämötilan muutoksiin ei kulu energiaa. Muuttamalla ulkoista ainetta saadaan kiehumisiste muuttumaan, jolloin saadaan selville myös höyrystymislämmön riiuvuus lämötilasta. Höyrystymislämö voidaan määrittää myös eäsuorasti mittaamalla nesteen höyrynaineen riiuvuus lämötilasta ja laskemalla eri lämötiloja vastaavat l 23 :n arvot yhtälön (6) avulla. Myös tällöin mittaus taahtuu kiehumisisteessä, jossa lämötila ysyy vakiona ja höyrynaine saadaan mittaamalla ulkoinen (= järjestelmän) aine. Höyrystyneitä massoja ja energioita ei nyt siis mitata Höyrystymislämmön suora mittaus Mitataan veden höyrystymislämö ilmanainetta vastaavassa lämötilassa käyttäen kuvan 4 mukaista laitteistoa. Vesi lämmitetään uokuumentimella. Veden kiehuessa kerätään jäähdyttimessä tiivistynyttä vettä, jonka massa m unnitaan, Kulunut energia Q luetaan kwh-mittarista. ällöin on voimassa: Q = L m +, (7) 23 Q 0 jonka aikaderivaatta on teho dm P L23 + P 0 dt =. (8) Edellä olevissa kaavoissa Q 0 on laitteiston lämöhäviö mittausaikana t, P 0 laitteiston dm tehohäviö ja on massaverta aikayksikössä. Kun normaaliaineessa dt kiehumislämötila on vakio (= 100 C) voidaan erustellusti olettaa, että tehohäviö on aina vakio. Jos kukin mittaus on yhtä itkä, myös lämöhäviö Q 0 on eri mittauksissa
7 FYS242/3 Höyrynaine ja höyrystymislämö 7 sama. Yhtälöt (7) ja (8) esittävät tällöin suoria, joista höyrystymislämö L 23 ja häviöenergia tai häviöteho saadaan määritettyä. yössä on vain mitattava eri energian Q arvot ja vastaavat massat m. Kuva 4. Höyrystymislämmön mittauslaitteisto. Vesi kuumennetaan ensin uokuumentimella sen maksimiteholla (säätimen asento 10). Kullakin tehonsäätimen asennolla 4-10 (aloittaen suurimmasta tehosta) tehdään viiden minuutin ituinen mittaus. Lämmitystehon muutoksen jälkeen on odotettava muutama minuutti, jotta saavutetaan dynaaminen tasaainotila sekä lämötilojen että itse tislaustaahtuman suhteen. Mittaustulosten avulla määritetään veden höyrystymislämö, lämöhäviö mittauksessa ja tehohäviö. ehohäviön erusteella voidaan arvioida ullon eristeaineen lämmönjohtavuutta k, kun lämötilaero aineen eri uolten välillä, kerroksen inta-ala A (= 4πR 2, R on ullon säde) ja aksuus d tunnetaan. Eristeen läi menevä lämöteho on
8 FYS242/3 Höyrynaine ja höyrystymislämö 8 ka P0 = Δ. d Näin saatavaa k-arvoa verrataan olyuretaanieristeiden kirjallisuudesta tai mainoksista saataviin k-arvoihin. Käytännön ohjeita mittauksen tekemiseen Aluksi tarkistetaan, että ullossa on riittävästi vettä. Uokuumentimen itää olla koko mittauksen ajan vedeninnan alauolella. Vajaus täytetään tislatulla vedellä, jota on öydällä olevassa astiassa ja öydän alla olevassa kanisterissa. Vettä ei kuitenkaan saa olla liikaa. ällöin vesi kiehuessaan roiskuu suoraan jäähdytinutkeen vääristäen tuloksia. Jäähdytysvesihana avataan rauhallisesti, jotta lasilaitteet eivät rikkoonnu. Ensin kytketään uokuumentimeen suurin laitteistosta saatava teho (säädin = 10). Jokin astia asetetaan jäähdyttimen alle ja odotetaan veden kiehumista. Kun vesi on hetken kiehunut, voidaan tehdä ensimmäinen mittaus. Jonkin kwh-mittarin tasalukeman (lukema muistiin) kohdalla työnnetään varsinainen keräysastia jäähdyttimen alle ja käynnistetään sekuntikello. Viiden minuutin kuluttua keräysastia siirretään syrjään ja vara-astia asetetaan jäähdyttimen alle öydän kuivana itämiseksi. Samalla lämmitysteho katkaistaan (säädin asentoon 0), jonka jälkeen ysähtyneen kwh-mittarin lukema on helo rauhassa kirjata mittausöytäkirjaan. Sähkö kytketään välittömästi uudelleen ja tehonsäädin käännetään seuraavassa mittauksessa käytettävään asentoon. Punnitaan mittauksessa kertynyt vesi. Kertynyt vesi kaadetaan öydällä olevaan ulloon. Mittausten välissä keräysastia kuivataan huolellisesti. Eri lämmitystehoilla taahtuvien mittausten välillä on syytä odottaa (lämmitys äälle kytkettynä) muutama minuutti tilanteen tasaantumista.
