Luento 12: Keskeisvoimat ja gravitaatio

Koko: px
Aloita esitys sivulta:

Download "Luento 12: Keskeisvoimat ja gravitaatio"

Transkriptio

1 Luento 12: Keskeisvoimat ja gravitaatio Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä

2 Ajankohtaista

3 Luennon sisältö Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä

4 Johdanto Gravitaatiovoima yksi luonnon perusvoimista Universaali voima eli pätee kaikkien kappaleiden välillä Newtonin vuonna 1687 julkaisema laki aloitti uuden tieteenhaaran! Taivaanmekaniikka (celestial mechanics) ~F g ~F g r

5 Newtonin gravitaatiolaki Kahden pistemäisen kappaleen (1 ja 2) välinen gravitaatiovoima ~F g = G m 1m 2 r 2 ê r tai ~ F g = G m 1m 2 r 2 m 1 ja m 2 ovat kappaleiden massat, r niiden välinen etäisyys, G ns. gravitaatiovakio (gravitational constant) ja ê r yksikkövektori, joka osoittaa kappaleesta toiseen. Gravitaatiovoima suuntautuu aina kohti toista kappaletta! attraktiivinen voima

6 Gravitaatiovakio Verrannollisuuskerroin, joka yhdistää kappaleiden välisen gravitaatiovoiman G = Nm 2 kg 2 Voidaan määrittää Cavendishin vaa alla (Cavendish torsion balance) Gravitaatiovoima aiheuttaa kiertymää lankaan

7 Gravitaatiokenttä Kappaleiden aiheuttamat gravitaatiovoimat lasketaan yhteen vektoreina Gravitaatiovoima on ns. pitkän kantaman voima! Ei edellytä kosketusta (vrt. kontaktivoima!)! Voimakenttä (force field)

8 Paino Kaikkien kappaleeseen vaikuttavien gravitaatiovoimien summa Esimerkiksi maan pinnalla muiden kappaleiden kuin maapallon vaikutus painoon mitätön! Kappaleen paino maan pinnalla M E on maan massa ja R E on maan säde w = Fg = G mm E R 2 E

9 Paino Aiemmin määriteltiin kappaleen paino maan pinnalla vetovoiman kiihtyvyyden g avulla Vertaamalla saadaan g = GM E R 2 E Mittaustuloksista laskettu maapallon massa M E = kg

10 Maapallo Maapallon keskimääräinen tiheys = M E 4 3 R E jolloin saadaan 5500 kg m 3 Arvo kuitenkin keskiarvo Maapallon tiheys pinnan läheisyydessä 3000 kg m 3 Keskipisteessä kg m 3

11 Gravitaatiopotentiaalienergia Kaukana maan pinnasta Massa m liikkuu r 1! r 2 Tehty työ riippuu kappaleen liikkeestä maan säteen suunnassa W grav = Z ~r 2 ~r 1 ~ F g d ~` = = Z r2 Z r2 Tehty työ kahden termin erotus r 1 r 1 F r dr G mm E r 2 dr = GmM E 1 1 r 2 r 1 W grav = U = (U 2 U 1 ), missä U i = G mm E r i

12 Gravitaatiovoima potentiaalienergiasta Gravitaatiovoima ~F = apple G mm E r ê r = G mm E r 2 ê r Maan pinnan lähellä 1 1 U = GmM E r 2 r 1 r1 r 2 = GmM E G mm E r 1 r 2 RE 2 (r 1 r 2 )=mg (r 1 r 2 )

13 Gravitaatiopotentiaalienergian nollakohta Gravitaatiovoiman tekemä työ voidaan esittää potentiaalierotuksena! Konservatiivinen voima Potentiaalienergia negatiivinen ja lähestyy nollaa kun r!1 Yleinen tapa määritellä potentiaalienergian nollakohta

14 Pakonopeus (escape velocity) Nopeus, jolla kappale pakenee isomman kappaleen (esim planeetta) vetovoimasta. Edellyttää että (ei huomioida ilmakehän vastusta) kappaleen kokonaisenergia 0. Rajatapauksena r K + U = 0 =) 1 2 mv 2 e G mm R = 0 =) v e = 2G M R Esimerkiksi maan pinnalla mg = G mm E R 2 E =) v e,maa = r 2g M R E = 11.2 km s 1

15 Kiertoradat Kappale lähetetään maan pinnan yläpuolella vaakasuoraan eri alkunopeuksilla v 0 Ei huomioida ilmakehän vastusta Tarkastellaan kappaleen liikerataa Jos kokonaisenergia E = K + U < 0, kappale ei voi päästä äärettömyyteen, jossa U = 0 Tällöin se jää suljetulle radalle (closed orbit) Muuten se on avoimella radalla (open orbit)

16 Suljettu rata Suljettu rata aina muodoltaan ellipsi Toisessa polttopisteessä maan keskipiste Erikoistapauksena rata on ympyrä Liian pienillä alkunopeuksilla kappale ei voi kiertää täyttä kierrosta, vaan törmää maan pintaan

17 Avoin rata Jos kokonaisenergia E 0, rata avoin Kappale etääntyy koko ajan maasta eikä palaa Jos E > 0, rata muodoltaan hyperbeli Jos E = 0, paraabelirata

18 Ympyrärata Koska ~ F g? ~v, niin a T = 0 ja v on vakio Liike tällöin tasaista ympyräliikettä Liikeyhtälöstä saadaan ratanopeus Ei riipu satelliitin massasta ma N = F g =) m v 2 r r = G mm E =) r 2 v = G M E r

