arvoja. Niiden muodostamaa joukkoa kutsutaan T resolventtijoukoksi ja merkitään

Koko: px
Aloita esitys sivulta:

Download "arvoja. Niiden muodostamaa joukkoa kutsutaan T resolventtijoukoksi ja merkitään"

Transkriptio

1 f ( n) Funktionaalianalyysi n J. Kompaktien operaattorien spektri Seuraavassa käsitellään lyhyesti rajoitettujen operaattorien spektraaliteoriaa ja erityisesti Fredholmin-Rieszin-Schauderin teoriaa kompaktien operaattorien ominaisarvoista ja -vektoreista. Rajoittumalla kompleksikertoimisiin Hilbertin avaruuden operaattoreihin saadaan todistukset yksinkertaisimmiksi kuin yleisemmässä Banachin avaruuden operaattorien tapauksessa. Esitys on lainattu Follandin kirjasta [8, Chapter ]. Tarkoituksena on osoittaa, että a) rajoitetun operaattorin spektri on epätyhjä; b) kompaktin operaattorin spektri koostuu ominaisarvoista sekä mahdollisesti luvusta nolla; c) kompaktin itseadjungoidun operaattorin ominaisvektoreista voidaan muodostaa ortonormaali kanta. F. Riesziltä peräisin oleva esitys löytyy teoksista [17, No. 77], [23, X.5], [6, Chapter XI], [13, Luku IX], [9, Chapter 5] ja [22, Kapitel VI]. Kirjassa [17, No. 93] käsitellään myös ominaisarvojen määrääminen niiden ääriarvoominaisuuden perusteella. Fredholmin klassinen menetelmä integraaliyhtälöille löytyy kohdasta 74 ja peräkkäisiin iteraatioihin perustuva menetelmä kohdista Kirjassa [16, I, VI.5] tulokset pohjautuvat kompleksimuuttujan operaattoriarvoisten funktioiden ominaisuuksiin. Kirjassa [3, Chapitre VI] käsitellään laajasti sovelluksia osittaisdifferentiaaliyhtälöihin (mm. Sobolevin avaruuksia ja Dirichlet n ominaisarvotehtävää). Kirjassa [2, 9] käsitellään myös normaaleja operaattoreita ja Hilbertin-Schmidtin operaattoreita. Kirjassa [12, Kapitel VII] tarkastellaan myös yleisempää tapausta, Fredholmin operaattoreita. J.1. Spektri. Vrt. [13, Luku VIII]. Olkoon E Banachin avaruus. Luku λ K on jatkuvan lineaarioperaattorin T : E E spektraaliarvo, jos T λi ei ole kääntyvä renkaassa B(E, E), t.s. jos operaattorilla T λi ei ole jatkuvaa käänteiskuvausta. Operaattorin T spektraaliarvojen muodostama joukko on T :n spektri ja sitä merkitään Sp(T ) tai σ(t ). Luvut λ K, joille T λi on kääntyvä, ovat T :n säännöllisiä arvoja. Niiden muodostamaa joukkoa kutsutaan T resolventtijoukoksi ja merkitään ϱ(t ). Siis ϱ(t ) = K \ σ(t ). Avoimen kuvauksen lauseen perusteella T λi on kääntyvä, jos ja vain jos se on bijektio, joten T :n spektraaliarvoja ovat luvut λ K, joille T λi ei ole injektio tai surjektio. Operaattori T λi ei ole injektio, jos ja vain jos on olemassa x siten, että (T λi)x =. Tällaisia vektoreita x kutsutaan operaattorin T ominaisvektoreiksi ja vastaavia lukuja λ T :n ominaisarvoiksi. Seuraavan lauseen todistuksessa tarvitaan operaattoriarvoisesta geometrisesta sarjasta saatavaa yleistystä (vrt. [13, HT 6.19]). Lemma J.1. Olkoot T, T 1 B(E, E). Jos T on kääntyvä ja T 1 T < T 1 1, niin T 1 on kääntyvä ja T1 1 = 1 n= (T (T T 1 )) n T 1 Todistus. Carl Neumannin (eli geometrisen) sarjan avulla nähdään, että jos S B(E, E) ja S < 1, niin I S on kääntyvä ja (I S) 1 = n= Sn. Nyt T 1 = T + (T 1 T ) = T (I T 1 (T T 1 )). Oletukseksen nojalla T 1 (T T 1 ) 1

2 2 T 1 (T T 1 ) < 1, joten I T 1 (T T 1 ) on kääntyvä. Tällöin T (I T 1 (T T 1 )) on kahden kääntyvä operaattorin tulona kääntyvä. Lisäksi T1 1 = (I T 1 (T T 1 )) 1 T 1 = 1 n= (T (T T 1 )) n T 1. Lause J.2. Olkoon E kompleksinen Banachin avaruus. Jatkuvan operaattorin T B(E, E) spektri on epätyhjä ja kompakti. Todistus. Ks. [12, 23] tai [22, Satz VI.1.3]. Osoitetaan, että spektrin komplementti on avoin. Jos T λ I on kääntyvä, niin T λi = (T λ I) + (λ I λi) on kääntyvä lemman J.1 nojalla kun λ λ on riittävän pieni. Samoin nähdään, että T λi on kääntyvä, kun λ > T : Kun λ, on T = λi kääntyvä. Olkoot λ > T ja T 1 = T λi. Tällöin T 1 T = T < λ = T 1 1. Siis T 1 on kääntyvä. Samalla huomataan, että spektri sisältyy ympyrään {λ C λ T }. Spektrin epätyhjäksi näyttäminen on todistuksen hankalin osa. Tehdään antiteesi: Spektri on tyhjä. Tällöin T λi on kääntyvä kaikille λ C. Kun λ > T, saadaan lemman J.1 (eli geometrisen sarjan) avulla operaattorille R λ = (T λi) 1 R λ = λ 1 (I λ 1 T ) 1 = T n λ n 1. Kun λ 2 T, saadaan tästä kehitelmästä normille yläraja R λ T n λ n 1 T n λ n 1 λ T λ 1 1 T. n= n= Olkoot λ, λ C, T = T λ I ja T 1 = T λi. Siis, kun λ λ on riittävän pieni, saadaan lemman J.1 avulla R λ = T1 1 = (T 1 (T T 1 )) n T 1 = Rλ n (λ λ ) n R λ. n= Olkoon ϕ (B(E, E)). Tällöin jokaisella pisteellä λ C on ympäristö, missä ϕ(r λ ) = ϕ(r n+1 λ )(λ λ ) n. n= Funktio C C, λ ϕ(r λ ), on siis koko tasossa määritelty analyyttinen funktio. Edellisen arvion nojalla ϕ(r λ ) ϕ R λ ϕ / T, kun λ 2 T. Toisaalta, kompaktissa joukossa {λ C λ 2 T } jatkuva funktio λ ϕ(r λ ) on rajoitettu. Kompleksianalyysistä tunnetun Liouvillen lauseen nojalla koko tasossa määritelty, rajoitettu analyyttinen funktio on vakio. Valitaan nyt λ =. Tällöin ϕ(r λ ):n potenssisarjan kaikkien kertoimien, vakiotermiä lukuunottamatta, tulee olla nollia. Erityisesti ϕ(r) 2 =. Mutta ϕ(r) 2 = ϕ(t 2 ). Koska ϕ (B(E, E)) on mielivaltainen, seuraa Hahnin ja Banachin lauseesta, että T 2 =, mikä on mahdotonta. Siis T :n spektri ei voi olla tyhjä. Huomautus J.3. Edellinen lause ei päde reaaliselle Banachin avaruudelle, ei edes äärellisulotteiselle. Esimerkiksi tason kierrolla ei välttämättä ole lainkaan ominaisarvoja. Huomaa, että äärellisulotteisessa tapauksessa spektri koostuu ominaisarvoista. n= n=

