GPS-järjestelmän teoreettisista perusteista

Koko: px
Aloita esitys sivulta:

Download "GPS-järjestelmän teoreettisista perusteista"

Transkriptio

1 GPS-meteorologian seminaari, Ilmatieteen Laitos GPS-järjestelmän teoreettisista perusteista Relatiistiset ilmiöt kellojen näyttämissä ja signaalien kulkuajoissa 1. Liikkeen ja graitaation aikutus (aikaan) kelloihin. GPS-järjestelmän koordinaattiaika 3. Signaalin kulkuaikaan liittyiä tekijöitä 4. Maapallo ja GPS-järjestelmä auringon graitaatiokehyksessä 5. Päätelmiä Liitteet 1

2 GPS-meteorologian seminaari, Ilmatieteen Laitos Liikkeen ja graitaation aikutus (aikaan) kelloihin Kello suljetussa liikejärjestelmässä maan pinnalla Kello liikkeessä maapallon graitaatiokehyksessä Graitaation aikutus kellon käyntinopeuteen (aikaan) Liikkeen ja graitaation aikutus (aikaan) kelloihin ECI kehyksessä Maapallon akiopotentiaali -geoidi

3 GPS-meteorologian seminaari, Ilmatieteen Laitos Kello suljetussa liikejärjestelmässä maan pinnalla Earth-Centered, Earth-Fixed Frame (ECEF Frame): Maakeskeinen koordinaatisto, joka on kiinnitetty maan pyörimiseen N K 1 r r 1 = ½ K 0 Laboratoriokokeet Ies Stillwell 1939 Mössbauaer-kokeet 1960-luulla S 3

4 GPS-meteorologian seminaari, Ilmatieteen Laitos Kello liikkeessä maapallon graitaatiokehyksessä Earth-Centered Inertial Frame (ECI Frame): Maakeskeinen koordinaatisto, joka on riippumaton maan pyörimisestä N W ( h ) 1 ½ ( ) 0 W ω W K W K R K E E ( h ) 1 ½ ( + ) 0 E ω E ω R 0 1 ½ h R S K 0(h) Cesium-kellot lentokoneissa Haele, Keating 1971 Mössbauer-kokeet 1960-luulla 4

5 GPS-meteorologian seminaari, Ilmatieteen Laitos Graitaation aikutus kellon käyntinopeuteen (aikaan) Earth-Centered Inertial Frame (ECI Frame): Maakeskeinen koordinaatisto, joka on riippumaton maan pyörimisestä N ( h x ) 0 (, ) GM 1 r 0 x K E K W K,0 K R S K 0 Yhdistetty liikkeen ja graitaation aikutus: GM x 0, 0 (,0) 1 1 ½ hx x r x 5

6 GPS-meteorologian seminaari, Ilmatieteen Laitos Liikkeen ja graitaation aikutus (aikaan) kelloihin ECI kehyksessä β = r s GM φ = r ( 0,0) M r E nopeuseekti: ( β) ( β ) φ,0 1 ½ graitaatioeekti: φ 1+ ( φ ),0 0,0 kokonaiseekti: φ ( φ, ) 1+ ½ 0,0 6

7 GPS-meteorologian seminaari, Ilmatieteen Laitos Maapallon akiopotentiaali -geoidi ( ECI ) ( ) φθ = 1+ ½ θ,0 φθ GM a 1 = J r( θ) r( θ) ( θ ) 1 1 3sin 1 N ( ECI ) ( ) φ φ φθ = 1+ + ½ P P θ,0 r P θ r (θ) θ = ωerosθ φθ φ P θ = 1 ½ ECI P,0 + ECEF 0 0 gh ( 0)( h) ( 0) 1 ECEF ECEF + h r θ S r(θ ) os θ os 4 θ os 6 θ os 8 θ 7

8 GPS-meteorologian seminaari, Ilmatieteen Laitos GPS-järjestelmän koordinaattiaika Master-kello (MC) ja GPS-kello Kellotaajuus (proper requeny) Keplerin radalla ECI-kehyksessä Radan eksentrisyyden aiheuttama häiriö GPS-kelloihin Käsittelemätön GPS-kellodata kuudelle satelliitille 7 päiän aikana Käsittelemätön GPS-kellodata kuudelle satelliitille 4 päiän aikana 8

9 GPS-meteorologian seminaari, Ilmatieteen Laitos Master-kello (MC) ja GPS-kello (,0 ) N GM 10 (,0) 1 (,0)( ) μs 60. rk MASTER ECEF ECI r P ns/rk r P θ r (MC) MC 0,1 0,08 0,06 0,04 0,0 S Latitude 0 GPS-kello ympyräradalla: 3 GM GPS (,0) 1 (,0)( ) MC ( = + ) a μs μs 1.6 rk 38.6 rk 9

10 GPS-meteorologian seminaari, Ilmatieteen Laitos Kellotaajuus (proper requeny) Keplerin radalla ECIkehyksessä r GM ( r, ) 1 ½ r 0,0 a M ϕ 1 1 = GM r a 1 1+ eosϕ 1 = 1 + os r a a ( 1 e ) ( e ϕ ) 3 GM GM GM (, ) (,0) 1 e osϕ 1 e osϕ a ϕ a a a a 10

11 GPS-meteorologian seminaari, Ilmatieteen Laitos Radan eksentrisyyden aiheuttama häiriö GPS-kelloihin E M r ϕ GM 1 e osϕ ϕ a a rmax rmin = ae 60 km e= GMe T t Δt os d Δt 11.5 e+ sin E ns 0 e= a π ( ϕ) ϕ [ ] 11

12 GPS-meteorologian seminaari, Ilmatieteen Laitos Käsittelemätön GPS-kellodata kuudelle satelliitille 7 päiän aikana

13 GPS-meteorologian seminaari, Ilmatieteen Laitos [m] Käsittelemätön GPS-kellodata kuudelle satelliitille 4 päiän aikana [ns] Eksentrisyyttä 0,005 astaaa häiriö