19 Kiertoaika ja kokonaisenergia Lasketaan satelliitin kiertoaika T Satelliitin kiertonopeus ympyräradalla v = 2 r/t T = 2 r r = 2 r v Ympyräradalla satelliitin kokonaisenergia E = K = U /2 E = K + U = 1 2 m GME r r GM E = G mm E r 2 r 3/2 p GME = G mm E 2r

20 Luennon sisältö Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä

21 Konseptitesti 1 Tehtävänanto Satelliitti kiertää Maata ympyräradalla. Maan gravitaatio tekee satelliitille 1. Tekee positiivista työtä 2. Tekee negatiivista työtä 3. Tekee positiivista työtä osalla radasta ja negatiivista työtä loppuosalla 4. Ei tee työtä satelliittia vastaan

22 Konseptitesti 1 Tehtävänanto Satelliitti kiertää Maata ympyräradalla. Maan gravitaatio tekee satelliitille 1. Tekee positiivista työtä 2. Tekee negatiivista työtä 3. Tekee positiivista työtä osalla radasta ja negatiivista työtä loppuosalla 4. Ei tee työtä satelliittia vastaan

23 N-II:n analogia Otetaan liikemäärämomentin aikaderivaatta d~ L dt = d~r dt ~p + ~r d~p dt = ~v m~v + ~r d~p dt = ~r d~p dt Jos hiukkaseen vaikuttaa nettovoima ~ F net = d~p/dt d~ L dt = ~r d~p dt = ~r ~ F net = ~! Liikemäärämomentti ja vääntömomentti laskettava saman pisteen suhteen

24 Liikemäärämomentin säilyminen Kun nettovääntömomentti on nolla, niin d~ L/dt = 0 eli ~ L on vakio = Liikemäärän säilymislaki Ehto toteutuu ainakin kun P F ~ ext = 0 Toisaalta liikemäärämomentti säilyy kun ~r k F ~

25 Keskeisvoima = Voima, jonka suunta aina jotain kiinteää pistettä kohti Keskeisvoiman piirissä liikkuvan hiukkasen liikemäärämomentti vakio Esim. gravitaatiovoima tai sähköstaattinen voima Liikemäärämomentin säilymistä voidaan käyttää hyväksi avaruuslennoilla ns. gravitaatiolingon avulla, toisaalta sirontatehtäviä voidaan hyvin ratkaista sen avulla

26 Liike tasossa kulmasuureilla esitettynä Yksittäisen hiukkasen liikemäärämomentti origon O suhteen Kulmasuureilla esitettynä ~ L = ~r ~p = ~r m~v ~ L = m~r ~v = m~r (~! ~r) =mr 2! Jos rata tasossa muttei ympyrärata, hiukkasella sekä radiaalista että tangentiaalista nopeutta origon O suhteen Liikemäärämomenttiin vaikuttaa vain nopeuden tangentiaalikomponentti v = d /dt! ja d /dt ei tarvitse olla vakioita =) L = m 2 d dt

27 Liike keskeisvoiman piirissä Tapaus ympyrärata Keskeisvoiman vaikuttaessa ympyräradalla liikkuvaan kappaleeseen, täytyy olla ~F g? ~v, niin a T = 0 ja v on vakio Liike tällöin tasaista ympyräliikettä Liikeyhtälöstä saadaan ratanopeus ma N = F g =) m v 2 r r = G mm E =) r 2 v = G M E r Ei riipu kappaleen (esim satelliitti) massasta

28 Kiertoaika ympyräradalla Lasketaan satelliitin kiertoaika T Satelliitin kiertonopeus ympyräradalla v = 2 r/t T = 2 r r = 2 r v Ympyräradalla satelliitin kokonaisenergia E = K = U /2 E = K + U = 1 2 m GME r r GM E = G mm E r 2 r 3/2 p GME = G mm E 2r

29 Luennon sisältö Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä

30 Keplerin lait Nikolaus Kopernikus esitti vuonna 1543, että maa on planeetta, joka muiden planeettojen tavoin kiertää aurinkoa. Johannes Kepler vuosina osoitti, että planeettojen radat voidaan laskea niiden näennäisestä liikkeestä. Hän havaitsi kolme empiiristä lakia: 1. Jokainen planeetta kiertää aurinkoa elliptisellä radalla, jonka toisessa polttopisteessä on aurinko 2. Auringon ja planeetan välinen jana peittää saman pinta-alan samassa ajassa 3. Planeettojen kiertoajat ovat verrannolliset ellipsin pääakselin pituuden potenssiin 3/2.

31 Konseptitesti 2 Tehtävänanto Planeetta kiertää Aurinkoa elliptisellä radalla. Planeetan liikkuessa radallaan aphelista periheliin, aurinko tekee sille 1. Positiivista työtä 2. Negatiivista työtä 3. Tekee positiivista työtä osalla radasta ja negatiivista työtä loppuosalla 4. Ei tee työtä satelliittia vastaan

32 Konseptitesti 2 Tehtävänanto Planeetta kiertää Aurinkoa elliptisellä radalla. Planeetan liikkuessa radallaan aphelista periheliin, aurinko tekee sille 1. Positiivista työtä 2. Negatiivista työtä 3. Tekee positiivista työtä osalla radasta ja negatiivista työtä loppuosalla 4. Ei tee työtä satelliittia vastaan