3 J.2. Kompaktit operaattorit. Olkoon E Banachin avaruus. Jatkuva lineaarinen operaattori T : E E on kompakti, jos jokaiselle rajoitetulle jonolle (x j ) E jonolla (T x j ) on suppeneva osajono. Operaattori T on äärellisasteinen, jos kuvajoukko T (E) on äärellisulotteinen. Selvästi jokainen äärellisasteinen operaattori on kompakti. Operaattorin kompaktiudelle yhtäpitäviä ehtoja ovat lisäksi: a) Yksikköpallon B kuva on relatiivikompakti, t.s. T (B) E on kompakti. b) Yksikköpallon B kuva on prekompakti, t.s. jokaiselle ε > on olemassa äärellinen joukko y 1,...,y n E siten, että T (B) B(y 1, ε)... B(y 1, ε). Esimerkki J.4. Olkoon K : [, 1] [, 1] K jatkuva. Integraalioperaattori T : C([, 1], K) C([, 1], K), (T f)(t) = 1 K(t, s)f(s) ds, on kompakti, kun C([, 1], K) varustetaan normilla f f = sup t [,1] f(t). Integraalioperaattori T : C([, 1], K) C([, 1], K) on kompakti myös, jos C([, 1], K) varustetaan normilla f f 2 = ( 1 f(t) 2 dt ) 1/2. Ks. [13, 18.3]. Integraalioperaattori T on kompakti myös operaattorina L 2 ([, 1], K) L 2 ([, 1], K), kun L 2 ([, 1], K) varustetaan normilla f f 2 = ( 1 f(t) 2 dt ) 1/2, vaikka oletettaisiin vain K L 2 ([, 1] [, 1], K). Ks. [22, II.3]. Esimerkki J.5. Olkoot λ = (λ n ) n=1 rajoitettu lukujono, H separoituva Hilbertin avaruus ja (e n ) n=1 sen Hilbertin kanta. Tällöin operaattori T : H H, T x = n=1 λ n(x e n )e n, on jatkuva. Operaattori T on kompakti, jos ja vain jos λ c, t.s. λ n, kun n. Operaattorin T ominaisarvot ovat luvut λ n. Niitä vastaavat ominaisvektorit e n. Jos vain äärellisen monta λ n, on T äärellisasteinen ja nolla sen ominaisarvo, jota vastaava ominaisavaruus {x H T x = } on ääretönulotteinen. Lause J.6. Kompaktien operaattorien joukko on suljettu kaksipuolinen ideaali operaattorialgebrassa B(E, E). Todistus. Väite tarkoittaa, että (i) jos T ja S ovat kompakteja, niin summa T + S on kompakti; (ii) jos edes toinen operaattoreista T, S B(E, E) on kompakti, niin tulo T S on kompakti; (iii) kompaktit operaattorit muodostavat operaattorinormin suhteen suljetun joukon avaruuteen B(E, E). Yksityiskohdat jätetään harjoitustehtäväksi viimeistä kohtaa lukuunottamatta. Siis olkoot T B(E, E) ja (T m ) m=1 jono kompakteja operaattoreita siten, että T m T, kun m. Olkoon (x j ) E rajoitettu jono, x j C kaikille j N. Koska T 1 on kompakti, jonolla (T 1 x j ) on suppeneva osajono. Merkitään kyseistä jonon (x j ) osajonoa (x 1,j ). Koska T 2 on kompakti, jonolla (T 2 x 1,j ) on suppeneva osajono. Merkitään kyseistä jonon (x 1,j ) osajonoa (x 2,j ). Näin jatkaen saadaan kaikille m N jono (x m,j ) siten, että (T m x m,j ) suppenee. 3

4 4 Asetetaan y j = x j,j, kun j N. Tällöin (T m y j ) suppenee kaikille m N. Mutta nyt T y j T y k T y j T m y j + T m y j T m y k + T m y k T y k T T m y j + T m y j T m y k + T m T y k 2C T T m + T m y j T m y k. Olkoon ε >. Valitaan m N siten, että T T m ε/4c. Seuraavaksi valitaan N N siten, että T m y j T m y k ε/2, kun j, k N. Tällöin T y j T y k ε, kun j, k N. Siis (T y j ) on Cauchyn jono, joten se suppenee. Seuraus J.7. Olkoot T rajoitettu lineaarinen operaattori ja (T m ) m=1 jono äärellisasteisia operaattoreita siten, että T m T, kun m. Tällöin T on kompakti. Jos E on Hilbertin avaruus, niin tämä seuraus voidaan kääntää: Lause J.8. Olkoot H Hilbertin avaruus ja T B(H, H) kompakti. Tällöin on olemassa jono (T m ) m=1 äärellisasteisia operaattoreita siten, että T m T, kun m. Todistus. Olkoon ε >. Koska yksikköpallon B kuvajoukon T (B) sulkeuma on kompakti, on kuvajoukko T (B) prekompakti, t.s. on olemassa y 1,...,y n T (B) siten, että jokaiselle y T (B) on olemassa j {1,..., n} siten, että y y j < ε. Olkoon P ε ortogonaaliprojektio vektoreiden y 1,...,y n virittämälle aliavaruudelle. Olkoon T ε = P ε T. Tällöin T ε on äärellisasteinen. Koska T ε x on pistettä T x lähinnä oleva piste, on kaikille x B voimassa Siis T T ε ε. T x T ε x min{ T x y j j {1,..., n}} ε. Huomautus J.9. Lausetta J.8 vastaava väite ei päde yleiselle Banachin avaruudelle (P. Enflo, 1973: on olemassa separoituva, refleksiivinen Banachin avaruus, jolla ei ole e.m. approksimaatio-ominaisuutta). Lause J.1 (Schauder). Operaattori T B(E, E) on kompakti, jos ja vain jos sen duaali T t B(E, E ) on kompakti. Todistus. Osoitetaan tässä vain implikaatio: jos T B(E, E) on kompakti, niin sen duaali T t B(E, E ) on kompakti. Olkoot B E:n ja B E :n yksikköpallo ja T B(E, E) kompakti. Olkoon (f j ) E rajoitettu jono. Voidaan olettaa, että f j B. Jono (f j ) on pisteittäin rajoitettu, yhtäjatkuva jono kuvauksia f j : E K (ks. [13, Huomautus 19.8]), joten niiden rajoittumiin f j T (B) : T (B) K voidaan soveltaa Ascolin ja Arzelán lemmaa [13, Seuraus 18.6] (onhan T (B) kompakti joukko). Siis jonolla (f j ) on joukossa T (B) tasaisesti suppeneva osajono, jota edelleen merkitään (f j ). Siis jono (T t f j ), T t f j (x) = f j (T x), suppenee tasaisesti pallossa B, eli jono (T t f j ) suppenee E :n normin suhteen. Käänteinen implikaatio jos T t B(E, E ) on kompakti, niin T B(E, E) on kompakti osoitettaisiin helposti seuraavasti: Edellisen nojalla T :n biduaali T tt =

5 (T t ) t B(E, E ) on kompakti. Mutta E on biduaalin E suljettu aliavaruus ja T = T tt E. Vertaa [13, Lause 24.3], [22, Lemma III.4.3] tai [12, Lemma 7.7]. Lemma J.11. Olkoon T B(E, E). Tällöin eri ominaisarvoihin liittyvät ominaisvektorit ovat lineaarisesti riippumattomat. 5 Todistus. H.T. Jatkossa H on Hilbertin avaruus. Lemma J.12. Olkoot H kompleksinen Hilbertin avaruus ja T B(H, H) itseadjungoitu. Tällöin T :n ominaisarvot ovat reaalisia ja eri ominaisarvoihin liityvät ominaisvektorit ovat kohtisuorassa toisiaan vastaan. Todistus. H.T. Lause J.13. Hilbertin avaruuden H operaattori T B(H, H) on kompakti, jos ja vain jos sen adjungaatti T B(H, H) on kompakti. Todistus. Operaattorin duaalin ja adjungaatin välinen yhteys on T t (Ry) = R(T y) kaikille y H, kun R: y f y on Fréchen ja Rieszin esityslauseen isomorfismi H H, f y (x) = (x y). Siis T t R = R T. Olkoon T kompakti. Lauseen J.1 nojalla duaali T t on kompakti. Tällöin R 1 T t R = T on kompakti. Olkoon T kompakti. Edellisen perusteella T :n adjungaatti T on kompakti. Mutta T = T. Lause J.14 (Fredholm-Riesz-Schauder). Olkoot H kompleksinen Hilbertin avaruus ja T B(H, H) kompakti. Jokaiselle λ C asetetaan Tällöin V λ = {x H T x = λx} = ker(t λi) W λ = {x H T x = λx} = ker(t λi) a) Niiden λ C joukko Λ, joille V λ {}, on äärellinen tai numeroituva. Jälkimmäisessä tapauksessa luku nolla on joukon Λ ainoa kasaantumispiste. Lisäksi dim V λ < kaikille λ. b) Jos λ, niin dim V λ = dim W λ. c) Jos λ, niin operaattorin T λi kuvajoukko on suljettu. Todistus. a) Väite on yhtäpitävä sen kanssa, että dim ( λ ε V λ) < kaikille ε > Huomaa, että kyseessä oleva summa on lemman J.12 nojalla suora, kun summasta jätetään pois nolla-avaruudet eli ne λ C, joille V λ = {}. Tehdään antiteesi: On olemassa ε > sekä jonot (λ j ) C ja (x j ) H siten, että vektorit x j ovat lineaarisesti riippumattomat, T x j = λ j x j ja λ j ε kaikille j N. Ehdosta T x j = λ j x j seuraa λ j T. Heinen ja Borelin lauseen nojalla löydetään suppeneva osajono, jota merkitään edelleen (λ j ) C. Olkoon H m = {x 1,..., x m }. Jokaiselle m N valitaan y m H m siten, että y m = 1 ja y m ja

6 6 H m 1. Tällöin on olemassa c m,j C siten, että y m = m c m,jx j, joten m m 1 λ 1 m T y m = λ 1 m c m,j T x j = c m,m x m + λ 1 m c m,j λ j x j = y m + m 1 c m,j (λ 1 m λ j 1)x j = y m + z m 1, missä z m 1 H m 1. Kun n < m, on λ 1 m T y m λ 1 n T y n = y m + z m 1, missä z m 1 H m 1. Koska y m = 1 ja y m H m 1, saadaan Pythagoraan lauseen nojalla Mutta tällöin λ 1 m T y m λ 1 n T y n 1. 1 λ 1 m T y m λ 1 m T y n + λ 1 m T y n λ 1 n T y n λ 1 m T y m T y n + λ 1 m λ 1 n T y n, t.s. T y m T y n λ m 1 λ m λ 1 n T y n. Kun m, n, on 1 λ m λ 1 n ja T y n T. Koska λ m ε, ei jonolla (T y m ) m=1 voi olla suppenevaa osajonoa. Mutta tämä on ristiriidassa T :n kompaktiuden kanssa. b) Olkoon λ. Lauseen J.8 nojalla on olemassa äärellisasteinen T ja T 1 B(H, H) siten, että T = T + T 1 ja T 1 < λ. Tällöin operaattori λi T 1 = λ(i λ 1 T 1 ) on kääntyvä (muista lemma J.1, onhan λ 1 T 1 < 1). Siis (1) (λi T 1 ) 1 (λi T ) = (λi T 1 ) 1 (λi T 1 T ) = I (λi T 1 ) 1 T. Asetetaan T 2 = (λi T 1 ) 1 T. Tällöin x V λ, jos ja vain jos x T 2 x =. Yhtälöstä (1) saadaan adjungaatille (λi T )(λi T 1 ) 1 = I T 2. Näin vektori y = (λi T 1 ) 1 x kuuluu aliavaruuteen W λ, jos ja vain jos x T 2 x =. Riittää siis osoittaa, että yhtälöillä x T 2 x = ja x T 2 x = on sama määrä lineaarisesti riippumattomia ratkaisuja. Koska T on äärellisasteinen, on sitä myös T 2. Olkoon {u 1,..., u N } kuvajoukon T 2 (H) kanta. Tällöin on olemassa f j H, 1 j N, siten, että T 2 x = N f j (x)u j kaikille x H. Rieszin-Fréchet n esityslauseen nojalla on olemassa v 1,..., v N H siten, että N T 2 x = (x v j )u j kaikille x H.

