3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun.
|
|
- Juha Sala
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Matematiikka KoTiA1 Demotehtäviä 1. Ratkaise epäyhtälöt x + 1 x 2 b) 3 x 1 < 2 x + 1 c) x 2 x 2 2. Ratkaise epäyhtälöt 2 x < b) x 3 < x 2x 3. Olkoon f (x) kolmannen asteen polynomi jonka korkeimman asteen termin kerroin on 2.Ratkaise polynomin nollakohdat ja kertoimet kun polynomi kulkee pisteiden (0,0), (1,30) ja ( 1, 30) kautta. 4. Olkoon f (x) kuten edellisessä tehtävässä. Ratkaise epäyhtälöt f (x) 0 b) f (x) 0 c) f (x) x + 4 x 4 5. Ratkaise polynomin 2x 4 8x 3 10x x 72 loput nollakohdat kun tiedetään että x = 2 on kaksinkertainen nollakohta. 6. Osoita että kaikille reaaliluvuille pätee a b a b. 7. Osoita että seuraavat funktiot ovat injektioita f (x) = x 1+x b) f (x) = x x Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun f (x) = x 1+x b) f (x) = x x Määritä vakiot a ja b funktiolle f (x) = ax + b siten, että ( x R) ( f f (x) = f (x) ) b) ( x R) ( f f (x) = x ). 10. Olkoon f (x) = sin(x) ja g(x) = 1/(1 x). Määritä f g ja D( f g) b) g f ja D(g f ) 11. Olkoon f (x) = x2 x+1 x2 x 1 ja g(x) = x 2 + 2x x 2 2x. Määritä raja-arvot lim f (x) b) lim g(x) c) lim g f (x) 12. Määritä raja-arvot (mikäli ovat olemass lim x 3 x 2 x 6 x 3 b) lim x 3 x 5 x 2 x 6 c) lim 3x 3 5 5x 3 x 6
2 13. Osoita suoraan raja-arvon määritelmään perustuen 1 x 1 lim = b) lim x 1 (x 1) 2 x 1 x 2 1 = Laske f (x) derivaatan määritelmään ja luennoilla annettuihin trigonometristen funktioiden muuntokaavoihin perustuen, kun f (x) on x 3 + 7x b) sin(x). 15. Laske f (x) kun f (x) on 1 2x+1 b) (x + ((3x) 5 2) 1/2 ) 6 c) cos 3 (sin 2 (2x 2 ))x Olkoon f (x) = sin(x 2 ) ( cos 2 x 1 ). Määritä f (x) ja etsi 5 pistettä jotka toteuttavat yhtälön f (x) = Näytä suoraan laskemalla että funktion f (x) = (x m (x b) n derivaatalla on nollakohta välillä ]a,b[, jos m ja n ovat positiivisia kokonaislukuja. 18. Olkoon f (x) = x 1. Laske derivaatat f (1), f (2), f (3) ja f (4). b) f (123) (vinkki: käytä matemaattista induktiot. 19. Määritä derivaatta f (x) kun g(x) = x ja ( f g) (x) = Esine liikkuu pitkin koordinaattilinjaa siten, että sen paikalle s pätee: s = 2t 2 12t + 8, t 0. Määritä esineen nopeus ajanhetkellä t = 1 ja ajanhetkellä t = 6. Milloin nopeus saa arvon 0? Milloin nopeus on positiivinen? 21. Kappale ammutaan xy-koordinaatiston pisteestä ( 3, 0). Missä kulmassa kappale on ammuttu, kun se tippuu 45 asteen kulmassa koordinaattiin (1,0) b) (1,1). Kappaleen lentoradan tiedetään noudattavan paraabelia, eli y = ax 2 + bx + c. 22. ( Etsi y ja y käyttäen implisiittistä differentiointia kun 2x + y 2sin(xy) = π/2 (b) Mikä on edellä mainitun käyrän pisteeseen (π/4, 1) asetetun tangentin yhtälö? Normaalin yhtälö? 23. Derivoi funktiot f (x) = (1/x) ln(x2) ja g(x) = (cosx) x x sinx. 24. ( Laske f (0) kun f (x) = 1+x(1 x) 1/3 (1+5x) 4/5 (b) Derivoi f (x) = g(x)g(2x)g(3x)g(4x)g(5x), missä g(x) = ( 2) x 25. ( Ratkaise epäyhtälö log 1/2 (x 2 2) > log 1/2 (x) (b) Ratkaise yhtälö tan(sin 1 (2x)) = Henkilön A palkka on aluksi 1600 EUR/kk ja henkilön B palkka on 2500 EUR/kk. A:n palkan korotus on vuosittain 4% ja B:n 3%. Kuinka monta vuotta kestää siihen että A saa vähintään yhtä paljon palkkaa kuin B? Jos palkkojen sovitaan tasaantuvan kolmessa vuodessa, paljonko on oltava A:n korotus vuosittain, kun B:n on 3%. 27. Anna esimerkki funktiosta f (x) jolla on vino asymptootti y = 2x mutta jolle ei päde lim f (x) = 2.