33 Konseptitesti 3 Tehtävänanto Planeetta kiertää Aurinkoa elliptisellä radalla. Planeetan liikkuessa radallaan aphelista periheliin, planeetan liikemäärämomentti 1. Kasvaa osalla radasta ja pienenee loppuosalla 2. Kasvaa jatkuvasti 3. Pienenee jatkuvasti 4. Ei muutu

34 Konseptitesti 3 Tehtävänanto Planeetta kiertää Aurinkoa elliptisellä radalla. Planeetan liikkuessa radallaan aphelista periheliin, planeetan liikemäärämomentti 1. Kasvaa osalla radasta ja pienenee loppuosalla 2. Kasvaa jatkuvasti 3. Pienenee jatkuvasti 4. Ei muutu

35 Elliptinen rata Elliptisen radan polttopisteet ne pisteet, joiden yhteenlaskettu etäisyys SP + S 0 P vakio mihin tahansa ellipsin pisteeseen P Pääakselin pituus 2a Aurinko pisteessä S Ellipsin eksentrisyys e = SO /a Radan aurinkoa lähin piste periheli Kauimmainen piste apheli S y 2ea Periheli 2a Apheli P S 0 x

36 Keplerin toinen laki Newton johti Keplerin lait liikeyhtälöstä ja gravitaatiolaista Jana SP peittää alan da aikayksikköä kohden da dt (Sektorinopeus) = 1 2 r rd dt

37 Keplerin toinen laki Jaetaan nopeusvektori säteittäiseen ja sitä vastaan kohtisuoraan komponenttiin v? = v sin = ds? dt jolloin = r d dt da dt = 1 2 rv sin = 1 ~r ~v = 2 1 ~r m~v = L 2m 2m

38 Liikemäärämomentti säilyy Gravitaatiovoima keskeisvoima! Liikemäärämomentin muutos d~ L dt = ~ = ~r ~ F = 0 koska ~r k ~ F Tällöin siis: liikemäärämomentti säilyy joten sektorinopeus vakio ~ L vakiovektori joka liiketasoon nähden kohtisuorassa! Planeettojen liikkeen oltava samassa tasossa

39 Keplerin kolmas laki Kiertoaika elliptisellä radalla T = 2 p GM a 3 2 M auringon massa T ei riipu radan eksentrisyydestä Elliptisellä radalla planeetan kokonaisenergia ei riipu radan eksentrisyydestä, ainostaan pääakselin pituudesta E = G mm 2a

40 Eksentrisyyden vaikutus Sen sijaan liikemäärämomentti riippuu e:stä q L = m GMa(1 e 2 ) Samaa kokonaisenergiaa vastaa joukko erilaisia L:n arvoja! Erilaiset radat Todellisuudessa planeetat kiertävät systeemin massakeskipistettä = Lähellä auringon keskipistettä

41 Luennon sisältö Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä

42 Konseptitesti 4 Tehtävänanto Oletetaan, että Aurinko kutistuu säteeltään puolikkaaksi, mutta sen massa pysyy samana. Mitä tapahtuu Maan kiertoradalle? 1. Kiertorata ja -aika pienentyvät 2. Kiertorata ja -aika kasvavat 3. Ei muutu 4. Jotain muuta

43 Konseptitesti 4 Tehtävänanto Oletetaan, että Aurinko kutistuu säteeltään puolikkaaksi, mutta sen massa pysyy samana. Mitä tapahtuu Maan kiertoradalle? 1. Kiertorata ja -aika pienentyvät 2. Kiertorata ja -aika kasvavat 3. Ei muutu 4. Jotain muuta

44 Esimerkki 1000 kg painoinen satelliitti halutaan lähettää ympyräradalle 300 km maan pinnan yläpuolelle. a) Määritä satelliitin tarvitsema nopeus, kiertoaika ja radiaalinen kiihtyvyys, b) Paljonko työtä pitää tehdä satelliitin saattamiseksi kiertoradalle? c) Kuinka paljon lisätyötä pitää tehdä, että satelliitti karkaisi maan vetovoimakentästä? Maan säde R E = 6380 km ja massa M E = kg.

45 Esimerkki: Pallosymmetrisen kappaleen gravitaatio Väite Pallosymmetrisen kappaleen gravitaatiokenttä sen ulkopuolella samanlainen, kuin pistemäisen kappaleen kenttä Todistus Tarkastellaan onton pallonkuoren aiheuttama gravitaatiokenttä Kentän voimakkuus saadaan joko integroimalla pallonkuoren osien aiheuttama kenttä tai laskemalla pallonkuoren gravitaatiopotentiaali, jonka gradientti haluttu kenttä on Gravitaatiopotentiaali = gravitaatiopotentiaalienergia per massayksikkö

46 Onton siivun gravitaatiopotentiaali Etsitään gravitaatiopotentiaali pisteessä P onton pallonkuoren ulkopuolella etäisyydellä r keskipisteestä C R-säteinen pallonkuori jaettu siivuihin joiden keskipiste janalla CP Siivun säde R sin, pituus 2 R sin ja paksuus Rd =) da = 2 R 2 sin d Kuoren massa m / pinta-alayksikkö = m A = m 4 R 2 P Siivun massa dm = da = m A da = m 2 sin d Siivun gravitaatiopotentiaali dv pisteessä P s r dv = G dm s Rd R sin

47 Gravitaatiopotentiaali pallonkuoren ulkopuolella Kosinilauseesta s 2 = R 2 + r 2 2rR cos =) 2s ds = 2rR sin d =) sin d = s r ds rr Siivun gravitaatiopotentiaaliksi saadaan P dv = G dm s = G m sin d 2s = Gm 2rR ds s r Pallonkuoren ulkopuolella Z V = dv = r r+r Z R Gm 2rR ds = G m r =) Rd R sin R d C ~G = rv = G m r 2 êr