14 GPS-meteorologian seminaari, Ilmatieteen Laitos Signaalin kulkuaikaan liittyiä tekijöitä Vastaanottimen liikkeestä johtua korjaus Aika-aaruuden kaareuus ja Shapiro-iie 14

15 GPS-meteorologian seminaari, Ilmatieteen Laitos Vastaanottimen liikkeestä johtua korjaus dt dr = t rotation r dr t r r r = = = ± ns Sagna-iie dx [ ] t (0) [ ] 6 Etäisyys r m r Signaalin kulkuaika t = t1 t0 = ms [ ] t (1) t (0) Vastaanottimen nopeus ECI-kehyksessä dxrotation = t [ m] N 15

16 GPS-meteorologian seminaari, Ilmatieteen Laitos Aika-aaruuden kaareuus ja Shapiro-iie Shwarzshild metri: GM dr ds dt r dθ θ d r = sin ( 1 GM/r ) ( ϕ ) dt d GM φ d = = δ ( dr) r dr dt dt os 0 φ dr GM = =δ r r r 1 Δ t AB GSM 0.07 [ ns] 0 [ mm] r1 d dr d dr δ d( dt) = = dr dr r GM GM r1 dt = dr = ln 3 3 r r r 16

17 GPS-meteorologian seminaari, Ilmatieteen Laitos Maapallo ja GPS-järjestelmä auringon graitaatiokehyksessä Maapallo auringon graitaatiokehyksessä GPS-järjestelmä auringon graitaatiokehyksessä ECI-kehys auringon graitaatiokehyksessä The Eet o Solar Graitational Potential on GPS Cloks Haaintoja jaksollisesta jäännöshäiriöstä Seurauksia auringon mahdollisesta aikutuksesta 17

18 GPS-meteorologian seminaari, Ilmatieteen Laitos Maapallo auringon graitaatiokehyksessä Helioentri Inertial Frame: Aurinkokeskeinen koordinaatisto, joka on planeettaliikkeistä riippumaton GM Earth MC 1 e os ϕ GPS ϕ a Earth r ϕ GM Sun MC 1 e os Earth a Earth ϕ aearth M Sun Earth a ( ) 3 GM Sun 1 a,0 Earth 18

19 GPS-meteorologian seminaari, Ilmatieteen Laitos GPS-järjestelmä auringon graitaatiokehyksessä Yleisen suhteellisuusteorian tulkinta: graitaatio- ja nopeussiirtymät kumoaat toisensa x V.E. max ω = ω min ( R0 + rsin Ωsinϕ ) R = R0 + rsin Ωsinϕ Δ = ωrsin Ωsinϕ r = sin Ωsinϕ R 0 gsun = r sin Ωsinϕ Δ g g Sun 0 r sin Ω sinϕ ( β ) Δ Δ g = d Sun rsin sin = Ω ϕ 0 19

20 GPS-meteorologian seminaari, Ilmatieteen Laitos ECI-kehys auringon graitaatiokehyksessä Vaihtoehtoinen tulkinta: ECI-kehys säilyttää suuntansa heliosentrisessä kehyksessä x V.E. ψ ψ orbital( ψ ) ω Vaihtoehtoinen tulkinta: Koska ECIkehys on lukittu tätitaiaaseen, pyöräyttää maan kierto auringon ympäri ECI-kehystä astapäiään aurinkoon nähden, mikä kompensoi ulko/sisäkehä -eektin: ω R = R0 + rsin Ωsinϕ Nopeus maan radan suunnassa ψ: R 1 ros sin orbital = ω ψ 0 ( + Θ ψ ) rotation = ω rsin Θsinψ ψ = ωr total( ψ ) 0 Auringon eekti: g Sun Δ g g Sun r sin Ω sinϕ 0 [ ] Δ t = t0 rsin Ω sinϕ = 1 ns sin Ω sinϕ 0

21 The Eet o Solar Graitational Potential on GPS Cloks Tom Van Flandern & Thomas B. Bahder Army Researh Laboratory PAWG, Colorado Springs 1998 August 19 (last two slides updated 00 Marh 30) Conlusions (last slide) Solar potential eet does not exist in GPS data; motion is ored Unexplained 1-hour periods orrelated with Sun diretion must hae some other explanation No unresoled relatiity issues remain at the 1-meter leel or GPS Soure: 1

22 GPS-meteorologian seminaari, Ilmatieteen Laitos Haaintoja jaksollisesta jäännöshäiriöstä Suurin haaittu, ei eksentrisyyteen liittyä 1 h häiriö: satelliitti 3 Lähde: Van Flandern, Absolute GPS to better than one meter Maksimi graitaatiosiirtymä auringon graitaatiokehyksessä

23 GPS-meteorologian seminaari, Ilmatieteen Laitos Seurauksia auringon mahdollisesta aikutuksesta Jos auringon graitaation aikutus satelliittikelloihin oidaan ahistaa, merkitse se, että myös maa-asemien kelloissa on auringon graitaatiosta johtua jaksollinen häiriö: d Δt 5.8 [ ns] sin π osθ sin π h ( VE.. + ) t Auringon häiriöt aikuttaat myös rataparametrien määritykseen. Ko. jaksollisten häiriöiden yhteisaikutuksen huomioiminen kellojen synkronoinnissa on erittäin aatia tehtää. Potentiaalinen suurusluokkaparannus GPS-dataan 3

24 GPS-meteorologian seminaari, Ilmatieteen Laitos Päätelmiä GPS-järjestelmän hyödyntämisessä on ielä runsaasti käyttämättömiä mahdollisuuksia Järjestelmän perusteiden ja tiedonkäsittelyn syällinen hallinta on haasteellinen mutta älttämätön edellytys GPS-meteorologian ja tarkkuuspaikannuksen mahdollisuuksien hyödyntämiseen Järjestelmä tarjoaa ainutlaatuisen mahdollisuuden ysiikan ja kosmologian teorioiden testaamiseen 4