3 28. Olkoon f (x) = cos 1 (cos(x)) ja g(x) = cos ( cos 1 (x) ). Mitä ovat arvo- ja määrittelyjoukot D( f ), D(g), R ( f ), R (g). Piirrä kuvaajat. b) Määritä derivaatat D( f (2x)) ja D(g(2x)). 29. Olkoon g(x) = sinh(πx 3 ). Mitä on g (x) b) g 1 (x) c) (g 1 ) (x) 30. Määritä funktion f (x) = xe x singulaaripisteet b) kriittiset pisteet c) ääriarvot d) konkaavisuus. Hahmottele kuvaaja. 31. Kartongista valmistetaan pyramidin muotoisia pakkauksia. Pakkauksen kokonaispintaala on 1 neliömetri. Mitä arvoa pakkauksen tilavuus lähestyy kun pohjan pinta-ala A 0? Mitkä ovat pakkauksen mitat kun pakkauksen tilavuuden tahdotaan olevan mahdollisimman suuri ja korkeuden täytyy olla alle 2 metriä? 32. Laske raja-arvot ( lim 1t x 0 te 1 ) at 33. b) lim x 0 10 x e x x ( c) lim sinx ) 1/x 2 x 0 x Muodosta 4. asteen Taylorin polynomit (pisteessä funktioille f (x) = sin(x) ja g(x) = ln(x). b) Arvioi edellä muodostettujen polynomien avulla mitä on f (π/ ) ja g(1.2). Anna myös virheiden ylärajat ja suunnat. 34. Määritä seuraavat integraalit. b) ja c) kohdissa suorita integrointi kirjoittamalla integroitava funktio ensin muotoon f (g(x))g (x). 9 4 ( x 1 x ) dx b) 2π 0 sinu(1 sin2 u)du c) e 0 a x dx (a > 0) 35. Laske integraalit ja havainnollista kuvan avulla mitä lasketut luku-arvot merkitsevät. 9 4 x x 1 dx b) 2π 0 sinu(1 sin 2 u) du c) e0 a x dx (a > 0) 36. Määritä a siten että välillä [0,1] funktioiden f (x) = x 3 ja g(x) = ax 2 väliin jäävä pinta-ala olisi mahdollisimman pieni. 37. Olkoon f (x) määritelty kaavalla f (x) = π(1 + x 0 sin( f (t))dt). Mitä on f (0), f (0) ja f (0)? Voit olettaa f :n kaikki derivaatat jatkuvaksi. b) Laske f (x), päättele mitä on f (n) (0) ja mahdollinen lauseke f (x):lle (induktiotodistuksia ei tarvitse tehdä). Varmista päätelmäsi tarkistamalla että f (x):n lauseke toteuttaa integraaliyhtälön ja edellä tehdyt oletukset. 38. Ratkaise 2x + 1 > x b) t 2 t t = 1 c) x + 1 < x 2 + 2x Ratkaise x 2 1 (x + 1)(x 4) > 0 b) x 2 3 x > 1 c) 2 x 1 > x + 1
4 40. Mitkä kolmannen asteen polynomit kulkevat pisteiden (0, 0), (1, 0) ja (3, 0) kautta? b) Pesäpalloilija heittää palloa (heittokulma tuntematon) ja 30 metrin päässä heittopaikasta pallo tippuu takaisin maahan (samalle tasolle kuin heittotaso). Korkeimmillaan pallo käy 5 metrin korkeudella. Esitä pallon lentorata funktiona (xy-koordinaatistoss kun tiedetään että lentorata noudattaa toisen asteen yhtälöä. 41. Määritä luvut a ja b siten että suorat y = x/4 1, y = 4x 5 ja y = ax +b rajaavat sellaisen tasakylkisen kolmion jonka hypotenuusan pituus on ja jonka sisään origo jää. 42. Muodosta seuraavien funktioiden määrittely- ja arvojoukot. h(t) = t 2 t b) g(x) = 1 1 x Muodosta yhdistetyt funktiot f h ja h f sekä näiden määrittelyjoukot kun f (x) = cos(2x + π) ja h(x) = 1/x (1) 44. Erään tuulivoimalan teho P noudattaa mallia P = f (x) = 5x 1/2, missä x on tuulen nopeus. Jos tuulen nopeus ajan suhteen noudattaa lauseketta sin(t) niin mikä on tuulivoimalan teho ajan funktiona? b) Oletetaan nyt että e.m. tuulivoimala toimii vain kun tuulen nopeus on yli 1, niin minä ajanhetkinä voimala toimii? c) Minä ajanhetkinä voimala toimii maksimitehollaan? 