48 Gravitaatiopotentiaali pallonkuoren sisäpuolella Sisäpuolella analyysi muuten sama, mutta integrointirajat R r! r + R Z V = dv = R R+r Z r Gm 2rR ds = G m R Vakio! Ei riipu sijainnista. Gravitaatiovoima sisäpuolella siten ~G = rv 0

49 Umpinaisen pallon gravitaatiopotentiaali pallon ulkopuolella Umpinainen homogeeninen pallo koostuu sisäkkäisistä pallonkuorista Gravitaatiopotentiaali pisteessä P V = G M r missä M on koko pallon massa Kentän voimakkuus ~G = rv = G m r 2 êr

50 Umpinaisen pallon gravitaatiopotentiaali pallon sisäpuolella Gravitaatiokenttään vaikuttaa ainoastaan tarkastelupisteen etäisyyden sisäpuolella olevien pallonkuorien massa ~G = G m 4 in r 2 êr 3 missä m in = m r 3 4 = m r 3 3 R3 R =) ~ 3 G = G mr R 3 êr tästä edelleen gravitaatiopotentiaali V = Z G dr = G mr 2 2R 3 + C

51 Umpinaisen pallon gravitaatiopotentiaali pallon sisäpuolella Integroimisvakio C saadaan potentiaalin jatkuvuudesta pallon pinnalla Joten V (R) = G m R =) G m 2R + C = G m R V (r) =G mr 2 2R 3 3Gm 2R = Gm 2R 3 r 2 =) C = 3Gm 2R 3R 2

52 Umpinaisen pallon gravitaatiopotentiaali epähomogeeninen pallo Mikäli pallon tiheys riippuu ainoastaan etäisyydestä pallon keskipisteestä, = (r), pallon ulkopuolella tilanne sama kuin homogeenisen pallon tapauksessa Sisäpuolella gravitaatiokenttä lasketaan jakamalla pallon massa tarkastelupisteen etäisyyttä kauempana ja lähempänä oleviin alueisiin Vain sisäpuolinen alue vaikuttaa gravitaatiokenttään Gravitaatiokentän muoto riippuu tiheysfunktion muodosta

53 Esimerkki keskeisvoimasta Partikkelin sironta Hiukkanen siroaa repulsiivisesta keskeisvoimasta Törmäysparametri b, sirontakulma ~v 0 y b ~v 0 b x

54 Ratkaisu Repulsiivinen keskeisvoima: F = k r 2 Y-suunnassa F y = ma y = F sin( ) = k r 2 sin Liikemäärämomentti säilyy (alussa = lopussa) mr 2 d dt = mv 0 b =) r 2 = v 0b d /dt =) F y = k r 2 sin = k d sin v 0 b dt = ma y = m dv y dt

55 Ratkaisu Integroidaan... k v 0 b sin d = m dv y =) k mv 0 b Z 0 sin d = v 0 sin = k 1 + cos mv 0 b Z v0 sin 0 ] =) mv 2 0 b k dv y =) = 1 + cos sin = cot 2

56 Simuloidaan

Luento 12: Keskeisvoimat ja gravitaatio. Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä

Luento 12: Keskeisvoimat ja gravitaatio. Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä Luento 12: Keskeisvoimat ja gravitaatio Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä 1 / 46 Luennon sisältö Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja

Lisätiedot

Luento 10: Keskeisvoimat ja gravitaatio

Luento 10: Keskeisvoimat ja gravitaatio Luento 10: Keskeisvoimat ja gravitaatio Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä Luennon sisältö Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä

Lisätiedot

5.9 Voiman momentti (moment of force, torque)

5.9 Voiman momentti (moment of force, torque) 5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa

Lisätiedot

2 Keskeisvoimakenttä. 2.1 Newtonin gravitaatiolaki

2 Keskeisvoimakenttä. 2.1 Newtonin gravitaatiolaki 2 Keskeisvoimakenttä 2.1 Newtonin gravitaatiolaki Newton oletti, että kappale, jolla on massa m 1, vaikuttaa etäisyydellä r 12 olevaan toiseen kappaleeseen, jonka massa on m 2, gravitaatiovoimalla, joka

Lisätiedot

Keskeisvoimat. Huom. r voi olla vektori eli f eri suuri eri suuntiin!

Keskeisvoimat. Huom. r voi olla vektori eli f eri suuri eri suuntiin! Keskeisvoimat Huom. r voi olla vektori eli f eri suuri eri suuntiin! Historiallinen ja tärkeä esimerkki on planeetan liike Auringon ympäri. Se on 2 kappaleen ongelma, joka voidaan aina redusoida keskeisliikkeeksi

Lisätiedot

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Newtonin painovoimateoria Knight Ch. 13 Saturnuksen renkaat koostuvat lukemattomista pölyhiukkasista ja jääkappaleista, suurimmat rantapallon kokoisia. Lisäksi Saturnusta kiertää ainakin 60 kuuta. Niiden

Lisätiedot

5.13 Planetaarinen liike, ympyräradat

5.13 Planetaarinen liike, ympyräradat 5.13 Planetaarinen liike, ympyräradat Muistellaan menneitä Jo peruskoulussa lienee opetettu tämä Newtonin gravitaatiolaki kahden kappaleen välisestä gravitaatiovoimasta: Tässä yhtälössä G on gravitaatiovakio