25 GPS-meteorologian seminaari, Ilmatieteen Laitos Liitteet A1 Koordinaatistot A Earth-Centered Earth-Fixed Frame (ECEF Frame) A3 Earth Centered Inertial Frame (ECI rame) A4 Siirrettää kello ECI- ja ECEF kehyksissä A5 Aikadilaatio ai Sagna ilmiö? A6 Shapiro-iie (nopeutuma) A7 Shapiro-iie, kun tangentiaalinen iiaelementti pidetään akiona B1 Sisäkkäisten liike- ja graitaatiokehysten järjestelmä B Kellon taajuus auringon graitaatiokehyksessä B3 Maan radan eksentrisyyden aikutus etäisyysmittaukseen 5

26 GPS-meteorologian seminaari, Ilmatieteen Laitos A1 Koordinaatistot Earth Centered, Earth Fixed Frame (ECEF Frame): Maakeskeinen koordinaatisto, joka on kiinnitetty maan pyörimiseen Laboratoriokokeet, aikastandardi, proper time Earth Centered Inertial Frame (ECI rame): Maakeskeinen koordinaatisto, joka on maan pyörimisestä riippumaton Satelliittijärjestelmät, koordinaatistoaika Helioentri Inertial Frame: Aurinkokeskeinen koordinaatisto, joka on planeettaliikkeistä riippumaton Aaruusluotaimet maan piirin ulkopuolella, koordinaatistoaika 6

27 GPS-meteorologian seminaari, Ilmatieteen Laitos A Earth-Centered, Earth-Fixed Frame (ECEF Frame) Maakeskeinen koordinaatisto, joka on kiinnitetty maan pyörimiseen Laboratoriokokeet, aikastandardi, proper time soure a =ω r =ωr detetor = ( 0) 1 ( 0) 1 ½ hν N Earth top iew r =6.64 m W E detetor side iew hν Mössbauer-kokeet: 1960-luku S 7

28 GPS-meteorologian seminaari, Ilmatieteen Laitos A3 Earth Centered Inertial Frame (ECI rame) Maakeskeinen koordinaatisto, joka on maan pyörimisestä riippumaton Satelliittijärjestelmät, koordinaatistoaika = 1 ( W ) ( φ ) W tot,0 = 1 ( E ) ( φ ) Etot,0 Earth E ( total ) W( total) W light light E Earth Earth ( Earth ) ( φ ) = Earth 1,0 Cesium-kellot lentokoneissa: 1971 J.C. Haele and R.E. Keating, Siene 177 (197), 166 8

29 GPS-meteorologian seminaari, Ilmatieteen Laitos A4 Siirrettää kello ECI- ja ECEF kehyksissä aikadilaatio K 0 aikadilaatio K 1 K 1 N K 1 K 0 ECI: ωθ ECI 1 ½ ½, MC + ( h ) R ωθ = MC 1+ ½ ½ = MC 1 ½ ( + ) + r( ) r( East) ωθ r r( East) ωθ S ECEF: r r( East) ωθ = 1 ½, MC ( h ) R aikadilaatio Sagna - siirtymä 9

30 GPS-meteorologian seminaari, Ilmatieteen Laitos A5 Aikadilaatio ai Sagna ilmiö? N Kelloa kuljetetaan matka L = πr nopeudella << ω(θ ) L Kellon näyttämä: N = T = ECI: ωθ, [,0] 1 ECI h ω ECI h ( ½ eq ) eq ( ± eq ) d d L N N0 Δ 0 L = T = = N0 0 0 deq d eq π req =± =± 07.4 ns [ ] eq Aikadilaatio - kertymä S ECEF: ECEF h ECEF ( h ) r r( East) ωθ = 1 ½,,0 R 0 0 N0 N Δ ± d eq L ωreq πreq ωaeq = T = = ± = ± = ± 07.4 ns N d [ ] Sagna - siirtymä 30

31 GPS-meteorologian seminaari, Ilmatieteen Laitos A6 Shapiro-iie (nopeutuma) B r B x B r AB =x B x A M d r A A x A Δ t AB GSM 0.07 [ ns] 0 [ mm] GM xb + r B GM ra + rb + r AB Δ tab = ln 3 = 3 xa + ra ra + rb rab 31

32 GPS-meteorologian seminaari, Ilmatieteen Laitos A7 Shapiro-iie, kun tangentiaalinen iiaelementti pidetään akiona dr dx dϕ α ds ϕ φ Δ t AB GSM 0.06 [ ns] 17 [ mm] GM xb + r B xb x A Δ tab = ln 3 xa + ra rb ra 3

33 GPS-meteorologian seminaari, Ilmatieteen Laitos B1 Sisäkkäisten liike- ja graitaatiokehysten järjestelmä Im 0δ (M) Im 0δ (M1) m M 1 Paikallinen alon nopeus suhteutuu paikalliseen lepokoordinaatistoon, joka seuraa aaruudessa kiertäää massakeskittymää M R 0δ (M1) M" δ n 1 = 0 i= 0 ( 1 δ ) i n = ( 1 δ ) 1 β I I 00 i i i= 0 33

34 GPS-meteorologian seminaari, Ilmatieteen Laitos B Kellon taajuus auringon graitaatiokehyksessä ( lok ) = lok ph μs = rk lok ph μs = rk M Δ = ± GM Sun aearth 1 Earth seond = the SI unit o time equal to the duration o periods o the radiation orresponding to the transition between two hyperine leels o the ground state o the aesium-133 atom. e Earth 34