7 Asetetaan β j,k = (u j v k ), ja kun x H, asetetaan α j = (x v j ). Jos x T 2 x =, niin x on vektoreiden u 1,..., u N lineaarikombinaatio, joten laskemalla sisätulot vektoreiden v k kanssa päädytään yhtälöryhmään N (2) α k β j,k α j =, k = 1,..., N. Kääntäen, jos α 1,..., α N toteuttavat yhtälöryhmän (2), niin vektori x = N α ju j toteuttaa x T 2 =. Toisaalta, on helppo todeta, että T2 x = N (x u j)v j kaikille x H. Samanlaisella päättelyllä todetaan, että x T2 x =, jos ja vain jos vektori x = N α jv j toteuttaa yhtälöryhmän N (3) α k β k,j α j =, k = 1,..., N. Mutta matriisit (δ j,k β j,k ) j,k ja (δ j,k β k,j ) j,k ovat toistensa adjungaatteja (eli transpoosin kompleksikonjugaatteja). Lineaarialgebran tietojen perusteella yhtälöryhmillä (2) ja (3) on sama määrä lineaarisesti riippumattomia ratkaisuja. 1 c) Olkoon (y j ) (λi T )(H) siten, että y j y H. Olkoot x j H siten, että y j = (λi T )x j. Olkoot u j V λ ja v j Vλ siten, että x j = u j + v j. Tällöin (λi T )x j = (λi T )v j. Osoitetaan, että jono (v j ) on rajoitettu. Jos näin ei ole, siirrytään osajonoon, jolle v j. Asetetaan w j = v j / v j. Siirtymällä osajonoon voidaan olettaa, että jono (T w j ) suppenee. Olkoon z = lim j T w j. Koska jono (y j ) on rajoitettu ja v j, on Siis z V λ λw j = T w j + y j / v j z, kun j. ja z = λ. Toisaalta (λi T )z = lim j (λi T )λw j = lim j λy j / v j =, joten z V λ. Siis z V λ Vλ = {}. Mutta z = λ >. Ristiriita. Siis jono (v j ) on rajoitettu. Siirtymällä osajonoon voidaan olettaa, että jono (T v j ) suppenee. Olkoon x = lim j T v j. Tällöin joten Siis y (λi T )(H). v j = λ 1 (y j + T v j ) λ 1 (y + x), y = lim j (λi T )λv j = (λi T )λ 1 (y + x). 1 Muista, että matriisin A ranki r on sen sarakevektoreiden virittämän vektorialiavaruuden dimensio. Luku r on myös A:n rivivektoreiden virittämän vektorialiavaruuden dimensio; ks. esim. [1, 2.16]. Kun A tulkitaan lineaarikuvaukseksi R n R n, on sarakevektoreiden virittämä vektorialiavaruus sama kuin kuva-avaruus A(R n ). Vastaavasti rivivektoreiden virittämä vektorialiavaruus on A:n transpoosin A t kuva-avaruus A t (R n ). Mutta dimensiolauseen nojalla n dim ker A = dim A(R n ) = dim A t (R n ) = n dim ker A t, joten dim ker A = dim ker A t. Kompleksikonjugointi ei vaikuta dimensioihin. 7

8 8 Seuraus J.15 (Fredholmin vaihtoehtolause). Edellisen lauseen oletuksin on voimassa: Kun λ, niin (1) yhtälöllä (T λi)x = y on ratkaisu y H, jos ja vain jos y W λ ; (2) T λi on surjektio, jos ja vain jos se on injektio. Todistus. Ensimmäinen väite seuraa edellisen lauseen kolmannesta kohdasta, kun huomataan, että kaikille S B(H, H) pätee ker S = S(H). Kun kuvajoukko S(H) on suljettu, on (ker S ) = S(H). Kompaktille operaattorille T kuvajoukko (T λi)(h) on suljettu ja (T λi) = T λi. Siis itse asiassa (T λi)(h) = (ker(t λi)) = W. λ Ensimmäisen kohdan nojalla T λi on surjektio W = H W λ λ = {}. Edellisen lauseen toisen kohdan nojalla W λ = {} V λ = {} T λi on injektio. Lauseen tulos voidaan ilmaista myös seuraavasti: Olkoon λ. Jos yhtälöllä T x λx = on vain ratkaisu x =, niin yhtälöllä T x λx = y on yksikäsitteinen ratkaisu kaikille y H. Jos taas yhtälöllä T x λx = on ratkaisu x, niin yhtälöllä T x λx = on n = dim V λ lineaarisesti riippumatonta ratkaisua x. Tällöin myös yhtälöllä T y λy = on n lineaarisesti riippumatonta ratkaisua y, ja yhtälöllä T x λx = y on ratkaisu x, jos ja vain jos y W λ. Esimerkki J.16. Olkoot (λ n ) n=1 c, ja T : l 2 l 2, T (x n ) n=1 = (λ n x n ) n=1. Tällöin adjungaatille T on T (x n ) n=1 = (λ n x n ) n=1. Yhtälön (T λi)x = y ratkeavuuden karakterisoiminen jätetään harjoitustehtäväksi. Lause J.17 (Hilbertin ja Schmidtin lause; spektraalilause kompaktille itseadjungoidulle operaattorille). Olkoot H kompleksinen Hilbertin avaruus ja T B(H, H) kompakti ja itseadjungoitu operaattori. Tällöin H:lla on T :n ominaisvektoreista muodostuva Hilbertin kanta. Todistus. Lemman J.12 nojalla eri ominaisarvoihin liittyvät ominaisavaruudet V λ ovat keskenään ortogonaaliset. Poistetaan aluksi ongelmallinen ominaisarvo λ = seuraavalla tavalla: Jos V {}, valitaan aliavaruudelle V Hilbertin kanta. Koska T kuvaa ortogonaalikomplementin V itselleen, voidaan jatkossa olettaa, että H = V. Kun seuraavaksi V :lle löydettävä Hilbertin kanta yhdistetään V :n Hilbertin kantaan, saadaan lauseessa haettu kanta. Valitaan jokaiselle V λ {}, λ, Hilbertin kanta ja yhdistetään eri ominaisarvoja vastaavat kannat. Näin saadaan T :n ominaisvektoreista muodostuva ortonormaali joukko {u j j N}. Olkoon λ j vektoria u j vastaava ominaisarvo. Vektorit voidaan olettaa järjestetyksi siten, että λ j λ k, kun j k. Olkoon H 1 = H. Kun m 2, olkoon H m aliavaruuden {u 1,..., u m 1 } ortogonaalikomplementti. Aputulos: T x λ m x kaikille x H m. Aputulos todistetaan myöhemmin. Lause saadaan sen avulla todistetuksi seuraavasti:

9 Olkoon P ortogonaaliprojektio vektoreiden u j, j N, virittämälle suljetulle aliavaruudelle, P x = (x u j)u j. Osoitetaan, että P x = x kaikille x H. Koska λ = ei tässä ole ominaisarvo, on T injektio ja siis myös surjektio. Olkoon x = T y T (H). Koska T :n ominaisarvot ovat reaaliset, on Asetetaan (x u j )u j = (T y u j )u j = (y T u j )u j = λ j (y u j )u j = T ( (y u j )u j ). x m = m (x u j )u j, y m = m (y u j )u j. Tällöin x x m = T (y y m ). Koska y y m on vektorin y projektio aliavaruuteen H m+1, on x x m = T (y y m ) λ m+1 y y m λ m+1 y. Mutta λ m+1, kun m, joten x m x. Siis P x = x. Aputuloksen T x λ m x kaikille x H m todistus. Olkoon C = sup{ T x x H m ja x = 1.} Voidaan olettaa, että C >, koska muuten väite on selvä. Tarkastellaan operaattoria A = C 2 I T 2. Kaikille x H m on (Ax x) = C 2 x 2 T x 2. Valitaan jono (x j ) H m siten, että x j = 1 ja T x j C. Tällöin (Ax j x j ). Kuvaus (u, v) (Au v) toteuttaa kompleksiselle sisätulolle asetetut ehdot, joten Cauchyn-Schwarzin-Bunjakovskin epäyhtälön nojalla saadaan Ax j 2 = (Ax j Ax j ) (Ax j x j ) 1/2 (A 2 x j Ax j ) 1/2 (Ax j x j ) 1/2 A 2 x j 1/2 Ax j 1/2 A 3/2 (Ax j x j ) 1/2. Siis Ax j. Koska T on kompakti, on jonolla (T x j ) suppeneva osajono. Merkintöjen yksinkertaistamiseksi osajono olkoon (T x j ) ja jonon raja-arvo y. Tällöin (huomaa: AT = T A) y = lim j T x j = C > ja Ay = lim j AT x j = lim j T Ax j =. Siis y, mutta Ay = (CI+T )(CI T )y =. Tällöin T y = Cy, tai muuten vektorille z = (CI T )y on z ja (CI + T )z =. Siis ainakin toinen luvuista C tai C on T :n ominaisarvo, jota vastaava ominaisvektori löytyy aliavaruudesta H m. (Vektori y H m, koska x j H m, y = lim j T x j ja T (H m ) H m. Myös z = Cy T y H m, koska T (H m ) H m.) Siis C on jokin luvuista λ m, λ m+1,.... Mutta C:n määritelmästä seuraa, että C sup{ λ j j m} = λ m, joten C = λ m. Näin apuväite on todistettu. Esimerkki J.18. Olkoot K L 2 ([, 1] [, 1], C) ja T : L 2 ([, 1], C) L 2 ([, 1], C), (T f)(t) = 1 K(t, s)f(s) ds. 9