9 FYS242/3 Höyrynaine ja höyrystymislämö Höyrynainekäyrä ja eäsuora mittaus Mitataan veden höyrynainekäyrä P h () lämötilavälillä 303 K 373 K kuvan 5 esittämällä laitteistolla. Haluttu aliaine saadaan aikaan tyhjiöumulla, jonka tehoa säädetään ilmaushanalla 3. Paineiden mittaamiseen käytetään kahta elohoeamanometria. Itse laitteistossa on avoäinen elohoealla täytetty U-utki, jolla mitataan aine-ero vallitsevaan ilmanaineeseen nähden. oinen seinällä oleva taas on umiäinen ulkoista ilmanainetta mittaava tavanomainen elohoeailmauntari. Ilmanaine ei yleensä muutu noeasti, joten riittää lukea se työn alussa ja loussa. Kun haluttu aine on saavutettu, suljetaan hana 2 ja vesi lämmitetään kiehuvaksi. Kiehunnan tasaannuttua luetaan höyryn lämötila ja aine-ero huoneilman aineeseen nähden. Mittaukset aloitetaan ienestä aineesta ja havainnot luetaan aineen ollessa likimain (yksiköissä mmhg): 30, 50, 80, 130, 170, 270, 460 ja vallitseva aine. Kuva 5. Höyrynainekäyrän mittauslaitteisto
10 FYS242/3 Höyrynaine ja höyrystymislämö 10 Lämötila-aine havaintoarvot esitetään graafisesti ja istejoukkoon iirretään höyrynainekäyrä P h (). Lausekkeen (4) mukaista sovitusta varten tulokset esitettään 1 (,ln ) n -koordinaatistossa. Pistejoukkoon tehdään PNS -sovitus arametrien a, b ja c määrittämiseksi. Saadut arametrit sijoitetaan lausekkeeseen (6). Sijoittamalla tähän eri lämötilan arvoja saadaan määritettyä vastaava moolinen höyrystymislämö l 23 ja edelleen L 23. Höyrystymislämö lasketaan eri lämötiloissa, esim. = 273, 306, 340 ja 373 K. Ohjeita: Paikalla oleva assistentti neuvoo hanojen ja umun käytössä. Muista jäähdytysvesi! Muista myös laittaa sähkölaitteet ois äältä työn louksi! Etsi mahdollisia virhelähteitä. Onko systemaattisia virheitä? Kirjallisuutta: 1. F. Mandl, Statistical Physics, Wiley, 1988.
FYSA240/3 (FYS242/3) HÖYRYNPAINE JA HÖYRYSTYMISLÄMPÖ
FYSA240/3 (FYS242/3) HÖYRYNPAINE JA HÖYRYSTYMISLÄMPÖ 1 Johdanto Höyrystyminen Tarkastellaan nesteen ja kaasun, esim. veden ja ilman rajapintaa. Nesteen molekyylit ovat lämpöliikkeessä toistensa vetovoimakentässä.
KAASULÄMPÖMITTARI. 1. Työn tavoitteet. 2. Työn taustaa
Oulun ylioisto Fysiikan oetuslaboratorio Fysiikan laboratoriotyöt 3 1 AASULÄMPÖMIARI 1. yön tavoitteet ässä työssä tutustutaan kaasulämömittariin, jonka avulla lämötiloja voidaan määrittää tarkasti. aasulämömittarin
4A 4h. KIMMOKERROIN E
TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/5 A h. KIMMOKERROIN E 1. TYÖN TAVOITE 2. TEORIAA Tässä työssä muista töistä poiketen tärkein tavoite on ymmärtää fysikaalisten suureiden keskinäistä riippuvuutta toisistaan
Kaasu Neste Kiinteä aine Plasma
Olomuodot Kaasu: atomeilla/molekyyleillä suuri nopeus, vuorovaikuttavat vain törmätessään toisiinsa Neste: atomit/molekyylit/ionit liukuvat toistensa lomitse, mutta pysyvät yhtenä nestetilavuutena (molekyylien
V T p pv T pv T. V p V p p V p p. V p p V p
S-45, Fysiikka III (ES välikoe 004, RAKAISU Laske ideaalikaasun tilavuuden lämötilakerroin ( / ( ja isoterminen kokoonuristuvuus ( / ( Ideaalikaasun tilanyhtälö on = ν R Kysytyt suureet ovat: ilavuuden
( ) ( ) ( ) ( ( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 271 Päivitetty 19.2.2006. 701 a) = keskipistemuoto.