45. Olkoon f (x) = x 1. Osoita että f (x) on injektio ja määritä f 1. Määritä myös mitä on R ( f 1 ) ja D( f 1 ). 46. Jos kappaleen nopeus ajan funktiona on v(t) = t niin voidaanko aika t määrittää yksikäsitteisesti jos e.m. kappaleen nopeus pystytään t 2 +1 mittaamaan? 47. Jos f on injektio niin näytä että myös g on injektio kun g määritellään kaavalla g(x) = f (2x) b) g(x) = 1 1 f (x) 48. Määritä edellisen tehtävän funktioille myös käänteisfunktio g 1 (funktion f 1 avulla lausuttun. 49. Etsi sellainen lukuarvo m että funktio { x m,x < 3 g(x) = 1 mx,x 3 on jatkuva. Määritä funktion f (x) = g(x) g(2x) lauseke. 50. Määritä seuraavat raja-arvot (mikäli ovat olemassa lim x 2 x 2 4 x 2 4x+4 2 x cos(x) b) lim x 4 x 4 c) lim x
5 51. Etsi ne pisteet joissa funktiota f (x) = x2 1 ei voida laajentaa jatkuvaksi. x Laske raja-arvo (cosh 1) lim h 0 h 53. Kappaleen nopeus ajan funktiona on v(t) = t t Mikä on kappaleen kiihtyvyys ajanhetkellä t = 3. b) Milloin kiihtyvyys on positiivista, milloin negatiivista c) Kun t niin mitä käy kiihtyvyydelle? Entä nopeudelle? 54. Osoita matemaattisen induktion avulla oikeiksi summakaavat 55. n i=0 i = n(n + 1) 2 b) n i=0 i 2 = n(n + 1)(2n + 1) 6 Derivoi yhdistetyt funktiot f h ja h f kun f (x) = cos(2x + π) ja h(x) = 1/x. b) Derivoi funktio f (x) = (x cos(sin(cos(x)))) Määritä käyrän x y + ( y x) 3 = 2 pisteeseen ( 1, 1) asetetun tangentin ja normaalin yhtälöt. 57. Miltä väliltä vakio a on valittava jotta yhtälön ay+cos(y) = cos(x) x 2 /2 määräämällä käyrällä ei ole pystysuoraa tangenttia? Kuinka monessa pisteessä e.m. käyrällä on vaakasuora tangetti? 58. Mikä on viisikannan (pentagrammin) pinta-ala kun etäisyys keskipisteestä jokaiseen kärkeen on 10 metriä? 59. Etsi funktion f (x) = x2 2x+5 x asymptootit. Mitä on ( f 1) (1) kun f (x) = cosh(x)? b) Mitä on ( f 1) (0) kun f (x) = sinh(x) 61. Osoita että D(cos 1 (x)) = 1/ 1 x 2. b) Mikä on funktion cos 1 ( 2cos(x)) määrittelyjoukkko? 62. Laske f (x) kun f (x) = π xsin(x). b) Laske ( 2 x + 3e 4x + xcos(x 2 ) ) dx. c) Laske f (x) kun f (x) = xe x sin(x)cos(x)cosh(x) 63. Viisi metriä pitkien tikapuiden alapää on asetettu metrin päähän seinästä ja yläpää nojaa seinään. Tikapuiden alapäätä aletaan vetämään vaakatasossa nopeudella 3 m/s seinästä pois päin. Määrää tikkaiden yläpään kiihtyvyys ajan funktiona. Mikä on e.m. kiihtyvyys sillä hetkellä kun tikkaat ovat 45 asteen kulmassa? 64. Suunnistaja on pellolla 1.2 km päässä itä-länsi suuntaiselta tieltä (etelän puolell. Olkoon piste A se tien piste jolle suunnistajalla on lyhin matka. Piste B on e.m. tiellä 1 km päässä pisteestä A. Suunnistaja etenee pellolla 8 km/h ja tiellä 16 km/h. Miten suunnistajan kannattaa valita reittinsä jotta hän pääsee mahdollisimman nopeasti pisteeseen B. (piirrä vastaukseen kuva josta etäisyydet ilmenevät).