10 1 Tällöin T on kompakti operaattori. Lisäksi T K 2. Todetaan aluksi, että T on hyvinmääritelty. Koska 1 1 K(t, s) 2 ds dt <, seuraa Fubinin lauseesta, että m.k. t [, 1] funktio s K(t, s) on neliöintegroituva. Olkoon f L 2 ([, 1], C). Hölderin epäyhtälön nojalla 1 K(t, s)f(s) ds on olemassa m.k. t [, 1]. Lisäksi joten (T f)(t) 1 ( 1 ) 1/2 ( 1 1/2, K(t, s) f(s) ds K(t, s) 2 ds f(s) ds) 2 T f K(t, s) 2 ds dt f 2 2 = K 2 2 f 2 2 Siis T f L 2 ([, 1], C). Myös epäyhtälö T K 2 seuraa tästä. Olkoon nyt (ϕ k ) k=1 Hilbertin avaruuden L2 ([, 1], C) Hilbertin kanta. Tällöin funktiot ψ j,k, ψ j,k (t, s) = ϕ j (t)ϕ k (s), muodostavat Hilbertin kannan avaruudelle L 2 ([, 1] [, 1], C). Funktio K L 2 ([, 1] [, 1], C) voidaan siis esittää muodossa Kun N N, olkoon Tällöin K N (t, s) = 1 j+k N K = K N (t, s)f(s) ds = a j,k ψ j,k. j,k=1 a j,k ψ j,k (t, s) = j+k N j+k N a j,k ϕ j (t) 1 a j,k ϕ j (t)ϕ k (s). ϕ k (s)f(s) ds, joten integraalioperaattorin T N, jonka ydin on K N, kuvajoukko Im T N {ϕ 1,..., ϕ N }. Edellä olleesta normiepäyhtälöstä saadaan T T N K K N 2, kun N. Koska operaattorit T N ovat äärellisasteisia ja T niiden raja-arvo, on T kompakti. Integraalioperaattorin T adjungaatti T on myös integraalioperaattori, jonka määrittelevälle funktiolle K on K (t, s) = K(s, t). Seurauksen J.15 nojalla integraaliyhtälöllä 1 K(t, s)f(s) ds λf(t) = g(t) on siis ratkaisu, jos ja vain jos 1 g(t)h(t) dt = kaikille h L2 ([, 1], C), joille 1 K(t, s)h(s) ds λh(t) =. Jos lisäksi K(t, s) = K(s, t) kaikille s, t [, 1], niin T on itseadjungoitu ja Hilbertin ja Schmidtin lause nojalla operaattorin T ominaisfunktioista voidaan muodostaa ortonormaali kanta (e k ) k=1 L2 ([, 1], C). Kun λ k on funktiota e k vastaava ominaisarvo, on λ k, kun k, ja 1 K(t, s)e k(s) ds = λ k e k (t) kaikille k N.

11 Esimerkki J.19. Olkoon Ω R n rajoitettu alue. Tarkastellaan Laplacen yhtälön Dirichlet n reuna-arvotehtävään liittyvää ominaisarvo-ongelmaa { u = λu alueessa Ω, (4) u = alueen reunalla Ω. Poincarén epäyhtälön nojalla (u v) 1,2 = Ω ( n k=1 ) D k u D k v dx. on sisätulo Sobolevin avaruudessa H 1,2 (Ω) ja sen määräämä normi on ekvivalentti H 1,2 (Ω):n tavallisen normin kanssa. Huomaa sisätulon lausekkeessa esiintyvä kompleksikonjugointi; tässä funktioiksi sallitaan kompleksiarvoiset funktiot. Sobolevin avaruudessa H 1,2 (Ω) ominaisarvo-ongelmaa (4) vastaa (5) (u v) 1,2 = λu v dx kaikille v H 1,2 (Ω). Ω Fréchet n ja Rieszin esityslauseen nojalla kaikille f L 2 (Ω) on olemassa tasan yksi u H 1,2 (Ω) siten, että (u v) 1,2 = f v dx kaikille v H 1,2 (Ω). Ω Asetetaan T : L 2 (Ω) H 1,2 (Ω), T f = u. Tällöin T on lineaarikuvaus. Lisäksi CSB:n nojalla (valitaan v = u) u 2 1,2 = f u dx f 2 u 2 f 2 u 1,2, Ω joten T f 1,2 = u 1,2 f 2 ja siis T on jatkuva. Nyt (u v) 1,2 = λu v dx kaikille v H 1,2 (Ω) T (λu) = u. Ω Siis ominaisarvo-ongelma (5) on yhtäpitävä yhtälön T (λu) = u eli T u = λ 1 u kanssa (ainakin, kun λ ). Luku λ = ei voi olla ominaisarvo, koska tällöin yhtälöstä (5) seuraisi u = (valitse v = u). Siis yhtälöön (4) liittyvät ominaisarvot λ ovat operaattorin T ominaisarvojen käänteislukuja. Rellichin lemman nojalla upotus H 1,2 (Ω) L 2 (Ω) on kompakti. Kun T tulkitaan operaattoriksi L 2 (Ω) L 2 (Ω), on se yhdistetty kuvaus jatkuvasta operaattorista T : L 2 (Ω) H 1,2 (Ω) ja kompaktista operaattorista H 1,2 (Ω) L 2 (Ω), joten T : L 2 (Ω) L 2 (Ω) on kompakti operaattori. Lisäksi se on helppo todeta itseadjungoiduksi. Fredholmin, Rieszin ja Schauderin ominaisarvoteoriaa voidaan siis soveltaa ominaisarvo-ongelmaan (5). Hilbertin ja Schmidtin lauseen nojalla on olemassa jono (λ k ) k N R ja Hilbertin avaruuden L 2 (Ω) ortonormaali kanta (u k ) k N siten, että kaikille k N pätee (ainakin heikon ratkaisun mielessä) { uk = λ k u k alueessa Ω, 11 u k = alueen reunalla Ω.

12 12 Valitsemalla v = u k yhtälöstä (5) saadaan u k 2 1,2 = λ Ω k u k 2 dx, joten λ k > kaikille k N. Koska kompaktin operaattorin ominaisarvojen jono konvergoi kohti nollaa, on λ k +, kun k. Fredholmin vaihtoehtolauseen muotoilu yhtälölle (4) jääköön harjoitustehtäväksi. Samoin yleisemmän divergenssimuotoisen ominaisarvo-ongelman tarkasteleu jätetään harjoitustehtäväksi: n D k (a j,k D j u) = λu alueessa Ω, j,k=1 u = reunalla Ω. Tässä a j,k, a L (Ω), ja oletetaan, että on olemassa c > siten, että n a j,k (x)ξ j ξ k c ξ 2 ja a (x) c m.k. x Ω. j,k=1 Vastaava operaattori T on itseadjungoitu, kun lisäksi oletetaan, että a j,k (x) = a k,j (x) m.k. x Ω. Huomautus J.2. Jokaiselle itseadjungoidulle operaattorille T B(H, H) on T = sup{ (T x x) x 1}. Kompaktille itseadjungoidulle operaattorille voidaan näyttää, että ainakin toinen luvuista T ja T on T :n ominaisarvo (vrt. [17, No. 93]), mutta ei-kompaktilla, itseadjungoidulla operaattorilla ei tarvitse olla lainkaan ominaisarvoja (vrt. [13, Esimerkki 1.33]). Kompaktille itseadjungoidulle operaattorille ominaisarvojen määräämistä voidaan jatkaa seuraavasti: Olkoot λ 1 esimerkiksi edellä löydetty ominaisarvo, λ 1 = ± T, ja H 1 ominaisavaruuden V λ1 ortogonaalikomplementti. Tällöin T (H 1 ) H 1, joten edellistä menetelmää voidaan soveltaa operaattoriin T H1 : H 1 H 1. Siis ainakin toinen luvuista ± T H1 on T H1 :n ominaisarvo. Tämä ominaisarvo on tietysti myös T :n ominaisarvo. Huomautus J.21. Edelliset tulokset pätevät osin myös Banachin avaruuden E operaattorille T B(E, E). Vrt. [9, 4.13 ja 5.2] sekä [3, II.6, II.7, V.2 ja V.3]. Aliavaruuden V E annihilaattori on V = {f E f(x) = kaikille x V }. Aliavaruuden W E annihilaattori on W = {x E f(x) = kaikille f W }. Kun S B(E, E), on ker S = S t (E ) ja ker S t = S(E). Kun kuvajoukko S(E) on suljettu, on (ker S t ) = S(E). Kun T B(E, E) on kompakti, asetetaan V λ = {x E T x = λx} = ker(t λi) E W λ = {x E T t x = λx} = ker(t t λi) E. Tällöin a) Niiden λ C joukko Λ, joille V λ {}, on äärellinen tai numeroituva. Jälkimmäisessä tapauksessa luku nolla on joukon Λ ainoa kasaantumispiste. Lisäksi dim V λ < kaikille λ. b) Jos λ, niin dim V λ = dim W λ. ja