Pyramidi Analyyttinen geometria tehtävien ratkaisut sivu 7 Päivitetty 9..6 7 a) + y = 7 + y = 7 keskipistemuoto + y 7 = normaalimuoto Vastaus a) + y = ( 7 ) + y 7= b) + y+ 5 = 6 y y + + = b) c) ( ) + y
Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:
A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa Teräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808
= 84. Todennäköisin partitio on partitio k = 6,
S-435, Fysiikka III (ES) entti 43 entti / välikoeuusinta I Välikokeen alue Neljän tunnistettavissa olevan hiukkasen mikrokanonisen joukon mahdolliset energiatasot ovat, ε, ε, 3ε, 4ε,, jotka kaikki ovat
2.7 Neliöjuuriyhtälö ja -epäyhtälö
2.7 Neliöjuuriyhtälö ja -epäyhtälö Neliöjuuren määritelmä palautettiin mieleen jo luvun 2.2 alussa. Neliöjuurella on mm. seuraavat ominaisuudet. ab = a b, a 0, b 0 a a b =, a 0, b > 0 b a2 = a a > b, a
Oletetaan kaasu ideaalikaasuksi ja sovelletaan Daltonin lakia. Kumpikin seoksen kaasu toteuttaa erikseen ideaalikaasun tilanyhtälön:
S-445, ysiikka III (Sf) entti 653 Astiassa on, µmol vetyä (H ) ja, µg tyeä ( ) Seoksen lämötila on 373 K ja aine,33 Pa Määritä a) astian tilavuus, b) vedyn ja tyen osaaineet ja c) molekyylien lukumäärä
ln2, missä ν = 1mol. ja lopuksi kaasun saama lämpömäärä I pääsäännön perusteella.
S-114.42, Fysiikka III (S 2. välikoe 4.11.2002 1. Yksi mooli yksiatomista ideaalikaasua on alussa lämpötilassa 0. Kaasu laajenee tilavuudesta 0 tilavuuteen 2 0 a isotermisesti, b isobaarisesti ja c adiabaattisesti.
KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]
KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja
Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.
Lämpöoppi Termodynaaminen systeemi Tilanmuuttujat (suureet) Lämpötila T (K) Absoluuttinen asteikko eli Kelvinasteikko! Paine p (Pa, bar) Tilavuus V (l, m 3, ) Ainemäärä n (mol) Eristetty systeemi Ei ole
Aluksi. 2.1. Kahden muuttujan lineaarinen epäyhtälö
Aluksi Matemaattisena käsitteenä lineaarinen optimointi sisältää juuri sen saman asian kuin mikä sen nimestä tulee mieleen. Lineaarisen optimoinnin avulla haetaan ihannearvoa eli optimia, joka on määritelty
Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki
Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät
S , Fysiikka III (ES) Tentti Tentti / välikoeuusinta
S-11435, Fysiikka III (ES) entti 4113 entti / välikoeuusinta I Välikokeen alue 1 Viiden tunnistettavissa olevan identtisen hiukkasen mikrokanonisen joukon käytettävissä on neljä tasavälistä energiatasoa,
Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut
A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan
SAIPPUALIUOKSEN SÄHKÖKEMIA 09-2009 JOHDANTO
SAIPPUALIUOKSEN SÄHKÖKEMIA 09-009 JOHDANTO 1 lainaus ja kuvat lähteestä: Työssä tutkitaan johtokyky- ja ph-mittauksilla tavallisen palasaippuan kemiallista koostumusta ja misellien ja aggregaattien muodostumista
2.2 Täydellinen yhtälö. Ratkaisukaava
. Täydellinen yhtälö. Ratkaisukaava Tulon nollasäännöstä näkee silloin tällöin omituisia sovellutuksia. Jotkut näet ajattelevat, että on olemassa myöskin tulon -sääntö tai tulon "mikä-tahansa"- sääntö.
Luonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta
Simo K. Kivelä, 15.4.2003 Luonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta Aksioomat Luonnolliset luvut voidaan määritellä Peanon aksioomien avulla. Tarkastelun kohteena on
Integroimalla ja käyttämällä lopuksi tilanyhtälöä saadaan T ( ) ( ) H 5,0 10 J + 2,0 10 0,50 1,0 10 0,80 Pa m 70 kj
S-4.35 Fysiikka (ES) entti 3.8.. ääritä yhden haikaasumoolin (O) (a) sisäenergian, (b) entalian muutos tilanmuutoksessa alkutilasta =, bar, =,8 m3 loutilaan =, bar, =,5 m3. ärähtelyn vaausasteet voidaan
Entalpia - kuvaa aineen lämpösisältöä - tarvitaan lämpötasetarkasteluissa (usein tärkeämpi kuin sisäenergia)
Luento 4: Entroia orstai 12.11. klo 14-16 47741A - ermodynaamiset tasaainot (Syksy 215) htt://www.oulu.fi/yomet/47741a/ ermodynaamisten tilansuureiden käytöstä Lämökaasiteetti/ominaislämö - kuvaa aineiden
Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen
KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 1 Derivaatta Tarkastellaan funktion f keskimääräistä muutosta tietyllä välillä ( 0, ). Funktio f muuttuu tällä välillä määrän. Kun tämä määrä jaetaan välin pituudella,
P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt
766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö
30 + x. 15 + 0,5x = 2,5 + x 0,5x = 12,5 x = 25. 27,5a + 27,5b = 1,00 55 = 55. 2,5a + (30 2,5)b (27,5a + 27,5b) = 45 55.
RATKAISUT, Insinöörimatematiikan koe 1.5.201 1. Kahdessa astiassa on bensiinin ja etanolin seosta. Ensimmäisessä astiassa on 10 litraa seosta, jonka tilavuudesta 5 % on etanolia. Toisessa astiassa on 20
Esimerkkejä derivoinnin ketjusäännöstä
Esimerkkejä derivoinnin ketjusäännöstä (5.9.008 versio 1.0) Esimerkki 1 Määritä funktion f(x) = (x 5) derivaattafunktio. Funktio voidaan tulkita yhdistettynä funktiona, jonka ulko- ja sisäfunktiot ovat
= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]
766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan
Jakso 5. Johteet ja eristeet Johteista
Jakso 5. Johteet ja eristeet Johteista Johteet ja eristeet käyttäytyvät sähkökentässä eri tavalla. Koska johteessa on vaaasti liikkuvia varauksia, ne siirtyvät joko sähkökentän suuntaan (ositiiviset varaukset)
Huomaa, että 0 kitkakerroin 1. Aika harvoin kitka on tasan 0. Koska kitkakerroin 1, niin
Kun alat vetää jotain esinettä pitkin alustaa, huomaat, että tarvitaan tietty nollaa suurempi voima ennen kuin mainittu esine lähtee edes liikkeelle. Yleensä on vielä niin, että liikkeelle lähteminen vaatii
Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua
Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi
Dynaamisen järjestelmän siirtofunktio
Dynaamisen järjestelmän siirtofunktio Nyt päästään soveltamaan matriisilaskentaa ja Laplace muunnosta. Tutkikaamme, miten lineaarista mallia voidaan käsitellä. Kuten edellä on jo nähty säätötekniikassa
Kaasu 2-atominen. Rotaatio ja translaatiovapausasteet virittyneet (f=5) c. 5 Ideaalikaasun tilanyhtälöstä saadaan kaasun moolimäärä: 3
S-4.5.vk. 6..000 Tehtävä Ideaalikaasun aine on 00kPa, lämötila 00K ja tilavuus,0 litraa. Kaasu uristetaan adiabaattisesti 5-kertaiseen aineeseen. Kaasumolekyylit ovat -atomisia. Laske uristamiseen tarvittava
4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.
K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy
Termodynamiikka. Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt. ...jotka ovat kaikki abstraktioita
Termodynamiikka Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt...jotka ovat kaikki abstraktioita Miksi kukaan siis haluaisi oppia termodynamiikkaa? Koska
Epäyhtälön molemmille puolille voidaan lisätä sama luku: kaikilla reaaliluvuilla a, b ja c on voimassa a < b a + c < b + c ja a b a + c b + c.