6 65. Oletetaan että ensimmäisen euron jälkeen varallisuuden y karttumisnopeus noudattaa kaavaa y = k(y)y, missä k(y) = 0.1( /y) Olkoon rahaston A varallisuus euroa ja rahastojen B varallisuus on kymmenkertainen tähän nähden hetkellä t = 0. Mitä käy e.m. rahastojen varallisuuksien suhteelle kun t? Funktiolla f (x) = sin(x)/(1 + x 2 ) on yksi asymptootti, mikä? Missä pisteissä f (x) leikkaa asymptoottinsa? 68. Etsi funktion f (u) = (u 2 1) 1/3 lokaalit ja globaalit ääriarvot. 69. Millä väleillä edellisen tehtävän funktio on konkaavi ylöspäin ja millä väleillä konkaavi alaspäin? Hahmottele funktio edellä laskemiesi tietojen avulla. 70. Määritä lauseke Taylorin 3. asteen pisteessä a = 0 muodostetulle polynomille P 3 (x) kun f (x) = 1 x 1. Anna yläraja approksimaatiovirheen f (x) P 3(x) suuruudelle kun x = 0.5. Maan vetovoiman aiheuttama kiihtyvyys korkeudella h merenpinnasta noudattaa lauseketta ( ) R a(h) = g, R + h missä vakio g 9.2 ja R 6400 (maapallon säde). Arvioi linearisaation avulla (Taylorin ensimmäisen asteen polynomi), miten e.m. kiihtyvyys muuttuu kun siirrytään merenpinnalta 10 kilometrin korkeuteen. b) 20 kilometrin korkeuteen c) 100 kilometrin korkeuteen. Vertaa e.m. tuloksia suoraan kiihtyvyyden kaavalla laskettuihin tuloksiin. 71. Määritä raja-arvot lim x 0 sin(ax) sin(bx) ( 1 b) lim x 0+ x 1 ) sin(x) 72. Heilurin liikettä voidaan kuvata yhtälöllä d 2 θ dt 2 = g sinθ. (2) l Tarkastellaan nyt vain pieniä kulmia, 0 θ π/50 Kuinka suuri virhe maksimissaan yhtälön oikealla puolella tapahtuu jos tehdään yleinen approksimaatio sinθ = θ. (Ohje: käytä Taylorin polynomien ominaisuuksia.)
7 73. Kappale lähtee levosta (alkunopeudella v = 0) paikasta x = 0 ja liikkuu x-akselia pitkin kiihtyvyydellä a(t) = 12t. Mikä on kappaleen paikkafunktio x(t)? 74. Laske alueen R pinta-ala, jonka rajaavat y = x 2 /2 4, x-akseli, x = 2 ja x = Laske integraali 2 5 2x + 6 dx. Laske funktioiden f (x) = sin(x) ja g(x) = cos(x) väliin jäävä pinta-ala kun x [0,2π]. Laske h (x), kun h(x) = x 2 0 t 3 sint dt. 78. Onko funktiolla 2x+x 2 f (x) = 1 + arctan ( t 2) dt 0 lokaaleja minimi- tai maksimipisteitä välillä ] π/2,π/2[. 79. Mikä on funktion q(t) lauseke kun q (t) = 0.08e 500t sinh(300t) ja q(0) = 0?
a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.
Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin
LisätiedotBM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 5, Syksy 2016
BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 5, Syksy 2016 1. (a) Anna likiarvo lineaarisen approksimaation avulla sille mitä on T (100.5), kun T (100) = 45 ja T (100) = 10. (b) Käyttäen lineaarista
LisätiedotDifferentiaalilaskenta 1.
Differentiaalilaskenta. a) Mikä on tangentti? Mikä on sekantti? b) Määrittele funktion monotonisuuteen liittyvät käsitteet: kasvava, aidosti kasvava, vähenevä ja aidosti vähenevä. Anna esimerkit. c) Selitä,
LisätiedotMATEMATIIKKA 5 VIIKKOTUNTIA
EB-TUTKINTO 2010 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4. kesäkuuta 2010 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa
LisätiedotPreliminäärikoe Pitkä Matematiikka 3.2.2009
Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.
LisätiedotA = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2.