13 c) Jos λ, niin operaattorin T λi kuvajoukko on suljettu. Huomautus J.22. Kompaktien operaattorien teorian katsotaan alkaneen Fredholmin artikkeleista vuosilta 19 ja 193. Näissä hän tarkastelee integraaliyhtälöä f(t) λ 1 K(t, s)f(s) ds = g(t). Fredholmin idea on korvata integraali Riemannin summalla ja näin palauttaa ongelma äärellisulotteiseksi ominaisarvo-ongelmaksi. Menetelmä löytyy hahmoteltuna mm. kirjasta [17, No. 74]. Hilbert julkaisi vuosina kuusi integraaliyhtälöihin liittyvää artikkelia. Näissä hän mm. määritteli kompaktin operaattorin ( heikosti suppenevan jonon kuvajono suppenee ) sekä toi käyttöön ominaisarvon ja ominaisfunktion käsitteet. Schmidtin artikkelista vuodelta 197 on peräisin idea käyttää lausetta J.8. Lisäksi hän ei olettanut integraalioperaattorin ydintä K jatkuvaksi, vaan salli sen olla neliöintegroituva. Hänen kunniakseen operaattoria f 1 K(, s)f(s) ds, missä K L 2 ([, 1] [, 1]), kutsutaan Hilbert-Schmidt-operaattoriksi. Menetelmä löytyy mm. kirjasta [17, No. 71]. Myös lauseen J.14 todistus noudattelee Schmidtin todistusmenetelmää. Lause J.1 on peräisin Schauderilta (193), samoin kuin operaattorin transpoosiin käsite. Kompaktin operaattorin käsite Banachin avaruudessa on peräisin Riesziltä (1918). Vaikka Riesz tarkasteli integraaliyhtälöitä, ovat hänen päättelynsä täysin yleispäteviä, ja ne ovat niin elegantteja, ettei niitä tähän päivään mennessä ole pystytty yksinkertaistamaan ([22, s. 284]). Menetelmä on jossakin määrin vastaava kuin matriisin saattaminen Jordanin normaalimuotoon. Rieszin menetelmä Rieszin esittämänä löytyy kirjasta [17, No. 77 8]. Luentomonisteen [13, 28.3] esitys pohjautuu Rieszin menetelmään. K. Harjoitustehtäviä K.1. Olkoot E Banachin avaruus ja S, T B(E, E). Osoita, että jos S ja T ovat kääntyviä, niin ST on kääntyvä ja (ST ) 1 = T 1 S 1. K.2. Olkoot E Banachin avaruus ja S, T B(E, E). Osoita, että (ST ) t = T t S t. K.3. Olkoot H Banachin avaruus ja S, T B(H, H). Osoita, että (ST ) = T S. K.4. Seuraavassa operaattorin T B(E, E) spektriä merkitään σ(t ). Olkoot H kompleksinen Hilbertin avaruus ja S B(H, H). Osoita, että (i) (S λi) = S λi; (ii) S λi on kääntyvä, jos ja vain jos S λi on kääntyvä; (iii) σ(s ) = {µ C µ σ(s)}. K.5. Olkoot (λ n ) n=1 rajoitettu lukujono ja T : l 2 l 2, T (x n ) n=1 = (λ n x n ) n=1. Osoita, että T on kompakti, jos ja vain jos λ n, kun n. 13

14 14 K.6. Olkoot (λ n ) n=1 rajoitettu lukujono, jolle λ n, kun n, ja λ n kaikille n N, ja T : l 2 l 2, T (x n ) n=1 = (λ n x n ) n=1. Osoita, että T on kompakti ja injektio. K.7. Olkoot (λ n ) n=1 rajoitettu lukujono ja T : l 2 l 2, T (x n ) n=1 = (λ n x n ) n=1. Millä ehdolla T on surjektio? K.8. Olkoon L: l 2 l 2, L(x 1, x 2, x 3,...) = (x 2, x 3,...). Osoita, että L:n spektri σ on suljettu yksikköympyrä D = {λ C λ 1} osoittamalla, että a) σ D ja b) jokainen λ C, jolle λ < 1, on L:n ominaisarvo. Osoita edelleen, että mikään λ C, jolle λ = 1, ei ole ominaisarvo. K.9. Olkoon R: l 2 l 2, R(x 1, x 2, x 3,...) = (, x 1, x 2, x 3,...). Osoita, että R:n spektri on suljettu yksikköympyrä D. Osoita edelleen, että operaattorilla L ei ole lainkaan ominaisarvoja. [Vihje: On helppoa osoittaa, että R = L.] K.1. Olkoot (λ n ) n=1 rajoitettu lukujono, jolle λ n kaikille n N ja lim n λ n =, sekä L: l 2 l 2, L(x 1, x 2, x 3,...) = (λ 2 x 2, λ 3 x 3,...). Osoita, että L:n spektri σ on suljetun yksikköympyrän D numeroituva, suljettu osajoukko. K.11. Olkoon L: l l, L(x 1, x 2, x 3,...) = (x 2, x 3,...). Osoita, että että jokainen λ D on L:n ominaisarvo ja että L:n spektri on yksikköympyrä D. K.12. Olkoot E Banachin avaruus ja T B(E, E). Osoita, että T :n eri ominaisarvoihin liittyvät ominaisvektorit ovat lineaarisesti riippumattomat. K.13. Olkoot H kompleksinen Hilbertin avaruus ja T B(H, H) itseadjungoitu. Osoita, että T :n ominaisarvot ovat reaalisia. K.14. (Jatkoa.) Osoita, että T :n eri ominaisarvoihin liityvät ominaisvektorit ovat kohtisuorassa toisiaan vastaan. K.15. Olkoot H kompleksinen Hilbertin avaruus ja T B(H, H) itseadjungoitu. Osoita, että T (V λ ) V λ ja T (Vλ ) V λ, missä V λ = {x H T x = λx} = ker(t λi), kun λ C. K.16. Olkoot H Hilbertin avaruus ja S B(H, H). Osoita, että ker S = S(H). Osoita edelleen, että jos kuvajoukko S(H) on suljettu, on (ker S ) = S(H). Pohdiskelua: Edellisen tuloksen nojalla, jos kuvajoukko S(H) on suljettu, on yhtälöllä Sx = y ratkaisu, jos ja vain jos y ker S. Tämän tuloksen käyttökelpoisuutta parantaisivat seuraavat kaksi asiaa: a) jokin helppo tapa todeta kuvajoukkko S(H) suljetuksi, ja b) että adjungaatin S ydin olisi äärellisulotteinen (jotta ehdon y ker S tarkistamiseksi riittäisi tutkia vain äärellinen määrä lineaarisia yhtälöitä). Nämä kaksi ehtoa toteutuva, kun S = T λi, missä T on kompakti ja λ. K.17. Olkoot E ja F normiavaruuksia ja S B(E, F ). Osoita, että ker S t = S(E). Tässä S t on S:n duaali ja S(E) = {f F f(y) = kaikille y S(E)} kuvajoukon annihilaattori. Osoita edelleen, että jos kuvajoukko S(H) on suljettu, on (ker S t ) = S(E). Tässä (ker S t ) = {y F f(y) = kaikille f ker S t }. Vrt. [22, III.4.5] ja [9, ].

15 K.18. Olkoot H Hilbertin avaruus ja A: H H jatkuva lineaarikuvaus s.e. sen kuvajoukko A(H) on suljettu. Osoita, että on olemassa vakio c > s.e. Ax c d(x, K) kaikille x H, kun K := ker A. Tässä d(x, K) = pisteen x etäisyys joukosta K, t.s. d(x, K) = inf{ x k k K}. K.19. Olkoot E ja F Banachin avaruuksia ja T : E F jatkuva lineaarikuvaus. Osoita, että seuraavavat ehdot ovat keskenään yhtäpitäviä: (i) On olemassa vakio C > s.e. T x C x kaikille x E. (ii) ker T = {} ja Im T on suljettu. K.2. (Tekijäavaruuksia tunteville.) Olkoot E ja F Banachin avaruuksia, T : E F jatkuva lineaarikuvaus ja K = ker T. Osoita, että seuraavavat ehdot ovat keskenään yhtäpitäviä: (i) On olemassa vakio C > s.e. T x C d(x, K) kaikille x E. (ii) Im T on suljettu. [Vihje: Kuvaus [x] = x+k T x, E/K F, on bijektio kuvauksena E/K Im T.] K.21. Olkoot H Hilbertin avaruus ja T B(H, H) itseadjungoitu. Oletetaan, että T :llä on ominaisarvo λ. Olkoon V ominaisavaruuden V λ = {x H T x = λx} ortogonaalikomplementti. Osoita, että T (V ) V. K.22. Olkoon T reaalinen, symmetrinen n n-matriisi. Selvitä, miten Lagrangen määräämättöminen kertoimien menetelmällä ja pallon {x R n x = 1} kompaktisuuden avulla voidaan määrätä T :n ominaisarvot ja R n :lle T :n ominaisvektoreista muodostuva ortonormaali kanta. [Vihje: Luvut max{(t x x) x = 1} ja min{(t x x) x = 1} ovat T :n ominaisarvoja (miksi?) ja vastaavat ääriarvopisteet ominaisvektoreita. Valitse näistä itseisarvoltaan suurempi, λ 1. Poista R n :stä tätä ominaisarvoa vastaava ominaisavaruus, t.s. tarkastele aliavaruutta H 1 = (ker(t λ 1 I)). Osoita, että T (H 1 ) H 1. Jatka samalla menetelmällä.] 15