Lisätiedot

5 Kentät ja energia (fields and energy)

5 Kentät ja energia (fields and energy) 5 Kentät ja energia (fields and energy) Mansfield and O Sullivan: Understanding Physics, kappaleen 5 alkuosa 5.1 Newtonin gravitaatiolaki Newton: vetovoima kahden kappaleen välillä on tai tarkemmin F m

Lisätiedot

6. TAIVAANMEKANIIKKA. Antiikki: planeetat = vaeltavia tähtiä jotka liikkuvat kiintotähtien suhteen

6. TAIVAANMEKANIIKKA. Antiikki: planeetat = vaeltavia tähtiä jotka liikkuvat kiintotähtien suhteen 6. TAIVAANMEKANIIKKA Antiikki: planeetat = vaeltavia tähtiä jotka liikkuvat kiintotähtien suhteen Näennäinen liike voi olla hyvinkin monimutkaista: esim. ulkoplaneetan suunta retrograadinen opposition

Lisätiedot

Energia, energian säilyminen ja energiaperiaate

Energia, energian säilyminen ja energiaperiaate E = γmc 2 Energia, energian säilyminen ja energiaperiaate Luennon tavoitteet Lepoenergian, liike-energian, potentiaalienergian käsitteet haltuun Työ ja työn merkki* Systeemivalintojen miettimistä Jousivoiman

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain

Lisätiedot

LUENTO 3: KERTAUS EDELLISELTÄ LUENNOLTA

LUENTO 3: KERTAUS EDELLISELTÄ LUENNOLTA LUENTO 3: KERTAUS EDELLISELTÄ LUENNOLTA Kahden kappaleen suhteellisen liikkeen yhtälö: R m 2 R = µ R r 3 jossa µ = G(m 1 + m 2 ) Liikeyhtälön integraalit m 1 R 1 R 2 k = R R suhteellisen liikkeen imp.mom/massayksikkö

Lisätiedot

Luento 9: Potentiaalienergia

Luento 9: Potentiaalienergia Luento 9: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Laskettuja esimerkkejä Luennon sisältö Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta

Lisätiedot

Luento 11: Potentiaalienergia

Luento 11: Potentiaalienergia Luento 11: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia Ajankohtaista Konseptitesti 1 Kysymys Levossa oleva kappale lähtee

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 2-3 Vääntömomentti Oletus: Voimat tasossa, joka on kohtisuorassa pyörimisakselia vastaan. Oven kääntämiseen tarvitaan eri suuruinen voima

Lisätiedot

g-kentät ja voimat Haarto & Karhunen

g-kentät ja voimat Haarto & Karhunen g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle

Lisätiedot

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi Tähtitieteen perusteet, harjoitus 2 Yleisiä huomioita: Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi aurinkokunnan etäisyyksille kannattaa usein

Lisätiedot

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia Luento 11: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia 1 / 22 Luennon sisältö Potentiaalienergia Konservatiiviset voimat

Lisätiedot

1.4. VIRIAALITEOREEMA

1.4. VIRIAALITEOREEMA 1.4. VIRIAALITEOREEMA Vaikka N-kappaleen ongelman yleistä ratkaisua ei tunneta, on olemassa eräitä tärkeitä yleisiä tuloksia Jos systeemi on stabiili, eli paikat ja nopeudet eivät kasva rajatta kineettisen

Lisätiedot

Luento 9: Potentiaalienergia

Luento 9: Potentiaalienergia Luento 9: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Laskettuja esimerkkejä ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2015 Mikro- ja nanotekniikan

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokussi Fys10 Kevät 010 Jukka Maalampi LUENTO 5 Copyight 008 Peason Education, Inc., publishing as Peason Addison-Wesley. Newtonin painovoimateoia Knight Ch. 13 Satunuksen enkaat koostuvat

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Nyt kerrataan! Lukion FYS5-kurssi

Nyt kerrataan! Lukion FYS5-kurssi Nyt kerrataan! Lukion FYS5-kurssi Vaakasuora heittoliike Heittoliikettä voidaan tarkastella erikseen vaaka- ja pystysuunnassa v=(v x,v y ) Jos ilmanvastausta ei oteta huomioon (yleensä ei), vaakasuunnalle

Lisätiedot

kertausta Esimerkki I

kertausta Esimerkki I tavoitteet kertausta osaat määrittää jäykän kappaleen hitausmomentin laskennallisesti ymmärrät kuinka vierimisessä eteneminen ja pyöriminen kytekytyvät osaat soveltaa energiaperiaatetta vierimisongelmiin

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat.

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat. KEPLERIN LAI: (Ks. Physica 5, s. 5) Johannes Keple (57-60) yhtyi yko Bahen (546-60) havaintoaineiston pohjalta etsimään taivaanmekaniikan lainalaisuuksia. Keple tiivisti tutkimustyönsä kolmeen lakiinsa

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

Luento 7: Pyörimisliikkeen dynamiikkaa

Luento 7: Pyörimisliikkeen dynamiikkaa Luento 7: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä 1 / 37 Luennon sisältö Johdanto

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat

Lisätiedot

766323A-02 Mekaniikan kertausharjoitukset, kl 2012

766323A-02 Mekaniikan kertausharjoitukset, kl 2012 766323A-02 Mekaniikan kertausharjoitukset, kl 2012 Gravitaatio, liikemäärämomentti, ellipsiradat T 1: Oleta, että Marsin kuu Phobos kiertää Marsia ympyrärataa pitkin. Ympyrän säde on 9380 km ja kiertoaika