35 GPS-meteorologian seminaari, Ilmatieteen Laitos B3 Maan radan eksentrisyyden aikutus etäisyysmittaukseen Jaksojen lukumäärä signaalin edestakaisella matkalla L: L N = ( φβ, ) T( φ) = ( φβ, ) ( φ ) N ah ( 1 )( 1 ) = +Δ +Δ L ( 1+Δ) N L = N ph ( 1 )( 1 ) = Δ Δ L ( 1 Δ) [ m ] ah = [ m] ( 1+Δ) Δ= GM a Sun Earth e Earth M m ph = [ m] ( 1 Δ) Metrin määritelmä (M1,198): m [ ] [ s] ( 1 Δ) [ m] m ph = = 1 Δ 1 Δ 1 Δ 1 Δ 35

GPS järjestelmän teoreettisista perusteista

GPS järjestelmän teoreettisista perusteista GPS-meteoologian seminaai, Ilmatieteen laitos 7.11.00 GPS jäjestelmän teoeettisista peusteista Tkt Tuomo Suntola Relatiistiset ilmiöt kellojen näyttämissä ja signaalien kulkuajoissa 1. Liikkeen ja gaitaation

Lisätiedot

SUHTEELLISUUSTEORIAN TEOREETTISIA KUMMAJAISIA

SUHTEELLISUUSTEORIAN TEOREETTISIA KUMMAJAISIA MUSTAT AUKOT FAQ Kuinka gravitaatio pääsee ulos tapahtumahorisontista? Schwarzschildin ratkaisu on staattinen. Tähti on kaareuttanut avaruuden jo ennen romahtamistaan mustaksi aukoksi. Ulkopuolinen havaitsija

Lisätiedot

DI Paul Talvio. Toimiiko GPS-järjestelmä kaikilta osin Suhteellisuusteorian

DI Paul Talvio. Toimiiko GPS-järjestelmä kaikilta osin Suhteellisuusteorian DI Paul Talvio Toimiiko GPS-järjestelmä kaikilta osin Suhteellisuusteorian mukaisesti? Alustus Luonnonfilosofian seuran tilaisuudessa 30.10.2018 1 Ajan ominaisuudet: Nykyhetki. Tapahtuma on olemassa vain

Lisätiedot

Suhteellisuusteorian perusteet 2017

Suhteellisuusteorian perusteet 2017 Suhteellisuusteorian perusteet 017 Harjoitus 5 esitetään laskuharjoituksissa viikolla 17 1. Tarkastellaan avaruusaikaa, jossa on vain yksi avaruusulottuvuus x. Nollasta poikkeavat metriikan komponentit

Lisätiedot

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Newtonin painovoimateoria Knight Ch. 13 Saturnuksen renkaat koostuvat lukemattomista pölyhiukkasista ja jääkappaleista, suurimmat rantapallon kokoisia. Lisäksi Saturnusta kiertää ainakin 60 kuuta. Niiden

Lisätiedot

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi Fysiikan perusteet Liikkeet Antti Haarto.5.1 Suureita Aika: tunnus t, yksikkö: sekunti s Paikka: tunnus x, y, r, ; yksikkö: metri m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema)

Lisätiedot

Luvun 13 laskuesimerkit

Luvun 13 laskuesimerkit Luvun 13 laskuesimerkit Esimerkki 13.1 Olkoon Cavendishin vaa'an pienen pallon massa m 1 = 0.0100 kg ja suuren pallon m 2 = 0.500 kg (molempia kaksi kappaletta). Miten suuren gravitaatiovoiman F g pallot

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

Radioastronomian käsitteitä

Radioastronomian käsitteitä Radioastronomian käsitteitä allonpituusalue ~ 100 m - 1 mm MHz 300 GHz Leveä aallonpituusalue: erilaisia antenneja, monenlaista tekniikkaa Ei (suoraan) kuvia Signaali yleensä

Lisätiedot

Yleisen antennin säteily k enttien ratk aisem isen v aih eet:

Yleisen antennin säteily k enttien ratk aisem isen v aih eet: Sä te ily k e n ttie n ra tk a ise m in e n Yleisen antennin säteily k enttien ratk aisem isen v aih eet: 1. E tsi A integ roim alla y h tälö A = µ e jβr 4π r V Je j βˆr r dv, (40 ) 2. L ask e E E = jωa

Lisätiedot

Liikkeet. Haarto & Karhunen. www.turkuamk.fi

Liikkeet. Haarto & Karhunen. www.turkuamk.fi Liikkeet Haarto & Karhunen Suureita Aika: tunnus t, yksikkö: sekunti = s Paikka: tunnus x, y, r, ; yksikkö: metri = m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema) oidaan ilmoittaa

Lisätiedot

K = Q C W = T C T H T C. c = 1 dq. f) Isokoorinen prosessi: prosessi joka suoritetaan vakiotilavuudessa

K = Q C W = T C T H T C. c = 1 dq. f) Isokoorinen prosessi: prosessi joka suoritetaan vakiotilavuudessa Sallitut apuvälineet: kijoitusvälineet ja gaafinen laskin. Muun oman mateiaalin tuominen ei sallittu. Tämä on fysiikan kussi, joten desimaalilleen oikeaa numeeista vastausta täkeämpää on että osoitat ymmätäneesi

Lisätiedot

Trigonometriset funk4ot

Trigonometriset funk4ot Trigonometriset funk4ot Suorakulmainen kolmio sin() = a c cos() = b c hypotenuusa c tan() = sin() cos() = a b kulma b katee= a katee= a = c sin() b = c cos() cot() = cos() sin() = b a Trigonometriset funk4ot

Lisätiedot

MAOL-Pisteityssuositus Fysiikka syksy 2013

MAOL-Pisteityssuositus Fysiikka syksy 2013 MAOL Ry Sivu / 3 MAOL-Pisteityssuositus Fysiikka syksy 03 Tyypillisten virheiden aiheuttamia pistemenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe - /3 p - laskuvirhe, epämielekäs tulos, vähintään

Lisätiedot

Kaksosparadoksi (2006)

Kaksosparadoksi (2006) 1 Kaksosparadoksi (2006) Keskustelijat Urho Ketvel Kaarle Kurki- Suonio Heikki Mäntylä Heikki Sipilä Paul Talvio Jyrki Tyrkkö 1.5.2006 Heikki Mäntylä Hyvät luonnonfilosofit, En tiedä onko Vappuna sopivaa

Lisätiedot

Atomikellojen tikitystaajuuden riippuvuus gravitaatiosta ja liikkeestä.