16 16 Viitteet [1] Tom M. Apostol, Mathematical analysis, 2nd edition, 5th printing, Addison Wesley, 1981; ensimmäinen laitos [2] Stefan Banach, Theory of Linear Operations, North Holland Mathematical Library, 1987; alunperin Théorie des operations linéares, Monografie Matematyczne 1, Warszawa, [3] Haïm Brezis, Analyse fonctionelle. Théorie et applications, 2 e tirage, Collection mathématiques appliqueés pour la maîtrise, Masson, [4] Richard Courant und David Hilbert, Methoden der Mathematischen Physik Band I, Dritte Auflage, Heidelberger Taschenbücher 3, Springer-Verlag, 1968; Erste Auflage, 1924; Band II, Zweite Auflage, Heidelberger Taschenbücher 31, Springer-Verlag, 1968; Erste Auflage, [5] Ingrid Daubechies, Ten Lectures on Wavelets, Third printing, CBMS-NSF Regional Conference Series in Applied Mathematics 61, SIAM, [6] Jean Dieudonné, Foundations of Modern Analysis, Third (enlarged and corrected) printing, Academic Press, 1969; alunperin Fondements de l Analyse Moderne, Gauthier Villars, 196. [7] Jean Dieudonné, Infinitesimal Calculus, Hermann, Paris 1971; alunperin Calcul infinitésimal, Hermann, Paris [8] Gerald B. Folland, Introduction to partial differential equations, Mathematical Notes, Princeton University Press, [9] Avner Friedman, Foundations of Modern Analysis, Dover Publications, Inc., 1982; alunperin Holt-Rinehart-Winston, 197. [1] Werner Greub, Lineare Algebra, Heidelberger Taschenbücher Band 179, Springer-Verlag, 1976; alunperin Grundlehren der mathematischen Wissenschaften Band 97, [11] Edwin Hewitt and Karl Stromberg, Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable, Third printing, Graduate Texts in Mathematics 25, Springer-Verlag, [12] Friedrich Hirzebruch und Winfried Scharlau, Einführung in die Funktionalanalysis, Hochschultaschenbücher Band 296, Bibliographisches Institut, Mannheim, [13] Lauri Kahanpää, Funktionaalianalyysi. Suoraviivaista ajattelua osa II, Jyväskylän yliopisto, Matematiikan ja tilastotieteen laitos, luentomoniste 51, 24. [14] Yitzhak Katznelson, An Introduction to Harmonic Analysis, Dover Publications, Inc., 1976; alunperin John Wiley & Sons Inc., [15] A. Langenbach, Vorlesungen zur höheren Analysis, VEB Deutscher Verlag der Wissenschaften, Berlin [16] Michael Reed and Barry Simon, Methods of Modern Mathematical Physics I: Functional Analysis, Academic Press, 1972; II: Fourier Analysis, Self-Adjointness, [17] Frigyes Riesz and Béla Sz.-Nagy, Functional Analysis, Dover Publications, Inc, 199; alunperin Leçons d analyse fonctionelle, Académiai Kiadó, 1952; engl. käännös Functional Analysis, Frederick Ungar Publishing Co., [18] Walter Rudin, Functional Analysis, Tata McGraw-Hill, 1982; alunperin McGraw-Hill, [19] Walter Rudin, Real and Complex Analysis, Second edition, Tata McGraw-Hill, 1979; alunperin McGraw-Hill, [2] Laurent Schwartz, Analyse Hilbertienne, Collection Méthodes, Hermann, [21] Karl Stromberg, An Introduction to Classical Real Analysis, Wadsworth International Mathematics Series, [22] Dirk Werner, Funktionalanalysis, Vierte, überarbeitete Auflage, Springer-Lehrbuch, Springer, 22. [23] Kôsaku Yosida, Functional Analysis, Fourth Edition, Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete Band 123, Springer-Verlag, 1974.

Osittaisdifferentiaaliyhtälöt, sl Ari Lehtonen

Osittaisdifferentiaaliyhtälöt, sl Ari Lehtonen Osittaisdifferentiaaliyhtälöt, sl. 2006 Ari Lehtonen Esipuhe Tätä tekstiä kirjoitettaessa on käytetty apuna lähinnä viiteluettelossa mainittuja kirjoja [1] ja [7] sekä [4] (vähänlaisesti) ja [3] (varsin

Lisätiedot

Funktionaalianalyysi. että näiden laajennusten joukossa on maksimaalinen laajennus. Työläin kohta todistuksessa

Funktionaalianalyysi. että näiden laajennusten joukossa on maksimaalinen laajennus. Työläin kohta todistuksessa f ( n) Funktionaalianalyysi n H. Hahnin ja Banachin sublineaarikuvauslause Määritelmä H.1. Olkoon E vektoriavaruus. Kuvaus p: E R on sublineaarinen, jos a) p(λx) = λp(x) kaikille λ 0, x E, b) p(x + y)

Lisätiedot

Zornin lemman nojalla joukossa E on siis maksimaalinen alkio (G, g). Kun näytetään, että G = E, niin väite on todistettu (L := g kelpaa).

Zornin lemman nojalla joukossa E on siis maksimaalinen alkio (G, g). Kun näytetään, että G = E, niin väite on todistettu (L := g kelpaa). f ( n) n 9. Hahnin ja Banachin lauseista 9.1. Sublineaarikuvauslause. Seuraavassa erilaisiin Hahnin ja Banachin lauseisiin lähdetään tutustumaan puhtaasti lineaarialgebrallisesta versiosta. Määritelmä

Lisätiedot

0 (Ω) ovat Hilbertin avaruuksia, joissa sisätulo on

0 (Ω) ovat Hilbertin avaruuksia, joissa sisätulo on f ( n Funktionaalianalyysi n B. Sobolevin avaruudet 1 Ks. moniste 15.4 ja määritelmä 15.26. Monisteen mukaan Banachin avaruus H 1,p (0, 1 on normiavaruuden C 1 p(0, 1 = {f C 1 (0, 1 f, f L p (0, 1} täydentymä,

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

MATEMATIIKAN JA TILASTOTIETEEN LAITOS f ( n) JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Funktionaalianalyysi Ei harjoituksia 1.4.2015 Funktionaalista viihdettä pääsiäistauolle: viikolla 14 (ma 30.3., ti 31.3. ja ke 1.4.)

Lisätiedot

Mathematicians are like Frenchmen: whatever you say to them they translate into their own language and forthwith it is something entirely

Mathematicians are like Frenchmen: whatever you say to them they translate into their own language and forthwith it is something entirely f ( n) JYVÄSKYLÄN YLIOPISTO Funktionaalianalyysi Sekalaisia harjoituksia MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Jatkuu... Mathematicians are like Frenchmen: whatever you say to them they translate into

Lisätiedot

(1.1) Ae j = a k,j e k.

(1.1) Ae j = a k,j e k. Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim

Lisätiedot

f(x) sin k x dx, c k = 1

f(x) sin k x dx, c k = 1 f ( n) n 3. Fourier n sarjoista I [1, 8.16, luku 11], [, luku 15], [3, luku IX, 8 9]. [5, luku I], [6, luku XII, 3], [7, luku 8], [8, luku 4], [9, luku 8] Trigonometrinen polynomi on muotoa a + ( ak cos

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause 116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

MATEMATIIKAN JA TILASTOTIETEEN LAITOS f ( n JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Harjoitusten 8 ratkaisut Topologiset vektoriavaruudet 2010 8.1. Olkoon P n = {f : K K p on enintään asteen n 1 polynomi} varustettuna

Lisätiedot

802320A LINEAARIALGEBRA OSA II

802320A LINEAARIALGEBRA OSA II 802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen

Lisätiedot

on Hilbertin avaruus, jonka normin määrää sisätulo (f g) 1,2 = (f g) 2 + (f g ) 2, missä ( ) 2 on L 2 (0, 1):n tavallinen sisätulo.

on Hilbertin avaruus, jonka normin määrää sisätulo (f g) 1,2 = (f g) 2 + (f g ) 2, missä ( ) 2 on L 2 (0, 1):n tavallinen sisätulo. f ( n n 6. Sobolevin avaruudet 1 Monisteen [7, 15.4 ja määritelmä 15.26] mukaan Banachin avaruus H 1,p (0, 1 on normiavaruuden C 1 p(0, 1 = {f C 1 (0, 1 f, f L p (0, 1} täydentymä, kun normina on f f p

Lisätiedot

1 Sisätulo- ja normiavaruudet

1 Sisätulo- ja normiavaruudet 1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v

Lisätiedot

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa. LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,

Lisätiedot

Ortogonaalisen kannan etsiminen

Ortogonaalisen kannan etsiminen Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,

Lisätiedot

Helsingin Yliopisto, Matematiikan ja tilastotieteen laitos. Luennot, kevät 2006 ja kevät Kari Astala ja Petteri Piiroinen (v.