MATP53 Approbatur B Harjoitus 7 Maanantai..5. (Teht. s. 9.) Neliön muotoisesta pahviarkista, jonka sivun pituus on a, taitellaan kanneton laatikko niin, että pahviarkin nurkista leikataan neliön muotoiset
LisätiedotPythagoraan polku 16.4.2011
Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,
Lisätiedot13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle
13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien
LisätiedotMATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +
LisätiedotFunktion derivoituvuus pisteessä
Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Mielikuva: Funktio f on derivoituva x = a, jos sen kuvaaja (xy-tasossa) pisteen (a, f(a))
Lisätiedotl 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +
Lisätiedot2 x 5 4x + x 2, [ 100,2].
7. Derivaatan sovellutuksia 7.1. Derivaatta tangentin kulmakertoimena 6. Määritä a, b ja c siten, että käyrät y = x + ax + b ja y = cx x sivuavat toisiaan pisteessä (1,). a = 0, b =, c = 4. 6. Määritä
LisätiedotMAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio
MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio Olkoon a 1 = a 2 = 5 ja a n+1 = a n + 6a n 1 kun n 2. Todista induktiolla, että a n = 3 n ( 2) n, kun n on positiivinen
Lisätiedot* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat
Trigonometria. a) Määrittele trigonometriset funktiot. b) Vertaa trigonometristen funktioiden ominaisuuksia määritys- ja arvojoukko sekä perusjakso). * Trigonometriset funktiot suorakulmaisessa kolmiossa
LisätiedotPitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia.
Pitkä matematiikka Suullinen kuulustelu (ma00s00doc) Tehtävät, jotka on merkitty (V), ovat vaativia Yleistä Ratkaise yhtälöt n n n n n 5 a) 5 + 5 + 5 + 5 + 5 = 5 b) ( ) ( ) > 0 + = + c) ( ) Suureet ja
Lisätiedotl 1 2l + 1, c) 100 l=0
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)
Lisätiedotcos x 13 12 cos 2x dx a) symbolisesti, b) numeerisesti. Piirrä integroitavan funktion kuvaaja. Mikä itse asiassa on integraalin arvo?
Aalto-yliopisto, Matematiikan ja Systeemianalyysin laitos Matlab-tehtäviä, käyrän sovitus -e Differentiaali- ja integraalilaskenta 1. Laske integraali 2π cos x 13 12 cos 2x dx a) symbolisesti, b) numeerisesti.
Lisätiedotläheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?
BM20A5840 - Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2017 1. Tunnemme vektorit a = [ 1 2 3 ] ja b = [ 2 1 2 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien
LisätiedotDifferentiaalilaskennan tehtäviä
Differentiaalilaskennan tehtäviä DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona 2. Derivoimiskaavat 2.1
LisätiedotPRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015
PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.
LisätiedotDifferentiaali- ja integraalilaskenta
Differentiaali- ja integraalilaskenta Opiskelijan nimi: DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona
LisätiedotMAA7 HARJOITUSTEHTÄVIÄ
MAA7 HARJOITUSTEHTÄVIÄ Selvitä, mitä -akselin väliä tarkoittavat merkinnät: a) < b) U(, ) c) 4 < 0 0 Ilmoita väli a) 4 < < b) ] 5, 765[ tavalla 7 tehtävän a)-kohdan mukaisella kana, kana 0 Palautetaan
LisätiedotLataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!
Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa
LisätiedotIntegrointi ja sovellukset
Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,
Lisätiedot= 9 = 3 2 = 2( ) = = 2
Ratkaisut 1.1. (a) + 5 +5 5 4 5 15 15 (b) 5 5 5 5 15 16 15 (c) 100 99 5 100 99 5 4 5 5 4 (d) 100 99 5 100 ( ) 5 1 99 100 4 99 5 1.. (a) ( 100 99 5 ) ( ( 4 ( ) ) 4 1 ( ) ) 4 9 4 16 (b) 100 99 ( 5 ) 1 100
LisätiedotPisteessä (1,2,0) osittaisderivaatoilla on arvot 4,1 ja 1. Täten f(1, 2, 0) = 4i + j + k. b) Mihin suuntaan pallo lähtee vierimään kohdasta
Laskukarnevaali Matematiikka B. fx, y, z) = x sin z + x y, etsi f,, ) Osittaisderivaatat ovat f f x = sin z + xy, y = x, f z = x cos z Pisteessä,,) osittaisderivaatoilla on arvot 4, ja. Täten f,, ) = 4i
LisätiedotLisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x
MAA6 Lisätehtäviä Laske lisätehtäviä omaan tahtiisi kurssin aikan Palauta laskemasi tehtävät viimeistään kurssikokeeseen. Tehtävät lasketaan ilman laskint Rationaalifunktio Tehtäviä Hyvitys kurssiarvosanassa
Lisätiedotx (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1
BM2A582 Integraalilaskenta ja sovellukset Harjoitus 6, Kevät 26 Kaikissa tehtävissä tärkeintä ja riittävää on saada oikea lauseke aikaiseksi. Useissa tehtävissä integraalit eivät tosin ole niin vaikeita
LisätiedotIntegraalilaskenta. Markus Hähkiöniemi Satu Juhala Petri Juutinen Sari Louhikallio-Fomin Erkki Luoma-aho Terhi Raittila Tommi Tikka
Integraalilaskenta 9 Markus Hähkiöniemi Satu Juhala Petri Juutinen Sari Louhikallio-Fomin Erkki Luoma-aho Terhi Raittila Tommi Tikka Helsingissä Kustannusosakeyhtiö Otava Kirjan rakenne Aiemmin opiskeltua
LisätiedotTestaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on
Testaa taitosi. Laske lausekkeen 60 cos80 sin arvo. Päättele sinin ja kosinin arvot yksikköympyrästä. y x. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on y y. x x. Määritä
Lisätiedot1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo
1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo Olkoot a, b, c mielivaltaisesti valittuja reaalilukuja eli reaaliakselin pisteitä. Ne toteuttavat seuraavat laskulait (ns. kunta-aksioomat):
Lisätiedot1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot
Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan
LisätiedotFunktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot
3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,
LisätiedotMatematiikan peruskurssi (MATY020) Harjoitus 7 to
Matematiikan peruskurssi (MATY020) Harjoitus 7 to 5..2009 ratkaisut 1. (a) Määritä funktion f(x) = e x e x x + 1 derivaatan f (x) pienin mahdollinen arvo. Ratkaisu. (a) Funktio f ja sen derivaatat ovat
Lisätiedoton hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis
Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa
LisätiedotPreliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3
Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä
Lisätiedoty (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x
BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 3. viikolle /
MS-A008 Differentiaali- ja integraalilaskenta, V/07 Differentiaali- ja integraalilaskenta Ratkaisut 3. viikolle / 5. 7.4. Taylorin Polynomit, Taylorin sarjat, potenssisarjat, Newtonin menetelmä Tehtävä
LisätiedotBM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018
BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018 Tehtävä 8 on tällä kertaa pakollinen. Aloittakaapa siitä. 1. Kun tässä tehtävässä sanotaan sopii mahdollisimman hyvin, sillä tarkoitetaan
LisätiedotFunktion määrittely (1/2)
Funktion määrittely (1/2) Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden B:n alkion b. Merkitään b = f (a). Tässä A = M f on f :n määrittelyjoukko, B on f :n maalijoukko.
LisätiedotJohdatus reaalifunktioihin P, 5op
Johdatus reaalifunktioihin 802161P, 5op Osa 2 Pekka Salmi 1. lokakuuta 2015 Pekka Salmi FUNK 1. lokakuuta 2015 1 / 55 Jatkuvuus ja raja-arvo Tavoitteet: ymmärtää raja-arvon ja jatkuvuuden määritelmät intuitiivisesti
LisätiedotMATEMATIIKKA 5 VIIKKOTUNTIA
EB-TUTKINTO 2008 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 5. kesäkuuta 2008 (aamupäivä) KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Europpa-koulun antama taulukkovihkonen Funktiolaskin,
LisätiedotDiplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut
LisätiedotVASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN
Matematiikan kurssikoe, Maa6 Derivaatta RATKAISUT Sievin lukio Torstai 23.9.2017 VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN MAOL-taulukkokirja on sallittu. Vaihtoehtoisesti voit käyttää aineistot-osiossa olevaa
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää
LisätiedotPRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan
LisätiedotBM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018
BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 1. (a) Tunnemme vektorit a = [ 5 1 1 ] ja b = [ 2 0 1 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien
LisätiedotMATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti
Lisätiedotx + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli
BM0A5810 - Differentiaalilaskenta ja sovellukset Harjoitus, Syksy 015 1. a) Funktio f ) = 1) vaihtaa merkkinsä pisteissä = 1, = 0 ja = 1. Lisäksi se on pariton funktio joten voimme laskea vain pinta-alan
LisätiedotEksponenttifunktio ja Logaritmit, L3b
ja Logaritmit, L3b eksponentti-funktio Eksponentti-funktio Linkkejä kurssi8, / Etälukio (edu.) kurssi8, logaritmifunktio / Etälukio (edu.) Potenssifunktio y = f (x) = 2 Vakiofunktion y = a kuvaaja on vaakasuora
LisätiedotA-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.
PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja
Lisätiedot3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =
BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 6, Syksy 2016 1. (a) Olkoon z = z(x,y) = yx 1/2 + y 1/2. Muodosta z:lle lineaarinen approksimaatio L(x,y) siten että approksimaation ja z:n arvot
LisätiedotJuuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77
Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)
LisätiedotKertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)
Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman
LisätiedotHyvä uusi opiskelija!
Hyvä uusi opiskelija! Tässä tulee tärkeää tietoa heti syksyn alussa pidettävästä laskutaitotestistä. Matematiikka kuuluu tekniikan alan opiskelijan tärkeimpiin oppiaineisiin. Matematiikan opiskelu kehittää
LisätiedotIntegroimistekniikkaa Integraalifunktio
. Integroimistekniikkaa.. Integraalifunktio 388. Vertaa funktioiden ln ja ln, b) arctan ja arctan + k k, c) ln( + 2 ja ln( 2, missä a >, derivaattoja toisiinsa. Tutki funktioiden erotusta muuttujan eri
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
LisätiedotMS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 24.10.2016 Sisältö Derivaatta 1.1 Derivaatta Erilaisia lähestymistapoja: I geometrinen
LisätiedotHelsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,
LisätiedotReaalilukuvälit, leikkaus ja unioni (1/2)
Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut
LisätiedotKuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Olkoon f : R R f(x 1, x ) = x 1 + x Olkoon C R. Määritä tasa-arvojoukko Sf(C) = {(x 1, x
Lisätiedoty=-3x+2 y=2x-3 y=3x+2 x = = 6
MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+
Lisätiedotf(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.
Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina
Lisätiedot, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä
Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =
LisätiedotOletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on
Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 19 Derivaatan määritelmä Määritelmä
LisätiedotDerivaatan sovellukset (ääriarvotehtävät ym.)
Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion
Lisätiedot3 TOISEN ASTEEN POLYNOMIFUNKTIO
3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n
LisätiedotFysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi
Fysiikan perusteet Liikkeet Antti Haarto.5.1 Suureita Aika: tunnus t, yksikkö: sekunti s Paikka: tunnus x, y, r, ; yksikkö: metri m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema)
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 12 1 Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan
Lisätiedotx = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi
Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2
LisätiedotKERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4
KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + ( 1) + 3 ( 1) 3 = 3 + 3 = 4 K. a) x 3x + 7x 5x = 4x + 4x b) 5x 3 (1 x ) = 5x 3 1 + x = 6x 4 c) (x + 3)(x 4) = x 3 4x + 3x 1 = x 3 + 3x 4x 1 Vastaus: a) 4x +
LisätiedotH7 Malliratkaisut - Tehtävä 1
H7 Malliratkaisut - Tehtävä Eelis Mielonen 7. lokakuuta 07 a) Palautellaan muistiin Maclaurin sarjan määritelmä (Taylorin sarja origon ympäristössä): f n (0) f(x) = (x) n Nyt jos f(x) = ln( + x) saadaan
Lisätiedota) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:
6. Käänteiskuvaukset ja implisiittifunktiot 6.1. Käänteisfunktion olemassaolo 165. Määritä jokin piste, jonka ympäristössä funktiolla f : R 2 R 2, f (x,y) = (ysinx, x + y + 1) a) on lokaali käänteisfunktio,
LisätiedotMatematiikan peruskurssi 2
Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat
LisätiedotPRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015
PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)
Lisätiedot4 (x 1)(y 3) (y 3) (x 1)(y 3)3 5 3
. Taylorin polynomi; funktion ääriarvot.1. Taylorin polynomi 94. Kehitä funktio f (x,y) = x 2 y Taylorin polynomiksi kehityskeskuksena piste ( 1,2) a) laskemalla osittaisderivaatat, b) kirjoittamalla muuttujat
Lisätiedotc) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.
MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 21.9.2016 Pekka Alestalo, Jarmo
LisätiedotH5 Malliratkaisut - Tehtävä 1
H5 Malliratkaisut - Tehtävä Eelis Mielonen 30. syyskuuta 07 a) 3a (ax + b)3/ + C b) a cos(ax + b) + C a) Tässä tehtävässä päästään harjoittelemaan lukiosta tuttua integrointimenetelmää. Ensimmäisessä kohdassa
LisätiedotMATEMATIIKKA 3 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009
EB-TUTKINTO 2009 MATEMATIIKKA 3 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 KOKEEN KESTO: 3 tuntia (180 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa
LisätiedotMatematiikan perusteet taloustieteilij oille I
Matematiikan perusteet taloustieteilijöille I Harjoitukset syksy 2006 1. Laskeskele ja sieventele a) 3 27 b) 27 2 3 c) 27 1 3 d) x 2 4 (x 8 3 ) 3 y 8 e) (x 3) 2 f) (x 3)(x +3) g) 3 3 (2x i + 1) kun, x
LisätiedotFunktio 1. a) Mikä on funktion f (x) = x lähtöjoukko eli määrittelyjoukko, kun 0 x 5?