Epäyhtälö Kahden lausekkeen A ja B välisiä järjestysrelaatioita A < B, A B, A > B ja A B nimitetään epäyhtälöiksi. Esimerkiksi 2 < 6, 9 10, 5 > a + + 2 ja ( + 1) 2 2 + 2 ovat epäyhtälöitä. Epäyhtälössä
SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 4 ratkaisuiksi
SMG-400 Sähkömaneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 4 ratkaisuiksi Jatkuvuustilan D-lämpötilajakauma: differenssimenetelmä Differenssimenetelmän käyttämen lämpötehtävien ratkaisemiseen
NESTEIDEN ja ja KAASUJEN MEKANIIKKA
NESTEIDEN ja KSUJEN MEKNIIKK Väliaineen astus Kaaleen liikkuessa nesteessä tai kaasussa, kaaleeseen törmääät molekyylit ja aine-erot erot aiheuttaat siihen liikkeen suunnalle astakkaisen astusoiman, jonka
T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3
76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15
Teddy 7. harjoituksen malliratkaisu syksy 2011
Teddy 7. harjoituksen malliratkaisu syksy 2011 1. Systeemin käyttäytymistä faasirajalla kuvaa Clapeyronin yhtälönä tunnettu keskeinen relaatio dt = S m. (1 V m Koska faasitasapainossa reaktion Gibbsin
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Syksy 010 Jukka Maalampi LUENTO 9 Paine nesteissä Nesteen omalla painolla on merkitystä Nestealkio korkeudella y pohjasta: dv Ady dm dv dw gdm gady paino Painon lisäksi alkioon
ja J r ovat vektoreita ja että niiden tulee olla otettu saman pyörimisakselin suhteen. Massapisteen hitausmomentti on
FYSA210 / K1 HITAUSMOMENTTI Työn tavoitteena on opetella määrittämään kappaleen hitausmomentti kappaletta pyörittämällä ja samalla havainnollistaa kitkan vaikutusta. Massapisteinä toimivat keskipisteestään
1 Johdanto. 2 Lähtökohdat
FYSP106/K4 VIRITYSTILAN ELINAIKA 1 Johdanto Työssä tutustutaan hajoamislakiin ja määritetään 137 Ba:n viritystilan 661.7 kev keskimääräinen elinaika ja puoliintumisaika. 2 Lähtökohdat 2.1 Radioaktiivinen
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 10 1 Sarjakehitelmiä Palautetaan mieliin, että potenssisarja on sarja joka on muotoa a n (x x 0 ) n = a 0 + a 1 (x x 0 ) + a 2 (x x 0 ) 2 + a 3 (x x 0 ) 3 +. n=0 Kyseinen
Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p
KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten
14.1. Lämpötilan mittaaminen
14 16. LÄMPÖOPPIA 14.1. Lämpötilan mittaaminen Neste lasi lämpömittari Nesteen lämpölaajeneminen Kaksoismetallilämpömittari Aineilla erilainen lämpölaajeneminen, jolloin lämpeneminen aiheuttaa taipumista
Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa
8. NESTEEN VIRTAUS 8.1 Bernoullin laki Tässä laboratoriotyössä tutkitaan nesteen virtausta ja virtauksiin liittyviä energiahäviöitä. Yleisessä tapauksessa nesteiden virtauksen käsittely on matemaattisesti
Hierarkkiset koeasetelmat. Heliövaara 1
Hierarkkiset koeasetelmat Heliövaara 1 Hierarkkiset koeasetelmat Kaksiasteista hierarkkista koeasetelmaa käytetään tarkasteltaessa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan kahden tekijän
1.7 Gradientti ja suunnatut derivaatat
1.7 Gradientti ja suunnatut derivaatat Funktion ensimmäiset osittaisderivaatat voidaan yhdistää yhdeksi vektorifunktioksi seuraavasti: Missä tahansa pisteessä (x, y), jossa funktiolla f(x, y) on ensimmäiset
SIS. Vinkkejä Ampèren lain käyttöön laskettaessa magneettikenttiä:
Magneettikentät 2 SISÄLTÖ: Ampèren laki Menetelmän valinta Vektoripotentiaali Ampèren laki Ampèren lain avulla voidaan laskea maneettikenttiä tietyissä symmetrisissä tapauksissa, kuten Gaussin lailla laskettiin
= 1 kg J kg 1 1 kg 8, J mol 1 K 1 373,15 K kg mol 1 1 kg Pa
766328A Termofysiikka Harjoitus no. 8, ratkaisut syyslukukausi 2014 1. 1 kg nestemäistä vettä muuttuu höyryksi lämpötilassa T 100 373,15 K ja paineessa P 1 atm 101325 Pa. Veden tiheys ρ 958 kg/m 3 ja moolimassa
X JOULEN JA THOMSONIN ILMIÖ...226
X JOULEN JA HOMSONIN ILMIÖ...6 10.1 Ideaalikaasun tilanyhtälö ja sisäenergia... 6 10. van der Waals in kaasun sisäenergia... 7 10..1 Reaalikaasun energiayhtälö... 7 10.. van der Waalsin kaasun entroia...
vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen
DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa
MAA10 HARJOITUSTEHTÄVIÄ
MAA0 Määritä se funktion f: f() = + integraalifunktio, jolle F() = Määritä se funktion f : f() = integraalifunktio, jonka kuvaaja sivuaa suoraa y = d Integroi: a) d b) c) d d) Määritä ( + + 8 + a) d 5
FYSA242 Statistinen fysiikka, Harjoitustentti
FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 8..5 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
. Veden entropiamuutos lasketaan isobaariselle prosessille yhtälöstä
LH- Kilo vettä, jonka lämpötila on 0 0 asetetaan kosketukseen suuren 00 0 asteisen kappaleen kanssa Kun veden lämpötila on noussut 00 0, mitkä ovat veden, kappaleen ja universumin entropian muutokset?
monissa laskimissa luvun x käänteisluku saadaan näyttöön painamalla x - näppäintä.