Atomikellojen tikitystaajuuden riippuvuus gravitaatiosta ja liikkeestä. Atomikellot vs. gravitaatio ja liike 17.08.2018 1 Paul Talvio Atomikellojen tikitystaajuuden riippuvuus gravitaatiosta ja liikkeestä. 1. Atomikellot havaintojen mukaan. Gravitaatio ja liike vaikuttavat

Lisätiedot

7. AURINKOKUNTA. Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä

7. AURINKOKUNTA. Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä 7. AURINKOKUNTA Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä Jupiter n. 4"päässä) = Keskustähti + jäännöksiä tähden syntyprosessista (debris) = jättiläisplaneetat,

Lisätiedot

Valtteri Lindholm (Helsingin Yliopisto) Horisonttiongelma 21.11.2013 1 / 9

Valtteri Lindholm (Helsingin Yliopisto) Horisonttiongelma 21.11.2013 1 / 9 : Valtteri Lindholm (Helsingin Yliopisto) Horisonttiongelma 21.11.2013 1 / 9 Horisonttiongelma Valtteri Lindholm Helsingin Yliopisto Teoreettisen fysiikan syventävien opintojen seminaari Valtteri Lindholm

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Satelliittipaikannus

Satelliittipaikannus Kolme maailmalaajuista järjestelmää 1. GPS (USAn puolustusministeriö) Täydessä laajuudessaan toiminnassa v. 1994. http://www.navcen.uscg.gov/gps/default.htm 2. GLONASS (Venäjän hallitus) Ilmeisesti 11

Lisätiedot

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa S-4.7 Fysiia III (EST) Tetti..6. Tarastellaa systeemiä, jossa ullai hiuasella o olme mahdollista eergiatasoa, ε ja ε, missä ε o eräs vaio. Oletetaa, että systeemi oudattaa Maxwell-Boltzma jaaumaa ja, että

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s.

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s. 7. KSS: Sähkömagnetismi (FOTON 7: PÄÄKOHDAT). MAGNETSM Magneettiset vuoovaikutukset, Magneettikenttä B = magneettivuon tiheys (yksikkö: T = Vs/m ), MAO s. 67, Fm (magneettikenttää kuvaava vektoisuue; itseisavona

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I Havaintokohteita 9. Polarimetria Lauri Jetsu Fysiikan laitos Helsingin yliopisto Havaintokohteita Polarimetria Havaintokohteita (kuvat: @phys.org/news, @annesastronomynews.com) Yleiskuvaus: Polarisaatio

Lisätiedot

Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut

Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet Mikkola/Ärölä 4. harjoituksen ratkaisut Teht. 1 Jacobin determinantin J det F materiaalisen aikaderivaatan laskemiseksi lasketaan

Lisätiedot

53 ELEKTRONIN SUHTEELLISUUSTEOREETTINEN LIIKE- MÄÄRÄ

53 ELEKTRONIN SUHTEELLISUUSTEOREETTINEN LIIKE- MÄÄRÄ 53 LKTRONIN SUHTLLISUUSTORTTINN LIIK- MÄÄRÄ 53. Lorentz-uunnos instein esitti. 95 erikoisen suhteellisuusteorian eruseriaatteen, jonka ukaan kaikkien luonnonlakien tulee olla saoja haainnoitsijoille, jotka

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 6 Yksinkertainen harmoninen liike yhteys ympyräliikkeeseen energia dynamiikka Värähdysliike Knight Ch 14 Heilahtelut pystysuunnassa ja gravitaation

Lisätiedot

Kierrätystä kosmoksessa

Kierrätystä kosmoksessa Sähkö&Tele (003) 5 63 Kierrätystä kosmoksessa Osmo Hassi Planeetta ellipsiradalla Ellipsirataa kiertävän planeetan ratanopeuden neliö v e saadaan yhtälöstä v e a ω sin (ω t) + b ω cos (ω t), missä ω on

Lisätiedot

2.7.4 Numeerinen esimerkki

2.7.4 Numeerinen esimerkki 2.7.4 Numeerinen esimerkki Karttusen kirjan esimerkki 2.3: Laske Jupiterin paikka taivaalla..2. Luennoilla käytetty rataelementtejä a, ǫ, i, Ω, ω, t Ω nousevan solmun pituus = planeetan nousevan solmun

Lisätiedot

Talousmatematiikan perusteet, L2 Kertaus Aiheet

Talousmatematiikan perusteet, L2 Kertaus Aiheet Talousmatematiikan perusteet, L2 Kertaus 1 Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat lausekkeet (alkaen sisältä ulospäin) 2. potenssit ja juurilausekkeet 3. kerto-

Lisätiedot

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun.