Helsingin Yliopisto, Matematiikan ja tilastotieteen laitos. Luennot, kevät 2006 ja kevät Kari Astala ja Petteri Piiroinen (v. FUNKTIONAALIANALYYSIN PERUSKURSSI Helsingin Yliopisto, Matematiikan ja tilastotieteen laitos Luennot, kevät 2006 ja kevät 2008 Kari Astala ja Petteri Piiroinen (v. 2006) Hans-Olav Tylli (v. 2008 hienosäätöä)

Lisätiedot

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka

Lisätiedot

Avaruuden R n aliavaruus

Avaruuden R n aliavaruus Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla

Lisätiedot

7. Tasaisen rajoituksen periaate

7. Tasaisen rajoituksen periaate 18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Ratkaisuluonnoksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

802320A LINEAARIALGEBRA OSA III

802320A LINEAARIALGEBRA OSA III 802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause FUNKTIONAALIANALYYSIN PERUSKURSSI 125 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

Kompaktien operaattoreiden spektraaliteoriasta

Kompaktien operaattoreiden spektraaliteoriasta Kompaktien operaattoreiden spektraaliteoriasta Lauri Horttanainen Matematiikan Pro Gradu -tutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2008 Sisältö Johdanto 2 1. Sisätuloavaruuden

Lisätiedot

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus. 1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

6. OMINAISARVOT JA DIAGONALISOINTI

6. OMINAISARVOT JA DIAGONALISOINTI 0 6 OMINAISARVOT JA DIAGONALISOINTI 6 Ominaisarvot ja ominaisvektorit Olkoon V äärellisulotteinen vektoriavaruus, dim(v ) = n ja L : V V lineaarikuvaus Määritelmä 6 Skalaari λ R on L:n ominaisarvo, jos

Lisätiedot

Täydellisyysaksiooman kertaus

Täydellisyysaksiooman kertaus Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja

Lisätiedot

Lineaarikuvauksen R n R m matriisi

Lineaarikuvauksen R n R m matriisi Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:

Lisätiedot

Konvergenssilauseita

Konvergenssilauseita LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

Lineaarialgebra II P

Lineaarialgebra II P Lineaarialgebra II 89P Sisältö Vektoriavaruus Sisätuloavaruus 8 3 Lineaarikuvaus 5 4 Ominaisarvo 5 Luku Vektoriavaruus Määritelmä.. Epätyhjä joukko V on vektoriavaruus, jos seuraavat ehdot ovat voimassa:.

Lisätiedot

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1 Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon

Lisätiedot

Seuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1

Seuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1 FUNKTIONAALIANALYYSIN PERUSKURSSI 115 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

Alkeismuunnokset matriisille, sivu 57

Alkeismuunnokset matriisille, sivu 57 Lineaarialgebra (muut ko) p. 1/88 Alkeismuunnokset matriisille, sivu 57 AM1: Kahden vaakarivin vaihto AM2: Vaakarivin kertominen skalaarilla c 0 AM3: Vaakarivin lisääminen toiseen skalaarilla c kerrottuna

Lisätiedot

u 2 dx, u A f siten, että D(u) = inf D(U). Tarkemmin: Tarkoitus on osoittaa seuraavat minimointitehtävä ja Dirichlet n tehtävä u A f ja

u 2 dx, u A f siten, että D(u) = inf D(U). Tarkemmin: Tarkoitus on osoittaa seuraavat minimointitehtävä ja Dirichlet n tehtävä u A f ja 1. Dirichlet n periaatteesta 1.1. Periaate I. Dirichlet n periaate pohjautuu fysikaaliseen minimienergiaperiaatteeseen ja luo pohjaa osittaisdifferentiaaliyhtälöiden ja variaatiolaskennan välille). Yksinkertaisesti

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

u = 2 u (9.1) x + 2 u

u = 2 u (9.1) x + 2 u 9. Poissonin integraali 9.. Poissonin integraali. Ratkaistaan Diriclet n reuna-arvotehtävä origokeskisessä, R-säteisessä ympyrässä D = {(x, y) R x +y < R }, t.s. kun f : D R on annettu jatkuva funktio,

Lisätiedot

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on? Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi

Lisätiedot

Harjoitusten 4 ratkaisut Topologiset vektoriavaruudet 2010

Harjoitusten 4 ratkaisut Topologiset vektoriavaruudet 2010 f ( n) JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Harjoitusten 4 ratkaisut Topologiset vektoriavaruudet 2010 4.1. Viime kerralta. Esimerkki lokaalikonveksin avaruuden osajoukosta, joka

Lisätiedot

6. Lineaariset operaattorit

6. Lineaariset operaattorit 96 FUNKTIONAALIANALYYSIN PERUSKURSSI 6. Lineaariset operaattorit Luvussa 5 osoitimme, että Fourier-sarjat suppenevat L 2 -normissa (kts. Seuraus 5.8 sivulla 80). Osoitimme myös, että kun f on jatkuva ja

Lisätiedot

Lidskiin lause trace-luokan operaattoreille. Joona Lindström

Lidskiin lause trace-luokan operaattoreille. Joona Lindström Lidskiin lause trace-luokan operaattoreille Joona Lindström HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto Fakultet/Sektion Faculty Laitos Institution Department

Lisätiedot

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m ) Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä

Lisätiedot

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan

Lisätiedot

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio. Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin

Lisätiedot

Kantavektorien kuvavektorit määräävät lineaarikuvauksen

Kantavektorien kuvavektorit määräävät lineaarikuvauksen Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin

Lisätiedot

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π Matematiikan ja tilastotieteen laitos Funktionaalianalyysin peruskurssi Kevät 9) Harjoitus 7 Ratkaisuja Jussi Martin). E Hilbert avaruus L [, π]) ja gt) := t, t [, π]. Määrää funktion g Fourier kertoimet

Lisätiedot

HILBERTIN AVARUUKSISTA

HILBERTIN AVARUUKSISTA HILBERTIN AVARUUKSISTA Pro gradu -tutkielma Hannariikka Lehtiniemi Matematiikan ja tilastotieteen laitos Jyväskylän yliopisto syksy 2014 TIIVISTELMÄ Ääretönulotteiset avaruudet ovat monilta ominaisuuksiltaan

Lisätiedot

4. Hilbertin avaruudet

4. Hilbertin avaruudet FUNKTIONAALIANALYYSIN PERUSKURSSI 51 4. Hilbertin avaruudet Hilbertin avaruudet ovat ääretönulotteisista normiavaruuksista ominaisuuksiltaan kaikkein lähinnä kotiavaruutta R n tai C n. Tästä syystä niiden

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 7

FUNKTIONAALIANALYYSIN PERUSKURSSI 7 FUNKTIONAALIANALYYSIN PERUSKURSSI 7 2. Normi ja normiavaruus Olkoon E vektoriavaruus (eli lineaariavaruus) skalaarikuntana K = R tai K = C. Kurssilla Lineaarialgebra I määriteltiin vain R-kertoimiset vektoriavaruudet,

Lisätiedot

Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi

Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi Lineaarikuvaukset aiheita ten ten 1 Matematiikassa sana lineaarinen liitetään kahden lineaariavaruuden väliseen kuvaukseen. ten Määritelmä Olkoon (L, +, ) ja (M, ˆ+, ˆ ) reaalisia lineaariavaruuksia, ja

Lisätiedot

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit

Lisätiedot

1 Lineaarialgebraa Vektoriavaruus Lineaarikuvaus Zornin lemma ja Hamelin kanta... 10

1 Lineaarialgebraa Vektoriavaruus Lineaarikuvaus Zornin lemma ja Hamelin kanta... 10 Sisältö I Banachin avaruudet 5 1 Lineaarialgebraa 7 1.1 Vektoriavaruus................................. 7 1.2 Lineaarikuvaus................................. 8 1.3 Zornin lemma ja Hamelin kanta........................

Lisätiedot

Määritelmä 2.5. Lause 2.6.

Määritelmä 2.5. Lause 2.6. Määritelmä 2.5. Olkoon X joukko ja F joukko funktioita f : X R. Joukkoa F sanotaan pisteittäin rajoitetuksi, jos jokaiselle x X on olemassa sellainen C x R, että f x C x jokaiselle f F. Joukkoa F sanotaan

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Lineaarikuvaukset Lineaarikuvaus Olkoot U ja V

Lisätiedot

Reaalianalyysin perusteita

Reaalianalyysin perusteita Reaalianalyysin perusteita Heikki Orelma 16. marraskuuta 2008 Sisältö 1 Johdanto 3 2 Mitallisuus 3 3 Yksinkertaiset funktiot 6 4 Mitat ja integrointi 7 5 Kompleksisten funktioiden integrointi 10 6 Nolla-mittaisten

Lisätiedot

Demorastitiedot saat demonstraattori Markus Niskaselta Lineaarialgebra (muut ko) p. 1/104

Demorastitiedot saat demonstraattori Markus Niskaselta Lineaarialgebra (muut ko) p. 1/104 Lineaarialgebra (muut ko) p. 1/104 Ensi viikolla luennot salissa X Torstaina 7.12. viimeiset demot (12.12. ja 13.12. viimeiset luennot). Torstaina 14.12 on välikoe 2, muista ilmoittautua! Demorastitiedot

Lisätiedot

802320A LINEAARIALGEBRA OSA III

802320A LINEAARIALGEBRA OSA III 802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO Syksy 2017 LINEAARIALGEBRA 1 / 59 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Harjoituksia/Exercises 2017 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 16 R. Kangaslampi Vektoriavaruudet Lineaarikuvaus