.. Käänteisunktio.. Käänteisunktio Mikäli unktio : A B on bijektio, niin joukkojen A ja B alkioiden välillä vallitsee kääntäen yksikäsitteinen vastaavuus eli A vastaa täsmälleen yksi y B, joten myös se
vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen
DEE-5400 olttokennot ja vetyteknologia olttokennon termodynamiikkaa 1 DEE-5400 Risto Mikkonen ermodynamiikan ensimmäinen pääsääntö aseraja Ympäristö asetila Q W Suljettuun systeemiin tuotu lämpö + systeemiin
Eristeet. - q. Johdannoksi vähän sähköisestä dipolista. Eristeistä
risteet Johdannoksi vähän sähköisestä diolista Diolin muodostaa kaksi itseisarvoltaan yhtä suurta vastakkaismerkkistä varausta, jotka ovat lähellä toisiaan. +q - q a Jos diolin varauksien itseisarvo on
MS-A0004 - Matriisilaskenta Laskuharjoitus 3
MS-A0004 - Matriisilaskenta Laskuharjoitus 3 atkaisut Tehtävä Merkitään matriisin rivejä, 2 ja 3. Gaussin eliminoinnilla saadaan 3 5 4 7 3 5 4 7 3 2 4 2+ 0 3 0 6 6 8 4 3+2 2 0 3 0 6 3 5 4 7 0 3 0 6 3+
Esimerkki 8. Ratkaise lineaarinen yhtälöryhmä. 3x + 5y = 22 3x + 4y = 4 4x 8y = 32. 3 5 22 r 1 + r 3. 0 13 26 4 8 32 r 3 4r 1. LM1, Kesä 2014 47/68
Esimerkki 8 Ratkaise lineaarinen yhtälöryhmä 3x + 5y = 22 3x + 4y = 4 4x 8y = 32. 3 5 22 r 1 + r 3 3 4 4 4 8 32 1 3 10 0 13 26 4 8 32 r 3 4r 1 1 3 10 3 4 4 r 2 3r 1 4 8 32 1 3 10 0 13 26 r 2 /13 0 4 8
Liukeneminen 31.8.2016
Liukeneminen KEMIAN MIKROMAAILMA, KE2 Kertausta: Kun liukenevan aineen rakenneosasten väliset vuorovaikutukset ovat suunnilleen samanlaisia kuin liuottimen, niin liukenevan aineen rakenneosasten välisiä
KEMA221 2009 KEMIALLINEN TASAPAINO ATKINS LUKU 7
KEMIALLINEN TASAPAINO Määritelmiä Kemiallinen reaktio A B pyrkii kohti tasapainoa. Yleisessä tapauksessa saavutetaan tasapainoa vastaava reaktioseos, jossa on läsnä sekä lähtöaineita että tuotteita: A
IX TOINEN PÄÄSÄÄNTÖ JA ENTROPIA...208
IX OINEN PÄÄSÄÄNÖ JA ENROPIA...08 9. ermodynaamisen systeemin pyrkimys tasapainoon... 08 9. ermodynamiikan toinen pääsääntö... 0 9.3 Entropia termodynamiikassa... 0 9.3. Entropian määritelmä... 0 9.3.