Lisätiedot

Luento 9: Pyörimisliikkeen dynamiikkaa

Luento 9: Pyörimisliikkeen dynamiikkaa Luento 9: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä ELEC-A3110 Mekaniikka (5 op) Sami

Lisätiedot

Luento 7: Voima ja Liikemäärä

Luento 7: Voima ja Liikemäärä Luento 7: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Ajankohtaista Konseptitesti 1 Kysymys Viereisessä kuvaajassa on kuvattu kappaleen nopeutta

Lisätiedot

Gravitaatio ja heittoliike. Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike

Gravitaatio ja heittoliike. Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike Gravitaatio ja heittoliike Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike KERTAUS Newtonin lait Newtonin I laki Kappale, johon ei vaikuta voimia/voimien summa on nolla, ei muuta liiketilaansa

Lisätiedot

Luento 10. Potentiaali jatkuu, voiman konservatiivisuus, dynamiikan ja energiaperiaatteen käyttö, reaalinen jousi

Luento 10. Potentiaali jatkuu, voiman konservatiivisuus, dynamiikan ja energiaperiaatteen käyttö, reaalinen jousi Luento 10 Potentiaali jatkuu, voiman konservatiivisuus, dynamiikan ja energiaperiaatteen käyttö, reaalinen jousi Tällä luennolla tavoitteena: Gravitaatio jatkuu Konservatiivinen voima Mitä eroa on energia-

Lisätiedot

Suhteellisuusteorian perusteet 2017

Suhteellisuusteorian perusteet 2017 Suhteellisuusteorian perusteet 017 Harjoitus 5 esitetään laskuharjoituksissa viikolla 17 1. Tarkastellaan avaruusaikaa, jossa on vain yksi avaruusulottuvuus x. Nollasta poikkeavat metriikan komponentit

Lisätiedot

:37:37 1/50 luentokalvot_05_combined.pdf (#38)

:37:37 1/50 luentokalvot_05_combined.pdf (#38) 'VLTJ,)Ł /Ł 2015-09-21 13:37:37 1/50 luentokalvot_05_combined.pdf (#38) Luento 5: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä 2015-09-21 13:37:37

Lisätiedot

Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten)

Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Noste Ympyräliike I Luennon tavoitteet Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Aloitetaan ympyräliikettä Keskeisvoiman

Lisätiedot

dl = F k dl. dw = F dl = F cos. Kun voima vaikuttaa kaarevalla polulla P 1 P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl

dl = F k dl. dw = F dl = F cos. Kun voima vaikuttaa kaarevalla polulla P 1 P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl Kun voima vaikuttaa kaarevalla polulla P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl Kukin siirtymä dl voidaan approksimoida suoraviivaiseksi, jolloin vastaava työn elementti voidaan

Lisätiedot

Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti

Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti Kertausta Ympyrärataa kiertävälle kappaleelle on määritelty käsitteet kulmanopeus ja kulmakiihtyvyys seuraavasti: ω = dθ dt dω ja α = dt Eli esimerkiksi

Lisätiedot

Luento 10: Työ, energia ja teho

Luento 10: Työ, energia ja teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin

Lisätiedot

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 1 / 31 Luennon sisältö Suhteellinen translaatioliike

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Luento 11: Periodinen liike

Luento 11: Periodinen liike Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r Konseptitesti 1 Tehtävänanto Kuvassa on jouseen kytketyn massan sijainti ajan funktiona. Kuvaile

Lisätiedot

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa Konseptitesti 1 Kysymys

Lisätiedot

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia Luennon sisältö Suhteellinen translaatioliike

Lisätiedot

Analyyttinen mekaniikka

Analyyttinen mekaniikka Maanantai 1.9.2014 1/17 Analyyttinen mekaniikka Luennoitsija: Niko Jokela Syyslukukausi 2014 4h/vko luentoja+2h/vko harjoituksia Maanantai 1.9.2014 2/17 Yleistä Luennot ma & to klo 10-12 (E204) sekä viikoilla

Lisätiedot

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 LIIKE Jos vahvempi kaveri törmää heikompaan kaveriin, vahvemmalla on enemmän voimaa. Pallon heittäjä antaa pallolle heittovoimaa, jonka

Lisätiedot

Luento 5: Käyräviivainen liike

Luento 5: Käyräviivainen liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike Ajankohtaista Konseptitesti 1 Kysymys Viereisessä kuvassa leppäkerttu istuu karusellissa,

Lisätiedot

Taivaanmekaniikkaa. Liikeyhtälöt

Taivaanmekaniikkaa. Liikeyhtälöt Taivaanmekaniikkaa Liikeyhtälöt Olkoot kahden kappaleen (esim. Auringon ja planeetan) massat m 1 ja m 2 ja paikkavektorit jossakin kiinteässä inertiaalikoordinaatistossa r 1 ja r 2. Merkitään r:llä planeetan

Lisätiedot

Luento 7: Voima ja Liikemäärä. Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä

Luento 7: Voima ja Liikemäärä. Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Luento 7: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä 1 / 36 Johdanto Dynamiikka tutkii voimia ja niiden aiheuttamaa liikettä Newtonin liikelait

Lisätiedot

Luku 8. Mekaanisen energian säilyminen. Konservatiiviset ja eikonservatiiviset. Potentiaalienergia Voima ja potentiaalienergia.

Luku 8. Mekaanisen energian säilyminen. Konservatiiviset ja eikonservatiiviset. Potentiaalienergia Voima ja potentiaalienergia. Luku 8 Mekaanisen energian säilyminen Konservatiiviset ja eikonservatiiviset voimat Potentiaalienergia Voima ja potentiaalienergia Mekaanisen energian säilyminen Teho Tavoitteet: Erottaa konservatiivinen

Lisätiedot

L a = L l. rv a = Rv l v l = r R v a = v a 1, 5

L a = L l. rv a = Rv l v l = r R v a = v a 1, 5 Tehtävä a) Energia ja rataliikemäärämomentti säilyy. Maa on r = AU päässä auringosta. Mars on auringosta keskimäärin R =, 5AU päässä. Merkitään luotaimen massaa m(vaikka kuten tullaan huomaamaan sitä ei

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike 2015-09-14 13:50:32 1/40 luentokalvot_03_combined.pdf (#36) Luennon

Lisätiedot

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1 infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Mikro- ja nanotekniikan laitos Syksy 2016 1 / 21 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia

Lisätiedot

Luento 7: Pyörimisliikkeen dynamiikkaa

Luento 7: Pyörimisliikkeen dynamiikkaa Luento 7: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Laskettuja esimerkkejä Luennon sisältö Johdanto Vääntömomentti Hitausmomentti

Lisätiedot

4. Käyrän lokaaleja ominaisuuksia

4. Käyrän lokaaleja ominaisuuksia 23 VEKTORIANALYYSI Luento 3 4 Käyrän lokaaleja ominaisuuksia Käyrän tangentti Tarkastellaan parametrisoitua käyrää r( t ) Parametrilla t ei tarvitse olla mitään fysikaalista merkitystä, mutta seuraavassa

Lisätiedot

PAINOPISTE JA MASSAKESKIPISTE

PAINOPISTE JA MASSAKESKIPISTE PAINOPISTE JA MASSAKESKIPISTE Kappaleen painopiste on piste, jonka kautta kappaleeseen kohdistuvan painovoiman vaikutussuora aina kulkee, olipa kappale missä asennossa tahansa. Jos ajatellaan kappaleen

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 22.3.2016 Susanna Hurme Päivän aihe: Rotaatioliikkeen kinematiikka: kulmanopeus ja -kiihtyvyys (Kirjan luvut 12.7, 16.3) Osaamistavoitteet Osata analysoida jäykän

Lisätiedot

Luvun 13 laskuesimerkit

Luvun 13 laskuesimerkit Luvun 13 laskuesimerkit Esimerkki 13.1 Olkoon Cavendishin vaa'an pienen pallon massa m 1 = 0.0100 kg ja suuren pallon m 2 = 0.500 kg (molempia kaksi kappaletta). Miten suuren gravitaatiovoiman F g pallot

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

Luento 13: Periodinen liike

Luento 13: Periodinen liike Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos Ajankohtaista

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! 6.1 Työ Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! Siirtymä s = r 2 r 1 Kun voiman kohteena olevaa kappaletta voidaan kuvata

Lisätiedot

Tarkastellaan tilannetta, jossa kappale B on levossa ennen törmäystä: v B1x = 0:

Tarkastellaan tilannetta, jossa kappale B on levossa ennen törmäystä: v B1x = 0: 8.4 Elastiset törmäykset Liike-energia ja liikemäärä säilyvät elastisissa törmäyksissä Vain konservatiiviset voimat vaikuttavat 1D-tilanteessa kappaleiden A ja B törmäykselle: 1 2 m Av 2 A1x + 1 2 m Bv

Lisätiedot

Luento 6: Liikemäärä ja impulssi

Luento 6: Liikemäärä ja impulssi Luento 6: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Laskettuja esimerkkejä Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste

Lisätiedot

6. Taivaanmekaniikka. Vektorin r suuntainen yksikkövektori puolestaan on ˆr = r/r.

6. Taivaanmekaniikka. Vektorin r suuntainen yksikkövektori puolestaan on ˆr = r/r. 6. Taivaanmekaniikka Taivaanmekaniikka tutkii taivaankappaleiden liikkeitä. Lähdemme liikkeelle Newtonin laeista ja johdamme niistä liikelait. Planeettojen liikettä kuvaavat Keplerin lait tosin määritettiin

Lisätiedot

6 Monen kappaleen vuorovaikutukset (Many-body interactions)

6 Monen kappaleen vuorovaikutukset (Many-body interactions) 6 Monen kappaleen vuorovaikutukset (Many-body interactions) 6.1 Newtonin III laki Voimme laskea kappaleen liiketilan Newtonin II lain avulla, jos tunnemme kaikki kappaleeseen vaikuttavat voimat. Jos kappaleita

Lisätiedot

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa Ajankohtaista FuksiProffaBuffa Järjestetään

Lisätiedot

2.7.4 Numeerinen esimerkki

2.7.4 Numeerinen esimerkki 2.7.4 Numeerinen esimerkki Karttusen kirjan esimerkki 2.3: Laske Jupiterin paikka taivaalla..2. Luennoilla käytetty rataelementtejä a, ǫ, i, Ω, ω, t Ω nousevan solmun pituus = planeetan nousevan solmun

Lisätiedot

Luento 5: Voima ja Liikemäärä

Luento 5: Voima ja Liikemäärä Luento 5: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Johdanto Dynamiikka tutkii voimia ja niiden aiheuttamaa liikettä Newtonin liikelait (Newton

Lisätiedot

Mekaniikka, osa 2. Perttu Lantto. Luentokalvot

Mekaniikka, osa 2. Perttu Lantto. Luentokalvot Mekaniikka, osa 2 Perttu Lantto Luentokalvot perustuvat kirjaan: University physics, 13 th International Edition H. D. Young & R. A. Freedman (Pearson, 2012) 7. maaliskuuta 2016 Osa V Luku 13: Gravitaatio

Lisätiedot

Massakeskipiste Kosketusvoimat

Massakeskipiste Kosketusvoimat Massakeskipiste Kosketusvoimat Luennon tavoitteet Kosketusvoimia Kitka Tukivoima Jännitys Jousivoima Massakeskipisteen käsite ja sillä laskeminen (Resonanssi tiedottaa tarjoavansa kahvia luentotauolla)

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän

Lisätiedot

Luento 8: Liikemäärä ja impulssi

Luento 8: Liikemäärä ja impulssi Luento 8: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä Ajankohtaista Konseptitesti 1 ÄLÄ KOKEILE TÄTÄ KOTONA! Kysymys

Lisätiedot

Luento 5: Käyräviivainen liike

Luento 5: Käyräviivainen liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike Ajankohtaista Konseptitesti 1 http://presemo.aalto.fi/mekaniikka2017 Kysymys Sotalaivasta

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Syksy 2016 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia Ajankohtaista Presemokyselyn poimintoja Millä odotuksilla aloitat

Lisätiedot

1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa.

1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. 1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. Vuodessa Maahan satava massa on 3.7 10 7 kg. Maan massoina tämä on

Lisätiedot

Liikemäärän säilyminen Vuorovesivoimat Jousivoima

Liikemäärän säilyminen Vuorovesivoimat Jousivoima Liikemäärän säilyminen Vuorovesivoimat Jousivoima Tämän luennon tavoitteet Liikemäärän säilyminen Vuorovesivoimat ja binomiapproksimaatio gravitaatio jatkuu viime viikolta Jousivoima: mikä se on ja miten

Lisätiedot

Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta

Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta 8 LIIKEMÄÄRÄ, IMPULSSI JA TÖRMÄYKSET Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta Tällöin dynamiikan peruslain F = ma käyttäminen ei ole helppoa tai edes mahdollista Newtonin

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 2016

Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 2016 MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 216 Tuntitehtävä 1: Laske sylinterikoordinaatteja käyttämällä sen kappaleen tilavuus,

Lisätiedot

Ei-inertiaaliset koordinaatistot

Ei-inertiaaliset koordinaatistot orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 26. syyskuuta 2016 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali Dipolin potentiaali

Lisätiedot

TAIVAANMEKANIIKKA IHMISEN PERSPEKTIIVISTÄ

TAIVAANMEKANIIKKA IHMISEN PERSPEKTIIVISTÄ TAIVAANMEKANIIKKA IHMISEN PERSPEKTIIVISTÄ ARKIPÄIVÄISTEN ASIOIDEN TÄHTITIETEELLISET AIHEUTTAJAT, FT Metsähovin Radio-observatorio, Aalto-yliopisto KOPERNIKUKSESTA KEPLERIIN JA NEWTONIIN Nikolaus Kopernikus

Lisätiedot

2.2 Principia: Sir Isaac Newtonin 1. ja 2. laki

2.2 Principia: Sir Isaac Newtonin 1. ja 2. laki Voima se on joka jyllää!, sanottiin ennen. Fysiikassakin voimalla tarkoitetaan jokseenkin juuri sitä, mikä ennenkin jylläsi, joskin täytyy muistaa, että voima ja teho ovat kaksi eri asiaa. Fysiikan tutkimuksen

Lisätiedot

Luento 8: Liikemäärä ja impulssi. Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä

Luento 8: Liikemäärä ja impulssi. Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä Luento 8: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä 1 / 46 Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 4 / versio 30. syyskuuta 2015 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali

Lisätiedot

DIFFERENTIAALIYHTÄLÖN NUMEERISESTA RATKAISEMISESTA 2 1,5 0,5 -0,5 -1,5-2

DIFFERENTIAALIYHTÄLÖN NUMEERISESTA RATKAISEMISESTA 2 1,5 0,5 -0,5 -1,5-2 Differentiaaliyhtälön numeerisesta ratkaisemisesta Olkoot D R 2 alue ja r, f, g : D R jatkuvia funktioita. Differentiaaliyhtälön y r(x, y) suuntaelementtikenttä on kuvaus D R 2, (x, y) (, r(x, y)). Suuntaelementtikenttä

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Esimerkki 5.1 Moottori roikkuu oheisen kuvan mukaisessa ripustuksessa. a) Mitkä ovat kahleiden jännitykset? b) Mikä kahleista uhkaa katketa ensimmäisenä? Piirretäänpä parit vapaakappalekuvat.

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

Nopeus, kiihtyvyys ja liikemäärä Vektorit

Nopeus, kiihtyvyys ja liikemäärä Vektorit Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero

Lisätiedot

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian perusteet ja pedagogiikka, 1.-2. luento Kari Sormunen Mitä yhteistä? Kirja pöydällä Opiskelijapari Teräskuulan liike magneetin lähellä

Lisätiedot

Liike keskeisvoimakentässä

Liike keskeisvoimakentässä Luku 2 Liike keskeisvoimakentässä Keskeisvoimat ja keskeisliike ovat olleet varsin keskeisessä osassa klassisen mekaniikan kehityksessä ja sovellutuksissa. Newton johti mekaniikkansa suurelta osin selittääkseen

Lisätiedot