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun. Matematiikka KoTiA1 Demotehtäviä 1. Ratkaise epäyhtälöt x + 1 x 2 b) 3 x 1 < 2 x + 1 c) x 2 x 2 2. Ratkaise epäyhtälöt 2 x < 1 2 2 b) x 3 < x 2x 3. Olkoon f (x) kolmannen asteen polynomi jonka korkeimman

Lisätiedot

* lotta.laine@cancer.fi for more information. Sakari Nurmela

* lotta.laine@cancer.fi for more information. Sakari Nurmela Finnish families and holidays in the Sun Views among parents of underaged children about sunprotection on holiday trips Lotta Laine*, Liisa Pylkkänen, and Tapani Koskela Cancer Society of Finland Finnish

Lisätiedot

763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 4 Kevät 2012

763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 4 Kevät 2012 763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 4 Kevät 2012 1. Valoa nopeampi liike Sekunnissa kuvan 1 aaltorintama etenee 10 m. Samassa ajassa rannan ja aallon leikkauspiste etenee matkan s. Kulman

Lisätiedot

Luku 9: Atomien rakenne ja spektrit. https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw

Luku 9: Atomien rakenne ja spektrit. https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw Luku 9: Atomien rakenne ja spektrit Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw

Lisätiedot

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2

Lisätiedot

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa Konseptitesti 1 Kysymys

Lisätiedot

14.1. Lämpötilan mittaaminen

14.1. Lämpötilan mittaaminen 14 16. LÄMPÖOPPIA 14.1. Lämpötilan mittaaminen Neste lasi lämpömittari Nesteen lämpölaajeneminen Kaksoismetallilämpömittari Aineilla erilainen lämpölaajeneminen, jolloin lämpeneminen aiheuttaa taipumista

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2011

MAOL-Pisteitysohjeet Fysiikka kevät 2011 MAOL-Pisteitysohjeet Fysiikka kevät 0 Tyypillisten virheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe -/3 p - laskuvirhe, epäielekäs tulos, vähintään - - vastauksessa yksi erkitsevä

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

Talousmatematiikan perusteet, L2 Kertaus Aiheet

Talousmatematiikan perusteet, L2 Kertaus Aiheet Talousmatematiikan perusteet, L2 Kertaus 1 Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat lausekkeet (alkaen sisältä ulospäin) 2. potenssit ja juurilausekkeet 3. kerto-

Lisätiedot

763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 4 Kevät 2016

763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 4 Kevät 2016 763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 4 Kevät 2016 1. Valoa nopeampi liike (a) Sekunnissa kuvan 1(a) aaltorintama etenee 10 m. Samassa ajassa rannan ja aallon leikkauspiste etenee matkan s.

Lisätiedot

Matematiikka ja teknologia, kevät 2011

Matematiikka ja teknologia, kevät 2011 Matematiikka ja teknologia, kevät 2011 Peter Hästö 13. tammikuuta 2011 Matemaattisten tieteiden laitos Tarkoitus Kurssin tarkoituksena on tutustuttaa ja käydä läpi eräisiin teknologisiin sovelluksiin liittyvää

Lisätiedot

Luento 8. Suodattimien käyttötarkoitus

Luento 8. Suodattimien käyttötarkoitus Luento 8 Lineaarinen suodatus Ideaaliset alipäästö, ylipäästö ja kaistanpäästösuodattimet Käytännölliset suodattimet 8..006 Suodattimien käyttötarkoitus Signaalikaistan ulkopuolisen kohinan ja häiriöiden

Lisätiedot

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella H 8.3.2 uontegrlt: vektoreden pntntegrlt Tvllsn tpus pntntegrlest on lske vektorkentän vuo pnnn läp: Trkstelln pnt j sllä psteessä P (x, y, z olev pnt-lkot d. Määrtellään vektorlnen pnt-lko d sten, että

Lisätiedot

Suhteellisuusteorian perusteet, harjoitus 6

Suhteellisuusteorian perusteet, harjoitus 6 Suhteellisuusteorian perusteet, harjoitus 6 May 5, 7 Tehtävä a) Valo kulkee nollageodeettia pitkin eli valolle pätee ds. Lisäksi oletetaan valon kulkevan radiaalisesti, jolloin dω. Näin ollen, kun K, saadaan

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017 763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Keät 207. Rekyyli Luentomonisteessa on käsitelty tilanne, jossa hiukkanen (massa M) hajoaa kahdeksi hiukkaseksi (massat m ja m 2 ). Tässä käytetään

Lisätiedot

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa Ajankohtaista FuksiProffaBuffa Järjestetään

Lisätiedot

Koronan massapurkauksen synnyttämät aallot

Koronan massapurkauksen synnyttämät aallot Koronan massapurkauksen synnyttämät aallot Sanni Hoilijoki Teoreettisen fysiikan syventävien opintojen seminaari 29.3.2012 1 / 21 Sisällys Koronan massapurkaus Purkauksen aiheuttamat häiriöt Auringon kaasukehässä

Lisätiedot

Mallit luonnonilmiöiden ja havaintojen kuvaajina

Mallit luonnonilmiöiden ja havaintojen kuvaajina Mallit luonnonilmiöiden ja havaintojen kuvaajina 1. Mallien ominaisuuksista ja luokittelusta - havaintojen kuvaamisesta peruslakeihin. Energia-käsite - energian säilyminen paikallisjärjestelmissä / koko

Lisätiedot

S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä

S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä (ks. esim. http://www.kotiposti.net/ajnieminen/sutek.pdf). 1. a) Suppeamman suhteellisuusteorian perusolettamukset (Einsteinin suppeampi suhteellisuusteoria

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015

Lisätiedot

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2

Lisätiedot

763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 5 Kevät 2013

763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 5 Kevät 2013 7635P JOHDATUS SUHTEELLISUUSTEORIAAN Ratkaisut 5 Keät 23. Aberraatio suhteellisuusteoriassa Tulkoon alo kuten tehtään kuassa (x, y)-tason x, y > neljänneksestä: u u x ˆx + u y ŷ c cos θ ˆx c sin θ ŷ. ()

Lisätiedot

NESTEIDEN ja ja KAASUJEN MEKANIIKKA

NESTEIDEN ja ja KAASUJEN MEKANIIKKA NESTEIDEN ja KSUJEN MEKNIIKK Väliaineen astus Kaaleen liikkuessa nesteessä tai kaasussa, kaaleeseen törmääät molekyylit ja aine-erot erot aiheuttaat siihen liikkeen suunnalle astakkaisen astusoiman, jonka