Lisätiedot

2. Normi ja normiavaruus

2. Normi ja normiavaruus 8 FUNKTIONAALIANALYYSIN PERUSKURSSI 2. Normi ja normiavaruus Olkoon E vektoriavaruus (eli lineaariavaruus) skalaarikuntana K = R tai K = C. Kurssilla Lineaarialgebra I määriteltiin vain R-kertoimiset vektoriavaruudet,

Lisätiedot

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin FUNKTIONAALIANALYYSI, RATKAISUT 1 KEVÄT 211, (AP) 1. Ovatko seuraavat reaaliarvoiset funktiot p : R 3 R normeja? Ovatko ne seminormeja? ( x = (x 1, x 2, x 3 ) R 3 ) a) p(x) := x 2 1 + x 2 2 + x 2 3, b)

Lisätiedot

802320A LINEAARIALGEBRA OSA III

802320A LINEAARIALGEBRA OSA III 802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVÄT 2019 LINEAARIALGEBRA 1 / 60 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V

Lisätiedot

802320A LINEAARIALGEBRA OSA III LINEAR ALGEBRA PART III

802320A LINEAARIALGEBRA OSA III LINEAR ALGEBRA PART III 802320A LINEAARIALGEBRA OSA III LINEAR ALGEBRA PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 Contents 1 Lineaarikuvaus 2 1.1 Määritelmä............................ 2 1.2 Matriisiesitys/Matrix

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio

6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio 6 Vektoriavaruus R n 6.1 Lineaarikombinaatio Määritelmä 19. Vektori x œ R n on vektorien v 1,...,v k œ R n lineaarikombinaatio, jos on olemassa sellaiset 1,..., k œ R, että x = i v i. i=1 Esimerkki 30.

Lisätiedot

pdfmark=/pages, Raw=/Rotate 90 1 Lineaariavaruus eli Vektoriavaruus Sisätuloavaruus Lineaarikuvaus Ominaisarvo 0-68

pdfmark=/pages, Raw=/Rotate 90 1 Lineaariavaruus eli Vektoriavaruus Sisätuloavaruus Lineaarikuvaus Ominaisarvo 0-68 SISÄLTÖ Sisältö pdfmark=/pages, Raw=/Rotate 90 1 Lineaariavaruus eli Vektoriavaruus 0-1 2 Sisätuloavaruus 0-20 3 Lineaarikuvaus 0-41 4 Ominaisarvo 0-68 5 Esimerkkejä 0-88 1. Lineaariavaruus eli V 1 Lineaariavaruus

Lisätiedot

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij. Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

Analyysin peruslause

Analyysin peruslause LUKU 10 Analyysin peruslause 10.1. Peruslause I Aiemmin Cantorin funktion ψ kohdalla todettiin, että analyysin peruslause II ei päde: [0,1] ψ (x) dm(x) < ψ(1) ψ(0). Kasvavalle funktiolle analyysin peruslauseesta

Lisätiedot

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo. Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat

Lisätiedot

802320A LINEAARIALGEBRA OSA II/PART II

802320A LINEAARIALGEBRA OSA II/PART II 802320A LINEAARIALGEBRA OSA II/PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVÄT 2019 LINEAARIALGEBRA 1 / 69 Sisätuloavaruus/Inner product space Määritelmä 1 Olkoon V reaalinen vektoriavaruus.

Lisätiedot

ominaisvektorit. Nyt 2 3 6

ominaisvektorit. Nyt 2 3 6 Esimerkki 2 6 8 Olkoon A = 40 0 6 5. Etsitäänmatriisinominaisarvotja 0 0 2 ominaisvektorit. Nyt 2 0 2 6 8 2 6 8 I A = 40 05 40 0 6 5 = 4 0 6 5 0 0 0 0 2 0 0 2 15 / 172 Täten c A ( )=det( I A) =( ) ( 2)

Lisätiedot

LINEAARIALGEBRA A 2016 TOMI ALASTE EDITED BY T.M. FROM THE NOTES OF

LINEAARIALGEBRA A 2016 TOMI ALASTE EDITED BY T.M. FROM THE NOTES OF LINEAARIALGEBRA 83A 6 EDITED BY T.M. FROM THE NOTES OF TOMI ALASTE SISÄLTÖ Sisältö Lineaariavaruus eli Vektoriavaruus Sisätuloavaruus 3 Lineaarikuvaus 4 Ominaisarvo 34 5 Esimerkkejä 44 . Lineaariavaruus

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot

Lisätiedot

802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II

802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II 802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVT 2019 1 Contents 1 Sisätulo- ja normiavaruudet 3 1.1 Sisätuloavaruus/Inner product space..............

Lisätiedot

Sisätuloavaruudet. 4. lokakuuta 2006

Sisätuloavaruudet. 4. lokakuuta 2006 Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä

Lisätiedot

Hilbertin avaruudet, 5op Hilbert spaces, 5 cr

Hilbertin avaruudet, 5op Hilbert spaces, 5 cr Hilbertin avaruudet, 5op Hilbert spaces, 5 cr Pekka Salmi 14.3.2015 Pekka Salmi Hilbertin avaruudet 14.3.2015 1 / 64 Yleistä Opettaja: Pekka Salmi, MA327 Kontaktiopetus ti 1012 (L), ke 810 (L), ma 1214

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä

Lisätiedot

sitä vastaava Cliffordin algebran kannan alkio. Merkitään I = e 1 e 2 e n

sitä vastaava Cliffordin algebran kannan alkio. Merkitään I = e 1 e 2 e n Määritelmä 1.1 Algebran A keskus C on joukko C (A) = {a A ax = xa x A}. Lause 1. Olkoon Cl n Cliffordin algebra, jonka generoi joukko {e 1,..., e n }. Jos n on parillinen, niin C (Cl n ) = {λ λ R}. Jos

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

FUNKTIONAALIANALYYSI 2017

FUNKTIONAALIANALYYSI 2017 FUNKTIONAALIANALYYSI 2017 JOUNI PARKKONEN Nämä ovat muistiinpanoni funktionaalianalyysin kurssille kevätlukukaudella 2017. Tekstiä ei ole luettu äärimmäisen huolella puhtaaksi eikä sitä ole viilattu julkaisemista

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

802320A LINEAARIALGEBRA OSA II/PART II

802320A LINEAARIALGEBRA OSA II/PART II 802320A LINEAARIALGEBRA OSA II/PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 LINEAARIALGEBRA 1 / 67 Sisätuloavaruus/Inner product space Määritelmä 1 Olkoon V reaalinen vektoriavaruus.

Lisätiedot

802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II

802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II 802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 Contents 1 Sisätulo- ja normiavaruudet 2 1.1 Sisätuloavaruus/Inner product space..............

Lisätiedot

f(k)e ikx = lim S n (f; x) kaikilla x?

f(k)e ikx = lim S n (f; x) kaikilla x? 102 FUNKTIONAALIANALYYSIN PERUSKURSSI 6. Lineaariset operaattorit Luvussa 5 osoitimme, että jos f L 2, niin vastaavan Fourier-sarjan osasummat suppenevat kohti f:ää L 2 -normissa (kts. Seuraus 5.8 sivulla

Lisätiedot

5 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A

Lisätiedot

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg) Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)

Lisätiedot

Dirichlet n reuna- ja ominaisarvotehtävät eräälle ei-hypoelliptiselle differentiaalioperaattorille

Dirichlet n reuna- ja ominaisarvotehtävät eräälle ei-hypoelliptiselle differentiaalioperaattorille Dirichlet n reuna- ja ominaisarvotehtävät eräälle ei-hypoelliptiselle differentiaalioperaattorille Jussi Ilmari Pehkonen Matematiikan laitos Helsingin yliopisto 30.5.1996 URN:NBN:fi-fe19991250 (PDF-versio)

Lisätiedot

Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.

Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3. Matematiikan ja tilastotieteen laitos Lineaarialgebra ja matriisilaskenta II Ylimääräinen harjoitus 6 Ratkaisut A:n karakteristinen funktio p A on λ p A (λ) det(a λi ) 0 λ ( λ) 0 5 λ λ 5 λ ( λ) (( λ) (

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Kanta ja dimensio 1 / 23

Kanta ja dimensio 1 / 23 1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio

Lisätiedot

Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2.

Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2. HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2016 Harjoitus 3 Ratkaisut palautettava viimeistään maanantaina 29.8.2016 klo 13.15. Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä

Lisätiedot

Joukot metrisissä avaruuksissa

Joukot metrisissä avaruuksissa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Saara Lahtinen Joukot metrisissä avaruuksissa Informaatiotieteiden yksikkö Matematiikka Elokuu 2013 Sisältö 1 Johdanto 1 2 Metriset avaruudet 1 2.1 Tarvittavia

Lisätiedot

1 Ominaisarvot ja ominaisvektorit

1 Ominaisarvot ja ominaisvektorit 1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin

Lisätiedot

Kompaktisuus ja filtterit

Kompaktisuus ja filtterit Kompaktisuus ja filtterit Joukkoperheellä L on äärellinen leikkausominaisuus, mikäli jokaisella äärellisellä L L on voimassa L. Nähdään helposti, että perheellä L on äärellinen leikkausominaisuus ja L

Lisätiedot

Merkitään vaiheessa s jäljellä olevien suljettujen välien yhdistettä

Merkitään vaiheessa s jäljellä olevien suljettujen välien yhdistettä Sisältö. Cantorin 3 -joukko 2. Cantorin funktio 2 3. Rieszin ja Sz.-Nagyn funktio 4 4. Yleistetty Cantorin joukko 5 5. Vito Volterran esimerkki 6 6. Analyysin peruslauseesta 8 Kirjallisuutta 9. Cantorin

Lisätiedot