Funktio. a) Mikä on funktion f (x) = x + lähtöjoukko eli määrittelyjoukko, kun 0 x 5? b) Mikä on funktion f (x) = x + maalijoukko eli arvojoukko? c) Selitä, mikä on funktion nollakohta. Anna esimerkki.
LisätiedotTekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0.
Tekijä Pitkä matematiikka 6 9.5.017 K1 a) Ratkaistaan nimittäjien nollakohdat. x 1= 0 x = 1 ja x = 0 Funktion f määrittelyehto on x 1 ja x 0. Funktion f määrittelyjoukko on R \ {0, 1}. b) ( 1) ( 1) f (
Lisätiedotw + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.
Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)
LisätiedotLuento 2: Liikkeen kuvausta
Luento 2: Liikkeen kuvausta Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Luennon sisältö Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Liikkeen ratkaisu kiihtyvyydestä
LisätiedotMAA2.3 Koontitehtävät 2/2, ratkaisut
MAA.3 Koontitehtävät /, ratkaisut. (a) 3x 5x 4 = 0 x = ( 5) ± ( 5) 4 3 ( 4) 6 (b) (x 4) = (x 4)(x + 4) (x 4)(x 4) = (x 4)(x + 4) x 8x + 6 = x 6 x 6 8x = 3 : 8 x = 4 = 5 ± 73 6 (c) 4 x + x + = 0 4 x + 4x
LisätiedotVastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:
. Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona
LisätiedotMAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!
A-osio: ilman laskinta. MAOLia saa käyttää. Laske kaikki tehtävistä 1-. 1. a) Derivoi funktio f(x) = x (4x x) b) Osoita välivaiheiden avulla, että seuraava raja-arvo -lauseke on tosi tai epätosi: x lim
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan
LisätiedotMATP153 Approbatur 1B Harjoitus 5 Maanantai
MATP153 Approbatur 1B Harjoitus 5 Maanantai 30.11.015 1. (Opiskelutet. 0 s. 81.) Selvitä, miten lauseke sin(4x 3 + cos x ) muodostuu perusfunktioista (polynomeista, trigonometrisistä funktioista jne).
Lisätiedotf(x) f(y) x y f f(x) f(y) (x) = lim
Y1 (Matematiikka I) Haastavampia lisätehtäviä Syksy 1 1. Funktio h määritellään seuraavasti. Kuvan astiaan lasketaan vettä tasaisella nopeudella 1 l/min. Astia on muodoltaan katkaistu suora ympyräkartio,
LisätiedotPyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin
Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin
LisätiedotMATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Merkitään f(x) =x 3 x. Laske a) f( 2), b) f (3) ja c) YLIOPPILASTUTKINTO- LAUTAKUNTA
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 26.3.2018 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
LisätiedotTRIGONOMETRISET JA HYPERBOLISET FUNKTIOT
TRIGONOMETRISET JA HYPERBOLISET FUNKTIOT ARI LEHTONEN. Trigonometriset funktiot.. Peruskaavat. tan x := sin x cos x, cos x cot x := sin x Anglosaksisissa maissa käytössä ovat myös funktiot sekantti sec
LisätiedotMATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 6.3.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
LisätiedotSinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.
Sinin jatkuvuus Lemma Kaikilla x, y R, sin x sin y x y. Seuraus Sini on jatkuva funktio. Seuraus Kosini, tangentti ja kotangentti ovat jatkuvia funktioita. Pekka Salmi FUNK 19. syyskuuta 2016 22 / 53 Yhdistetyn
Lisätiedotd Todista: dx xn = nx n 1 kaikilla x R, n N Derivaatta Derivaatta ja differentiaali
6. Derivaatta 6.. Derivaatta ja differentiaali 72. Olkoon f () = 4. Etsi derivaatan määritelmän avulla f ( 3). f ( 3) = 08. 73. Muodosta funktion f () = derivaatta suoraan määritelmän mukaan, so. tarkastelemalla
Lisätiedot