Lisätiedot

IRMPX asettelu ja asennusohje

IRMPX asettelu ja asennusohje IRMPX asettelu ja asennusohje 3.7.3 Läkkisepäntie 2A 62 HELSINKI MPX asetteluohje Termostaatin asettelulämpötilan muuttaminen 1. Paina SEL painiketta 2. Muuta haluttu lämpötila näyttöön nuolinäppäimillä

Lisätiedot

Dynaamiset regressiomallit

Dynaamiset regressiomallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Viikko 6: 1 Kalmanin suodatin Aiemmin käsitellyt

Lisätiedot

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Luento 8 6.3.2015 1 Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) 2 Makroskooppisia voimia, jotka syntyvät pyrkimyksestä

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike 2015-09-14 13:50:32 1/40 luentokalvot_03_combined.pdf (#36) Luennon

Lisätiedot

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi Tähtitieteen perusteet, harjoitus 2 Yleisiä huomioita: Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi aurinkokunnan etäisyyksille kannattaa usein

Lisätiedot

KIERTOHEILURI JA HITAUSMOMENTTI

KIERTOHEILURI JA HITAUSMOMENTTI 1 KIERTOHEILURI JA HITAUSMOMENTTI MOTIVOINTI Tutustutaan kiertoheiluriin käytännössä. Mitataan hitausmomentin vaikutus värähtelyyn. Tutkitaan mitkä tekijät vaikuttavat järjestelmän hitausmomenttiin. Vahvistetaan

Lisätiedot

1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 25 26

Lisätiedot

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 1 / 31 Luennon sisältö Suhteellinen translaatioliike

Lisätiedot

4. Käyrän lokaaleja ominaisuuksia

4. Käyrän lokaaleja ominaisuuksia 23 VEKTORIANALYYSI Luento 3 4 Käyrän lokaaleja ominaisuuksia Käyrän tangentti Tarkastellaan parametrisoitua käyrää r( t ) Parametrilla t ei tarvitse olla mitään fysikaalista merkitystä, mutta seuraavassa

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

Muuttuuko ajan kulkunopeus vai kellon värähtelytaajuus? Avril Styrman Luonnonfilosofian seuran te ta Suhteellisuusteoria

Muuttuuko ajan kulkunopeus vai kellon värähtelytaajuus? Avril Styrman Luonnonfilosofian seuran te ta Suhteellisuusteoria Muuttuuko ajan kulkunopeus vai kellon värähtelytaajuus? Avril Styrman Luonnonfilosofian seuran teemailta Suhteellisuusteoria 30.10.2018 Sisältö Vertaillaan Yleisen Suhteellisuusteorian (GR) ja Dynaamisen

Lisätiedot

Muodonmuutostila hum 30.8.13

Muodonmuutostila hum 30.8.13 Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan

Lisätiedot

Kaksosparadoksi (2005)

Kaksosparadoksi (2005) 1 Kaksosparadoksi (2005) Keskustelijat Heikki Mäntylä Paul Talvio 2.12.2005 Heikki Mäntylä Tervehdys, Kiitokset eilisiltaisesta seurasta. Kuultiin taas mielenkiintoisia asioita. Jäin jälleen ihailemaan

Lisätiedot

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys12 Kevät 21 Jukka Maalampi LUENTO 11 Mekaaninen aaltoliike alto = avaruudessa etenevä järjestäytynyt häiriö. alto altoja on kahdenlaisia: Poikittainen aalto - poikkeamat kohtisuorassa

Lisätiedot

10. Kytkentäohje huonetermostaateille

10. Kytkentäohje huonetermostaateille . Kytkentäohje huonetermostaateille TERMOSTAATTIE JA TOIMILAITTEIDE KYTKETÄ JA KYT KE TÄ KO TE LOI HI 2 1 2 2 1 WehoFloor-termostaatti 3222 soveltuvaa kaapelia 3 1, mm 2. joh timet keskusyk sikköön käsikirjassa

Lisätiedot

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia Luennon sisältö Suhteellinen translaatioliike

Lisätiedot

S-55.1100 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S-55.1100 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.1100 SÄHKÖTKNIIKKA JA KTONIIKKA 2. välikoe 5.5.2008. Saa vasaa vain neljään ehävään! Kimmo Silven 1. aske vira. = 1 kω, = 2 kω, 3 = 4 kω, = 10 V. Diodin ominaiskayra, aseikko 0... 4 ma + 3 Teh. 2.

Lisätiedot

Luento 2. Jaksolliset signaalit

Luento 2. Jaksolliset signaalit Luento Jaksollisten signaalien Fourier-sarjat Viivaspektri S-.7. Signaalit ja järjestelmät 5 op KK ietoliikennelaboratorio Jaksollinen (periodinen) Jaksolliset signaalit Jaksonaika - / / Perusjakso Amplitudi

Lisätiedot

Suhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää

Suhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää 3.5 Suhteellinen nopeus Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää P:n nopeus junassa istuvan toisen matkustajan suhteen on v P/B-x = 1.0 m/s Intuitio :

Lisätiedot

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 19 Esimerkki Olkoon F : R 3 R 3 vakiofunktio

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Luento 5: Käyräviivainen liike

Luento 5: Käyräviivainen liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike Ajankohtaista Konseptitesti 1 Kysymys Viereisessä kuvassa leppäkerttu istuu karusellissa,

Lisätiedot

MEI Kontinuumimekaniikka

MEI Kontinuumimekaniikka MEI-55300 Kontinuumimekaniikka 1 MEI-55300 Kontinuumimekaniikka 3. harjoitus matemaattiset peruskäsitteet, kinematiikkaa Ratkaisut T 1: Olkoon x 1, x 2, x 3 (tai x, y, z) suorakulmainen karteesinen koordinaatisto

Lisätiedot

Atomikellojen kertomaa

Atomikellojen kertomaa Atomikellojen kertomaa 020107 rev. 091018 1 DI Paul Talvio Atomikellojen kertomaa Sisällys: Johdanto 1. Lorentz-kovarianssi 2. Samanaikaisuus 2.1 Atomikellohavainnot ja samanaikaisuus 2.2 Samanaikaisuuden

Lisätiedot

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut Diplomi-insino o rien ja arkkitehtien yhteisalinta - dia-alinta 15 Insino o rialinnan fysiikan koe 7.5.15, malliratkaisut A1 Pallo (massa m = 1, kg, sa de r =, cm) nojaa kur an mukaisesti pystysuoraan

Lisätiedot

Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1

Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1 Mistä aine koostuu? - kaikki aine koostuu atomeista - atomit koostuvat elektroneista, protoneista ja neutroneista - neutronit ja protonit koostuvat pienistä hiukkasista, kvarkeista Alkeishiukkaset - hiukkasten

Lisätiedot

Kolmioitten harjoituksia. Säännöllisten monikulmioitten harjoituksia. Pythagoraan lauseeseen liittyviä harjoituksia

Kolmioitten harjoituksia. Säännöllisten monikulmioitten harjoituksia. Pythagoraan lauseeseen liittyviä harjoituksia Kolmioitten harjoituksia Piirrä kolmio, jonka sivujen pituudet ovat 4cm, 5 cm ja 10 cm. Minkä yleisen kolmion sivujen pituuksia ja niitten eroja koskevan johtopäätöksen vedät? Määritä huippukulman α suuruus,

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ 76336A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät 217 1. Koordinaatiston muunnosmatriisi (a) y' P r α φ ' Tarkastellaan, mitä annettu muunnos = cos φ + y sin φ, y = sin φ + y cos φ, (1a) (1b) tekee

Lisätiedot

Klassisssa mekaniikassa määritellään liikemäärä p kl näin:

Klassisssa mekaniikassa määritellään liikemäärä p kl näin: Relativistinen liikemäärä Luento 3 Klassisssa mekaniikassa määritellään liikemäärä p kl näin: pkl = mv. Mekaniikan ilmiöissä on todettu olevan voimassa liikemäärän säilymisen laki: eristetyn systeemin

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät: MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko

Lisätiedot

on myös magneettikentän laita, sillä Faradayn lain mukaan magneettikentän muuttaminen aiheuttaa muutosta vastustavan voiman ja siten magneettikentän

on myös magneettikentän laita, sillä Faradayn lain mukaan magneettikentän muuttaminen aiheuttaa muutosta vastustavan voiman ja siten magneettikentän Luku 8 Magneettinen energia Luvussa 4 nähtiin, että staattiseen sähkökenttään liittyy tietty energia. Näin on myös magneettikentän laita, sillä Faradayn lain mukaan magneettikentän muuttaminen aiheuttaa

Lisätiedot

Luento 12: Keskeisvoimat ja gravitaatio. Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä

Luento 12: Keskeisvoimat ja gravitaatio. Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä Luento 12: Keskeisvoimat ja gravitaatio Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä 1 / 46 Luennon sisältö Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja

Lisätiedot

Luento 12: Keskeisvoimat ja gravitaatio

Luento 12: Keskeisvoimat ja gravitaatio Luento 12: Keskeisvoimat ja gravitaatio Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä Ajankohtaista Luennon sisältö Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja

Lisätiedot

Naps Systems Oy. Näkökulma aurinkoatlaksen merkityksestä järjestelmätoimittajalle. TkT Mikko Juntunen, Teknologiajohtaja

Naps Systems Oy. Näkökulma aurinkoatlaksen merkityksestä järjestelmätoimittajalle. TkT Mikko Juntunen, Teknologiajohtaja 1 Naps Systems Oy Näkökulma aurinkoatlaksen merkityksestä järjestelmätoimittajalle TkT Mikko Juntunen, Teknologiajohtaja Copyright Naps Systems, Inc. 2013 2 Naps Systems lyhyesti Suomalainen, yksityisomistuksessa

Lisätiedot

Luento 5: Käyräviivainen liike

Luento 5: Käyräviivainen liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike Ajankohtaista Konseptitesti 1 http://presemo.aalto.fi/mekaniikka2017 Kysymys Sotalaivasta

Lisätiedot

SPEKTROMETRI, HILA JA PRISMA

SPEKTROMETRI, HILA JA PRISMA FYSA234/K2 SPEKTROMETRI, HILA JA PRISMA 1 Johdanto Kvanttimekaniikan mukaan atomi voi olla vain tietyissä, määrätyissä energiatiloissa. Perustilassa, jossa atomi normaalisti on, energia on pienimmillään.

Lisätiedot

3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1. Tsunamin synty. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.

3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1. Tsunamin synty. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut. Akustiikan perussuureita, desibelit. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1 Tsunamin synty 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 2 1 Tasoaallon synty 3.1.2013

Lisätiedot

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Antti Haarto.05.013 Magneettivuo Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alavektorin A pistetulo Φ B A BAcosθ missä θ on

Lisätiedot

RATKAISUT: 6. Pyörimisliike ja ympyräliike

RATKAISUT: 6. Pyörimisliike ja ympyräliike Phyic 9 pio () 6 Pyöiiliike j ypyäliike : 6 Pyöiiliike j ypyäliike 6 ) Pyöiiliikkeeä kpple pyöii joki keli ypäi Kpplee eto uuttuu b) Ypyäliikkeeä kpple liikkuu pitki ypyät dϕ c) Hetkellie kulopeu ω o kietokul

Lisätiedot

Luento 10: Keskeisvoimat ja gravitaatio

Luento 10: Keskeisvoimat ja gravitaatio Luento 10: Keskeisvoimat ja gravitaatio Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä Luennon sisältö Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike

Lisätiedot

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA FYSA230/2 SPEKTROMETRI, HILA JA PRISMA 1 JOHDANTO Työssä tutustutaan hila- ja prismaspektrometreihin, joiden avulla tutkitaan valon taipumista hilassa ja taittumista prismassa. Samalla tutustutaan eräiden

Lisätiedot