OPTIIKAN TYÖ. Fysiikka 1-2:n/Fysiikan peruskurssien harjoitustyöt (mukautettu lukion oppimäärään) Nimi: Päivämäärä: Assistentti:
Fysiikka 1-2:n/Fysiikan peruskurssien harjoitustyöt (mukautettu lukion oppimäärään) Nimi: Päivämäärä: Assistentti: OPTIIKAN TYÖ Vastaa ensin seuraaviin ennakkotietoja mittaaviin kysymyksiin. 1. Mitä tarkoittavat
Perusmittalaitteiden käyttö mittauksissa
Fysiikan laboratorio Työohje 1 / 5 Perusmittalaitteiden käyttö mittauksissa 1. Työn tavoite Työn tavoitteena on tutustua insinöörien tarvitsemiin perusmittalaitteisiin: mikrometriruuviin, työntömittaan,
Aineen olomuodot ja olomuodon muutokset
Aineen olomuodot ja olomuodon muutokset Jukka Sorjonen sorjonen.jukka@gmail.com 8. helmikuuta 2017 Jukka Sorjonen (Jyväskylän Normaalikoulu) Aineen olomuodot ja olomuodon muutokset 8. helmikuuta 2017 1
Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi
Fysiikan perusteet Työ, energia ja energian säilyminen Antti Haarto 0.09.0 Voiman tekemä työ Voiman F tekemä työ W määritellään kuljetun matkan s ja matkan suuntaisen voiman komponentin tulona. Yksikkö:
Sähköstaattisen potentiaalin laskeminen
Sähköstaattisen potentiaalin laskeminen Potentiaalienegia on tuttu mekaniikan kussilta eikä se ole vieas akielämässäkään. Sen sijaan potentiaalin käsite koetaan usein vaikeaksi. On hyvä muistaa, että staattisissa
Mat-2.091 Sovellettu todennäköisyyslasku 5. harjoitukset/ratkaisut. Jatkuvat jakaumat
Mat-2.09 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Jatkuvat jakaumat Avainsanat: Binomijakauma, Eksponenttijakauma, Jatkuva tasainen jakauma, Kertymäfunktio, Mediaani, Normaaliapproksimaatio, Normaalijakauma,
Työ 3: Veden höyrystymislämmön määritys
Työ 3: Veden höyrystymislämmön määritys Työryhmä: Tehty (pvm): Hyväksytty (pvm): Hyväksyjä: 1. Tavoitteet Työssä vettä höyrystetään uppokuumentimella ja mitataan jäljellä olevan veden painoa sekä höyrystymiseen
Diskreetit rakenteet
Diskreetit rakenteet 811120P 5 op 7. Oulun yliopisto Tietojenkäsittelytieteiden laitos 2015 / 2016 Periodi 1 Mikä on verkko? verkko (eli graafi) koostuu solmuista ja väleistä, jotka yhdistävät solmuja
KELAN INDUKTANSSI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Miika Manninen, n85754 Tero Känsäkangas, m84051
VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Miika Manninen, n85754 Tero Känsäkangas, m84051 SATE.2010 Dynaaminen kenttäteoria KELAN INDUKTANSSI Sivumäärä: 21 Jätetty tarkastettavaksi: 21.04.2008
Lisää segmenttipuusta
Luku 24 Lisää segmenttipuusta Segmenttipuu on monipuolinen tietorakenne, joka mahdollistaa monenlaisten kyselyiden toteuttamisen tehokkaasti. Tähän mennessä olemme käyttäneet kuitenkin segmenttipuuta melko
Termodynamiikan suureita ja vähän muutakin mikko rahikka
Termodynamiikan suureita ja vähän muutakin mikko rahikka 2006 m@hyl.fi 1 Lämpötila Suure lämpötila kuvaa kappaleen/systeemin lämpimyyttä (huono ilmaisu). Ihmisen aisteilla on hankala tuntea lämpötilaa,
Termodynamiikan avulla kuvataan vain tasapainotiloja - muuten tilanfunktioilla ei ole merkitystä.
I IANYHÄÖ Makroskooinen termodynamiikka tai lyhyesti termodynamiikka kuvaa makroskooisen systeemin lämöilmiöitä tilanmuuttujien (vain muutama, arvot helosti kokeellisesti määrättävissä), tilanfunktioiden
c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.
MAA4. Koe 8.5.0 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse
Muodonmuutostila hum 30.8.13
Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan
1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta
766328A Termofysiikka Harjoitus no. 5, ratkaisut syyslukukausi 204). Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta E n n + ) ω, n 0,, 2,... 2 a) Oskillaattorin partitiofunktio
S , Fysiikka III (Sf) tentti/välikoeuusinta
S-445, Fysiikka III (Sf) tentti/välikoeuusinta 43 välikokeen alue ristetyssä astiassa, jonka lämötila idetään, kelvinissä, on nestemäistä heliumia tasaainossa helium kaasun kanssa Se on erotettu toisesta
Tarvittavat välineet: Kalorimetri, lämpömittari, jännitelähde, kaksi yleismittaria, sekuntikello
1 LÄMPÖOPPI 1. Johdanto Työssä on neljä eri osiota, joiden avulla tutustutaan lämpöopin lakeihin ja ilmiöihin. Työn suoritettuaan opiskelijan on tarkoitus ymmärtää lämpöopin keskeiset käsitteet, kuten
RATKAISUT: 10. Lämpötila ja paine
Physica 9. painos (6). Lämpötila ja paine :. Lämpötila ja paine. a) Suure, jolla uvataan aineen termoynaamista tilaa. b) Termoynaamisen eli absoluuttisen lämpötila-asteion ysiö. c) Alin mahollinen lämpötila.
Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.
TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja
Johdatus diskreettiin matematiikkaan Harjoitus 7, 28.10.2015
Johdatus diskreettiin matematiikkaan Harjoitus 7, 28.10.2015 1. Onko olemassa yhtenäistä verkkoa, jossa (a) jokaisen kärjen aste on 6, (b) jokaisen kärjen aste on 5, ja paperille piirrettynä sivut eivät
Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.
TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja
ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!
ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! Luento 14.9.2015 / T. Paloposki / v. 03 Tämän päivän ohjelma: Aineen tilan kuvaaminen pt-piirroksella ja muilla piirroksilla, faasimuutokset Käsitteitä
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän
FYSA220/K2 (FYS222/K2) Vaimeneva värähtely
FYSA/K (FYS/K) Vaimeneva värähtely Työssä tutkitaan vaimenevaa sähköistä värähysliikettä. Erityisesti pyritään havainnollistamaan kelan inuktanssin, konensaattorin kapasitanssin ja ohmisen vastuksen suuruuksien
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 8 Paine nesteissä Nesteen omalla painolla on merkitystä Nestealkio korkeudella y pohjasta: dv Ady dm dv dw gdm gady paino Painon lisäksi alkioon
Ekvipartitioperiaatteen mukaisesti jokaiseen efektiiviseen vapausasteeseen liittyy (1 / 2)kT energiaa molekyyliä kohden.
. Hiilidioksidiolekyyli CO tiedetään lineaariseksi a) Mitkä ovat eteneisliikkeen, pyöriisliikkeen ja värähtelyn suuriat ekvipartitioperiaatteen ukaiset läpöenergiat olekyyliä kohden, kun kaikki vapausasteet
YMPÄRISTÖKEMIAN LABORATORIOHARJOITUSTEN ANALYYSIOHJEET
YMPÄRISTÖKEMIAN LABORATORIOHARJOITUSTEN ANALYYSIOHJEET 26.2.2016 Aino Peltola VEDEN ph-arvon MÄÄRITYS Suomen vedet ovat luontaisesti happamia. Tämä johtuu liuenneesta hiilidioksidista, humuspitoisuudesta
Kon HYDRAULIIKKA JA PNEUMATIIKKA
Sarja Kon-4.303 HYDRAULIIKKA JA PNEUMATIIKKA erusteet Päiän teemat Sarja Neste kuin neste, onko sillä äliä? Tilauusirta, miten ja miksi? Mihin tilauusirtaa taritaan? Onko tilauusirran ja aineen älillä
11.4. Rakenteellista käsittelyä tilavuusrenderöintialgoritmeissa
11.4. Rakenteellista käsittelyä tilavuusrenderöintialgoritmeissa Tilavuusdatan katseluprosessi on käsitteellisesti yksinkertaista. Se pitää sisällään tilavuuden kierron katselusuuntaan ja sitten säteen
Ensimmäinen pääsääntö
4 Ensimmäinen ääsääntö Luvuissa 2 ja 3 käsiteltiin eri taoja siirtää energiaa termodynaamisten systeemien välillä joko lämmön tai työn kautta. 1840-luvulla erityisesti Robert Julius von Mayern ja James
Lämpöopin pääsäännöt
Lämpöopin pääsäännöt 0. Eristetyssä systeemissä lämpötilaerot tasoittuvat. Systeemin sisäenergia U kasvaa systeemin tuodun lämmön ja systeemiin tehdyn työn W verran: ΔU = + W 2. Eristetyn systeemin entropia
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 10 Noste Nesteeseen upotettuun kappaleeseen vaikuttaa nesteen pintaa kohti suuntautuva nettovoima, noste F B Kappaleen alapinnan kohdalla nestemolekyylien
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu 1.1 Noudattakoon satunnaismuuttuja X normaalijakaumaa a) b) c) d) N(5, 15). Tällöin P (1.4 < X 12.7) on likimain
4 Kertausosa. Kertausosa. 1. a) (1, 2) ja ( 3, 7) 41 6,403... 6,4. b) ( 5, 8) ja ( 1, 10) 10 ( 8) 1 ( 5) 18 4 340 18,439... 18,4
4 Kertausosa. a) (, ) ja (, 7) d 7 5 ( 4) 4 6,40... 6,4 b) ( 5, 8) ja (, 0) d 0 ( 8) ( 5) 8 4 40 8,49... 8,4. Koulun koordinaatit ovat (0, 0). Kodin koordinaatit ovat (,0;,0). Kodin ja koulun etäisyys
Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1
76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset