Talousmatematiikan perusteet: Luento 3. Funktiot Lineaarinen funktio Paloittain lineaarinen funktio Lineaarinen interpolointi
|
|
- Jere Ranta
- 6 vuotta sitten
- Katselukertoja:
Transkriptio
1 Talousmatematiikan perusteet: Luento 3 Funktiot Lineaarinen funktio Paloittain lineaarinen funktio Lineaarinen interpolointi
2 s(n) p e m K(t) Tähän mennessä Olemme jo tarkastelleet erilaisten muuttujien välisiä riippuvuuksia: Henkilö lainaa pankista 5% vuosikorolla. Miten lainasumma K riippuu vuodesta t? K(t) = t t Henkilö lainaa % nimellisellä vuosikorolla siten, että korkoa lisätään pääomaan m kertaa vuodessa. Miten efektiivinen vuosikorko p e riippuu m:stä? p e m = /m 100 m m Tarkastellaan geometrista lukujonoa a n = n1. Miten jonosta muodostetun sarjan termi riippuu termin järjestysluvusta n? s(n) = n 1 (1.2 1) n 2
3 Tällä luennolla Muuttujien välisiä yhteyksiä kuvataan yleisesti funktioilla, esim. Lainasumma K(t)= Efektiivinen korko p e m = /m 100 määrän m funktio Geometrisen sarjan termi s(n) = n 1 (1.21) t on vuoden t funktio m 100 on koronlisäämiskertojen on järjestysluvun n funktio Tällä luennolla tarkastellaan Funktioihin liittyviä käsitteitä Lineaarista ja paloittain lineaarista funktiota Lineaarista interpolointia 3
4 Notaatiota R = (, ) R + = [0, ) Reaalilukujen joukko Einegatiivisten reaalilukujen joukko Kaarisulku ( tai ): reuna-alkio ei kuulu joukkoon Hakasulku [ tai ]: reuna-alkio kuuluu joukkoon R ++ = (0, ) Positiivisten reaalilukujen joukko x = 0 x x = 0 x x = 0 x R = (, ) R + = [0, ) R ++ = (0, ) 4
5 Notaatiota Kuuluu joukkoon Esim. 2 R: (Alkio) 2 kuuluu reaalilukujen joukkoon Osajoukko Esim. R + R: Ei-negatiivisten reaalilukujen joukko on kaikkien reaalilukujen joukon osajoukko A \ {a}: Joukko A siten, että alkio a on poistettu Esim. R ++ = R + \ {0}: Positiivisten reaalilukujen joukko on einegatiivisten reaalilukujen joukko, josta on poistettu alkio
6 Funktiot Esim. Kiinteistöyhtiö ostaa teollisuusprosessissa syntyvää lauhdevettä, jota se välittää edelleen kiinteistölle kaukolämmöksi. Kiinteistölle välitettävästä sopimuksesta yhtiö maksaa tehtaalle Perusmaksun, joka on kuukaudessa ja Kulutuksesta /MWh Käytetään merkintöjä Ostettava lauhdevesimäärä: x A = R + Laskun suuruus: y B = R + Ostettavan määrän ja laskun suuruuden yhteyttä kuvaa funktio f on sääntö, joka kuvaa joukon A alkiot (x) joukon B alkioiksi (y). f: A B, y = f x = 16.10x f(x) määrittää tämän kuvauksen tietylle x A. 6
7 Lähtö-, maali- ja arvojoukot f: A B o Joukko A on funktion f lähtöjoukko Lähtöjoukkoa kutsutaan usein myös määrittelyjoukoksi Joukko B on funktion f maalijoukko Arvojoukko V f on niiden B:n alkioiden joukko, joiksi f kuvaa kaikki A:n alkiot o A o o f o V f o o B 7
8 Presemo-kysymys Ostettavan kaukolämmön määrän x (MWh) ja hinnan y ( ) yhteyttä kuvaa funktio f: R + R +, y = f x = 16.10x Mikä on funktion arvojoukko? 1. [16.10, ) 2. [20.30, ) 3. R
9 Reaalifunktio Lähtö- ja maalijoukon alkiot voivat periaatteessa olla mitä tahansa olioita Pirjo A Pena f Mies Meiju Nainen B Jos A R ja B R, kutsutaan funktiota f: A B reaalifunktioksi 9
10 Funktion ominaisuudet Jotta funktio f: A B olisi hyvin määritelty, tulee sen kuvata jokainen lähtöjoukon alkio yksikäsitteisesti arvojoukkoon, eli f: R R, f x = 1/x ei ole (hyvin määritelty) funktio f: R \{0} R, f x = 1/x on funktio 1. Jokaiselle x A pitää löytyä kuva y = f x V f 2. Jokaisen x A pitää kuvautua täsmälleen yhdelle arvojoukon alkiolle y = f(x) V f Ei funktio 10
11 Polynomifunktio Polynomifunktio on muotoa f: R R, f x = a 0 + a 1 x + a 2 x a n x n Esim. f 1 x = x + 1 f 2 x = x 2 x + 2 f 3 x = 0.2x 3 0.5x 2 + x 1 f 4 x = 0.1x 4 0.5x Polynomin aste = korkein eksponentti. 11
12 Lineaarinen funktio Ensimmäisen asteen polynomifunktiota f x = a 0 + a 1 x sanotaan lineaariseksi funktioksi Lineaarisen funktion kuvaaja on suora: Kerroin a 0 määrittää kohdan, jossa suora leikkaa y-akselin Kerroin a 1 on suoran kulmakerroin, joka mittaa funktion f absoluuttista muutosnopeutta Esim. Kaukolämmön kulutuksen ja laskun suuruuden yhteyttä kuvaa lineaarinen funktio f x = 16.10x Kerroin a 0 = 20.3: nollakulutuksella lasku on perusmaksu Kerroin a 1 = 16.1: yhden MWh:n lisäys kulutuksessa kasvattaa laskua Kulutus x (MWh) Lasku y=f(x) ( )
13 Lineaarinen funktio tilastollisena mallina Edellä kaukolämmön kulutuksen ja laskun suhteeseen ei liittynyt satunnaisvaihtelua, vaan se oli deterministinen Lineaarista funktiota käytetään kuitenkin usein myös tilastollisena mallina Esim. Ekonomisti tutki teollisuuskiinteistön energiakustannusten riippuvuutta ulkoilman keskilämpötilasta x ( C) ja sai tuloksena tilastollisen mallin f: R R: f x = 16.5x Vakiotermi a 0 = 444: Kustannus on keskimäärin 444 /vrk, kun lämpötila on 0 C Kulmakerroin a 1 = 16.5: Kustannus pienenee keskimäärin 16.5, kun lämpötila nousee asteella 13
14 Lineaarinen funktio tilastollisena mallina Tilastollinen malli kuvaa muuttujien välisen yhteyden vain likimääräisesti Yhteyteen vaikuttaa myös satunnaisvaihtelu Lineaarinen malli on tavallisesti vain yksinkertaistava, rajoitetulla alueella pätevä approksimaatio Esim. Antaako lineaarinen malli f x = 16.5x järkeviä tuloksia, kun lämpötila x = 26.9 C? 14
15 Lineaarisen funktion määrittäminen Suoran määrittää yksikäsitteisesti kaksi pistettä Esimerkki: Fahrenheit- ja Celciusasteikkojen välinen yhteys on lineaarinen. Tiedät, että 0 C = 32 F ja 100 C = 212 F. Määritä funktio f: R R, joka kuvaa Celcius-asteet Fahrenheit-asteiksi. f 0 = a 0 + a 1 0 = a 0 = 32 f 100 = a 0 + a = a 1 = 212 a 1 = 1.8 f x = x 15
16 Lineaarisen funktion määrittäminen Suoran määrittää yksikäsitteisesti yksi piste ja kulmakerroin Esimerkki: Markkinointiguru uskoo, että jokainen markkinointiin laitettu lisäeuro tuottaa yritykselle 2 lisäeuroa vuodessa. Yrityksen tämänhetkinen markkinointibudjetti on ja tuotto 1.2 M. Määritä funktio, joka kertoo tuoton (uskotun) riippuvuuden markkinointibudjetista. Kulmakerroin a 1 = 2 1 = 2. f 0.5 = a 0 + a = a = 1.2 a 0 = 0.2. f x = x 16
17 Presemo-kysymys Mikä kuvaajista esittää funktiota f: R R, f x = 2x 3?
18 Presemo-kysymys Opiskelija osallistuu tenttiin, josta saatava pistemäärä x 0,30. Tentti- ja kotitehtäväpisteiden yhteismitallistamiseksi tenttipisteet skaalataan välille 0,100. Mikä lineaarinen funktio f antaa skaalatut pisteet y = f(x) alkuperäisten pisteiden x funktiona? 1. f x = x 2. f x = 10 3 x 3. f x = 3 10 x 18
19 Sovellus tasapainohinnoitteluun Esim. Ekonomisti tutkii luomuturnipsin kysynnän ja tarjonnan (t) riippuvuutta yksikköhinnasta x ( /kg): Kysyntä f: R + R +, f x = 15.9x Tarjonta g: R + R +, g x = 11.7x Markkinat ovat tasapainossa suorien leikkauspisteessä, eli kun kysyntä = tarjonta: f x = g x 15.9x = 11.7x x 29.2, f x 345.4t kg 19
20 Presemo-kysymys Juustomakkaran kysyntä ja tarjonta (t) riippuvat yksikköhinnasta h ( /kg) seuraavasti: Kysyntä k: R + R +, k h = 10h Tarjonta t: R + R +, t h = 12h Määritä tasapainohinta /kg /kg /kg
21 Yhteenveto lineaarisista funktioista Funktiolla f: A B kuvataan muuttujan y B riippuvuutta muuttujasta x A A on lähtö- tai määrittelyjoukko (mihin joukkoon x kuuluu?) B on maalijoukko (mihin joukkoon y kuuluu?) V f B on arvojoukko (mille B:n osajoukolle f kuvaa A:n?) Lineaarinen funktio on muotoa f: R R, f x = a 0 + a 1 x Lineaarisen funktion kuvaaja on suora: Kerroin a 0 määrittää kohdan, jossa suora leikkaa y-akselin Kerroin a 1 on suoran kulmakerroin, joka mittaa funktion f absoluuttista muutosnopeutta 21
22 Paloittain lineaarinen funktio Esim. Kiinteistöhuoltoyhtiön välittämissä kaukolämpösopimuksissa on ehto, jonka mukaan 1. Perusmaksu toimituksesta on /kk, ja 2. Kulutuksesta maksetaan tehtaalle /MWh, mutta MWh:n ylittävästä kulutuksesta maksetaan /MWh. Kulutuksen ja laskun yhteyttä kuvaa nyt paloittain lineaarinen funktio: x, kun x 50 f x = ቊ x, kun x > x MWh:n alittava osa 50 MWh:n ylittävä osa 22
23 Presemo-kysymys Teleoperaattorin tarjouksessa asiakas maksaa datankäytöstä kuukausittain kiinteän hinnan 3 /kk ja käytön mukaan 0.2 senttiä / Mt neljään gigatavuun asti. 4 Gt ylittävästä käytöstä asiakas maksaa 0.25 senttiä / Mt. Mikä funktioista kuvaa datankäytöstä aiheutuvaa kuukausilaskua ( ) toteutuneen käytön x (Gt) suhteen? x, kun x 4 1. f 1 x = ቊ x, kun x > x, kun x 4 2. f 2 x = ቊ x, kun x > x, kun x 4 3. f 3 x = ቊ x, kun x >
24 Paloittain lineaarinen funktio Paloittain lineaarisella funktiolla voidaan periaatteessa approksimoida mitä tahansa funktiota Esim. Funktiota f x = x 3 voidaan approksimoida funktiolla f x = 196x + 960, 63x + 162, 9x, 63x x 960 kun 10 x < 6 kun 6 x < 3 kun 3 x < 3 kun 3 x < 6 kun 6 x < 10 Tämä ei kuitenkaan aina ole järkevää 24
25 Lineaarinen interpolointi Empiirisiä ilmiöitä kuvaavista muuttujista x ja y tunnetaan useimmiten tarkan yhteyden sijaan vain joitakin havaintopisteitä x 1, y 1, x 2, y 2,, (x n, y n ) Havaintopisteiden välillä (lat. inter) muuttujien yhteyttä voidaan arvioida interpoloimalla Päivä Lukema (MWh) (0) (8)?? (18) (26) (32) Esim. Kiinteistö on sitoutunut ilmoittamaan käytetyn kaukolämmön määrän noin viikon välein Energialaitokselle. Huolimattomuussyistä otettu lukema on jäänyt ilmoittamatta. Miten arvioisit puuttuvaa lukemaa? 25
26 Lineaarinen interpolointi Kuvan perusteella kulutuksen voi olettaa kertyvän lineaarisesti: Välillä (18 päivää) kulutuksen kasvu oli =1.56 MWh Välin (8 päivää) osuus tästä kasvusta on MWh. 18 Arvio lukemalle = =97.00 MWh Sama tulos saadaan myös määrittämällä kahden ensimmäisen pisteen välinen suora: f 0 = a 0 + a 1 0 = a 0 = f 18 = a 0 + a 1 18 = a 1 = a f x = x f 8 = MWh Päivä Lukema (MWh) (0) (8)?? (18) (26) (32) MWh 0.69 MWh 26
27 Myynti (1000 ) Presemo-kysymys Taulukossa on dataa pikaruokaravintolaketjun kvartaalikohtaisesta myynnistä eri kokoisissa kaupungeissa. Ketjun johtajat harkitsevat uuden ravintolan avaamista kaupungissa, jossa on asukasta. Mikä on lineaariseen malliin perustuva ennuste kvartaalikohtaiselle myynnille uudessa ravintolassa? As.määrä (tuhatta) Myynti (1000 ) Asukasmäärä (tuhatta as.)
28 Lineaarinen interpolointi Lineaarinen interpolointi vastaa paloittain lineaarisen funktion määrittämistä Aiemmin todettiin, että paloittain lineaarisella funktiolla voidaan approksimoida mitä tahansa funktiota Jos havaintopisteet on valittu (tai ovat valikoituneet) sopivasti, lineaarinen interpolointi toimii hyvin todellisesta funktiomuodosta huolimatta Mutta jos havaintopisteet on valittu (tai ovat valikoituneet) huonosti, myös lineaarinen interpolointi toimii huonosti 28
29 Populaation koko Kiitospäivä Ekstrapolointi Kuvalähde: Taleb, N The black swan: the impact of the highly improbable. Random House, New York. Ekstrapolointi tarkoittaa muuttujien välisen yhteyden arviointia havaintopisteiden ulkopuolella (lat. extra) Tämä on usein vaarallista toimintaa Aika Historiadataan pohjautuvien ennusteidemme perusteella populaatiomme voi odottaa yhä kasvavan; suhtaudumme tulevaan kiitospäiväsesonkiin luottavaisin mielin. 29
30 Yhteenveto paloittain lineaarisesta funktiosta Paloittain lineaarisella funktiolla voidaan approksimoida mitä tahansa funktiota Lineaarista interpolointia käytetään, kun Tarkasteltavista muuttujista on saatavilla vain joitakin havaintopisteitä, Muuttujien välinen yhteys voidaan olettaa lineaariseksi havaintopisteiden välillä, ja Muuttujien välistä yhteyttä halutaan arvioida näillä väleillä Lineaarinen interpolointi vastaa paloittain lineaarisen funktion rakentamista havaintopisteiden määrittämille väleille 30
Talousmatematiikan perusteet: Luento 3
Talousmatematiikan perusteet: Luento 3 Funktiot Lineaarinen ja paloittain lineaarinen funktio Lineaarinen interpolointi Toisen ja korkeamman asteen polynomifunktiot s(n) p e m K(t) Tähän mennessä Olemme
LisätiedotTalousmatematiikan perusteet: Luento 5. Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus
Talousmatematiikan perusteet: Luento 5 Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus Tähän mennessä Funktiolla f: A B, y = f x kuvataan muuttujan y B riippuvuutta muuttujasta x A Jotta funktio
LisätiedotTalousmatematiikan perusteet: Luento 5. Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus
Talousmatematiikan perusteet: Luento 5 Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus Tähän mennessä Funktiolla f: A B, y = f x kuvataan muuttujan y B riippuvuutta muuttujasta x A Jotta funktio
LisätiedotTalousmatematiikan perusteet: Luento 4. Potenssifunktio Eksponenttifunktio Logaritmifunktio
Talousmatematiikan perusteet: Luento 4 Potenssifunktio Eksponenttifunktio Logaritmifunktio Viime luennolla Funktiolla f: A B kuvataan muuttujan y B riippuvuutta muuttujasta x A A on lähtö- tai määrittelyjoukko
LisätiedotTalousmatematiikan perusteet: Luento 4. Polynomifunktio Potenssifunktio Eksponenttifunktio Logaritmifunktio
Talousmatematiikan perusteet: Luento 4 Polynomifunktio Potenssifunktio Eksponenttifunktio Logaritmifunktio Viime luennolla Funktiolla f: A B kuvataan muuttujan y B riippuvuutta muuttujasta x A A on lähtö-
LisätiedotTalousmatematiikan perusteet: Luento 2. Sarjat Sovelluksia korkolaskentaan
Talousmatematiikan perusteet: Luento 2 Sarjat Sovelluksia korkolaskentaan Viime luennolla Lukujono on päättyvä tai päättymätön jono reaalilukuja a 1, a 2,, a n, joita sanotaan jonon termeiksi. Erikoistapauksia
LisätiedotKertaava osa on 2. periodilla ja normaaliosa 3. periodilla ja 4. periodin alussa.
Ohjeita Lukuvuoden 2015-2016 talousmatematiikan perusteiden kurssi koostuu kahdesta osasta, joiden avulla tavoitellaan joinain aikaisempina vuosina toteutettua jakoa hitaammin etenevään andante-kurssiin
LisätiedotTalousmatematiikan perusteet: Luento 2. Lukujonot Sarjat Sovelluksia korkolaskentaan
Talousmatematiikan perusteet: Luento 2 Lukujonot Sarjat Sovelluksia korkolaskentaan Lukujonoista Miten jatkaisit seuraavia lukujonoja? 1, 3, 5, 7, 1, 2, 4, 8, 1, 3, 9, 27, 1, 1, 2, 3, 5, 8, 8.1.2018 2
LisätiedotTalousmatematiikan perusteet: Luento 8. Tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto
Talousmatematiikan perusteet: Luento 8 Tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto Viime luennoilla Derivointisääntöjä eri funktiotyypeille: Polynomifunktio Potenssifunktio Eksponenttifunktio
LisätiedotTalousmatematiikan perusteet: Luento 7. Derivointisääntöjä Yhdistetyn funktion, tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto
Talousmatematiikan perusteet: Luento 7 Derivointisääntöjä Yhdistetyn funktion, tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto Viime luennolla Funktion Derivaatta f (x) kuvaa funktion
LisätiedotTalousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen
Talousmatematiikan perusteet: Luento 1 Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen Luennon sisältö Prosenttilaskennan kertausta Korkolaskentaa Käsitteitä Koron lisäys kerran
LisätiedotTalousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi
Talousmatematiikan perusteet: Luento 11 Lineaarikuvaus Matriisin aste Käänteismatriisi Viime luennolla Käsittelimme matriisien peruskäsitteitä ja laskutoimituksia Vakiolla kertominen, yhteenlasku ja vähennyslasku
Lisätiedot1 Peruslaskuvalmiudet
1 Peruslaskuvalmiudet 11 Lukujoukot N {1,, 3, 4,} on luonnollisten lukujen joukko (0 mukana, jos tarvitaan), Z {, 3,, 1, 0, 1,, 3,} on kokonaislukujen joukko, Q m n : m, n Z, n 0 on rationaalilukujen joukko,
LisätiedotKuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.
Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa
LisätiedotTehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.
Tehtävä 1 Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. 1 Jos 1 < y < 3, niin kaikilla x pätee x y x 1. 2 Jos x 1 < 2 ja y 1 < 3, niin x y
LisätiedotKuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.
Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Vastaavuus puolestaan on erikoistapaus relaatiosta.
LisätiedotAki Taanila YHDEN SELITTÄJÄN REGRESSIO
Aki Taanila YHDEN SELITTÄJÄN REGRESSIO 26.4.2011 SISÄLLYS JOHDANTO... 1 LINEAARINEN MALLI... 1 Selityskerroin... 3 Excelin funktioita... 4 EKSPONENTIAALINEN MALLI... 4 MALLIN KÄYTTÄMINEN ENNUSTAMISEEN...
Lisätiedot4. Funktion arvioimisesta eli approksimoimisesta
4. Funktion arvioimisesta eli approksimoimisesta Vaikka nykyaikaiset laskimet osaavatkin melkein kaiken muun välttämättömän paitsi kahvinkeiton, niin joskus, milloin mistäkin syystä, löytää itsensä tilanteessa,
LisätiedotTalousmatematiikan perusteet: Luento 7. Derivointisääntöjä Yhdistetyn funktion derivointi
Talousmatematiikan perusteet: Luento 7 Derivointisääntöjä Yhdistetyn funktion derivointi Viime luennolla Funktion Derivaatta f (x) kuvaa funktion muutosnopeutta Toinen derivaatta f x = D f x kuvaa muutosnopeuden
LisätiedotTalousmatematiikan perusteet: Luento 13. Usean muuttujan funktiot Osittaisderivaatta ja gradientti Suhteellinen muutosnopeus ja osittaisjousto
Talousmatematiikan perusteet: Luento 13 Usean muuttujan funktiot Osittaisderivaatta ja gradientti Suhteellinen muutosnopeus ja osittaisjousto Aiemmilla luennoilla Tähän mennessä olemme tarkastelleet Erilaisia
LisätiedotTalousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta
Talousmatematiikan perusteet: Luento 6 Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta Motivointi Funktion arvojen lisäksi on usein kiinnostavaa tietää jotakin funktion
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo
LisätiedotTalousmatematiikan perusteet: Luento 12. Usean muuttujan funktiot Osittaisderivaatta Gradientti Suhteellinen muutosnopeus ja osittaisjousto
Talousmatematiikan perusteet: Luento 12 Usean muuttujan funktiot Osittaisderivaatta Gradientti Suhteellinen muutosnopeus ja osittaisjousto Aiemmilla luennoilla Tähän mennessä olemme tarkastelleet Erilaisia
LisätiedotTalousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa
Talousmatematiikan perusteet: Luento 1 Prosenttilaskentaa Korkolaskentaa Luennon sisältö Prosenttilaskennan kertausta Korkolaskentaa Käsitteitä Koron lisäys kerran / m kertaa vuodessa / jatkuvasti Diskonttaus
LisätiedotLukuväleistä. MB 3 Funktio. -2 < x < 5 tai ]-2,5] x < 3 tai ]-,3]
Lukuväleistä MB Funktio - < < tai ]-,] < tai ]-,] Yksikäsitteisyys Täytyy tuntea/arvata tyyppi T 0. (sivu ) f() = a) f () = = 9 = 4 T 0. (sivu ) T 0. (sivu ) f() = f() = b) f(k) = k c) f(t + ) = (t + )
LisätiedotTalousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta
Talousmatematiikan perusteet: Luento 6 Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta Motivointi Funktion arvojen lisäksi on usein kiinnostavaa tietää jotakin funktion
LisätiedotTalousmatematiikan perusteet: Luento 18. Määrätty integraali Epäoleellinen integraali
Talousmatematiikan perusteet: Luento 18 Määrätty integraali Epäoleellinen integraali Motivointi Viime luennoilla opimme integrointisääntöjä: Tavalliset funktiotyypit (potenssi-, polynomi- ja eksponenttifunktiot)
LisätiedotTalousmatematiikan perusteet: Luento 15. Rajoitettu optimointi Lagrangen menetelmä Lagrangen kerroin ja varjohinta
Talousmatematiikan perusteet: Luento 15 Rajoitettu optimointi Lagrangen menetelmä Lagrangen kerroin ja varjohinta Viime luennolla Tarkastelimme usean muuttujan funktioiden rajoittamatonta optimointia:
LisätiedotTalousmatematiikan perusteet: Luento 19
Talousmatematiikan perusteet: Luento 19 Integraalin sovelluksia kassavirtaanalyysiin Differentiaaliyhtälöt Motivointi Edellisillä luennolla olemme oppineet integrointisääntöjä Tällä luennolla tarkastelemme
LisätiedotTenttiin valmentavia harjoituksia
Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.
LisätiedotTalousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla
Talousmatematiikan perusteet: Luento 12 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,
LisätiedotTalousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu
Talousmatematiikan perusteet: Luento 14 Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Luennolla 6 Tarkastelimme yhden muuttujan funktion f(x) rajoittamatonta optimointia
LisätiedotSurjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei.
5.5 Surjektio Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei. Määritelmä 5.5.1. Kuvaus f : X æ Y on surjektio, jos jokaisella
Lisätiedot(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon.
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät kuvauksiin. 1. Merkitään X = {1,,, 4}. Ovatko seuraavat säännöt
Lisätiedot1 Ensimmäisen asteen polynomifunktio
Ensimmäisen asteen polynomifunktio ENNAKKOTEHTÄVÄT. a) f(x) = x 4 b) Nollakohdassa funktio f saa arvon nolla eli kuvaaja kohtaa x-akselin. Kuvaajan perusteella funktion nollakohta on x,. c) Funktion f
LisätiedotTalousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi
Talousmatematiikan perusteet: Luento 10 Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Lineaarikuvaus Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta, jossa käytetään
LisätiedotFunktioista. Esimerkki 1
Funktio eli kuvaus on matematiikan keskeisimpiä käsitteitä. Seuraavaksi tarkastellaan funktioita ja todistetaan niiden ominaisuuksia. Määritelmä 1 Olkoot A ja B. Kuvaus eli funktio f : A B on sääntö, joka
LisätiedotTalousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta
Talousmatematiikan perusteet: Luento 14 Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Viime luennolla Tarkastelimme usean muuttujan funktioiden
LisätiedotPOHDIN - projekti. Funktio. Vektoriarvoinen funktio
POHDIN - projekti Funktio Funktio f joukosta A joukkoon B tarkoittaa sääntöä, joka liittää jokaiseen joukon A alkioon jonkin alkion joukosta B. Yleensä merkitään f : A B. Usein käytetään sanaa kuvaus synonyymina
LisätiedotMatematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 2, malliratkaisut
Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus, malliratkaisut 1.-5.9.009 1. Muodosta joukot A B, A B ja A\B sekä laske niiden alkioiden lukumäärät (mikäli kyseessä on äärellinen
LisätiedotBM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018
BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018 Tehtävä 8 on tällä kertaa pakollinen. Aloittakaapa siitä. 1. Kun tässä tehtävässä sanotaan sopii mahdollisimman hyvin, sillä tarkoitetaan
LisätiedotTalousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu
Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita
LisätiedotTalousmatematiikan perusteet: Luento 17. Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa
Talousmatematiikan perusteet: Luento 17 Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa Motivointi Kahdella edellisellä luennolla olemme oppineet integrointisääntöjä
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden
LisätiedotFunktiot, L4. Funktio ja funktion kuvaaja. Funktio ja kuvaus. Yhdistetty funktio. eksponenttifunktio. Logaritmi-funktio. Logaritmikaavat.
Funktiot, L4 eksponentti-funktio Funktio (Käytännöllinen määritelmä) 1 Linkkejä kurssi2 / Etälukio (edu.fi) kurssi8, / Etälukio (edu.fi) kurssi8, logaritmifunktio / Etälukio (edu.fi) Funktio (Käytännöllinen
Lisätiedotx j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu
2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)
LisätiedotLuento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja
1 Luento 23.9.2014 KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 2 Ristiintaulukko Esim. Toyota Avensis farmariautoja, nelikenttä (2x2-taulukko) 3 Esim. 5.2.6. Markkinointisuunnitelma
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu
LisätiedotRaja arvokäsitteen laajennuksia
Raja arvokäsitteen laajennuksia Näitä ei ole oppikirjassa! Raja arvo äärettömyydessä: Raja arvo äärettömyydessä on luku, jota funktion arvot lähestyvät, kun muuttujan arvot kasvavat tai vähenevät rajatta.
LisätiedotAluksi. 1.1. Kahden muuttujan lineaarinen yhtälö
Aluksi Matematiikan käsite suora on tarkalleen sama asia kuin arkikielen suoran käsite. Vai oliko se toisinpäin? Matematiikan luonteesta johtuu, että sen soveltaja ei tyydy pelkkään suoran nimeen eikä
LisätiedotFunktio 1. a) Mikä on funktion f (x) = x lähtöjoukko eli määrittelyjoukko, kun 0 x 5?
Funktio. a) Mikä on funktion f (x) = x + lähtöjoukko eli määrittelyjoukko, kun 0 x 5? b) Mikä on funktion f (x) = x + maalijoukko eli arvojoukko? c) Selitä, mikä on funktion nollakohta. Anna esimerkki.
LisätiedotKaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.
6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon
LisätiedotHuippu 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
KERTAUS KERTAUSTEHTÄVIÄ K1. a) Kun suoran s pisteen -koordinaatti kasvaa yhdellä, pisteen y- koordinaatti kasvaa kahdella. Suoran s kulmakerroin on siis. Kun suoran t pisteen -koordinaatti kasvaa kahdella,
LisätiedotJoukot. Georg Cantor ( )
Joukot Matematiikassa on pyrkimys määritellä monimutkaiset asiat täsmällisesti yksinkertaisempien asioiden avulla. Tarvitaan jokin lähtökohta, muutama yleisesti hyväksytty ja ymmärretty käsite, joista
LisätiedotLÄMMITYSENERGIA- JA KUSTANNUSANALYYSI 2014 AS OY PUUTARHAKATU 11-13
LÄMMITYSENERGIA- JA KUSTANNUSANALYYSI 2014 AS OY PUUTARHAKATU 11-13 2 LÄMMITYSENERGIA- JA KUSTANNUSANALYYSI 2014 Yhtiössä otettiin käyttöön lämmön talteenottojärjestelmä (LTO) vuoden 2013 aikana. LTO-järjestelmää
LisätiedotJohdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 2. luento 10.11.2017 Keinotekoiset neuroverkot Neuroverkko koostuu syöte- ja ulostulokerroksesta
LisätiedotAlkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä.
ja Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. ja Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja
LisätiedotLinkkejä kurssi2 / Etälukio (edu.) kurssi8 / Etälukio (edu.) (Suurinta osaa tämän linkin takana olevasta materiaalista pohdimme vasta huomenna!
Funktiot, L3a n kuvaaja n kuvaaja n kuvaaja Linkkejä kurssi2 / Etälukio (edu.) kurssi8 / Etälukio (edu.) (Suurinta osaa tämän linkin takana olevasta materiaalista pohdimme vasta huomenna!) Funktio (Käytännöllinen
Lisätiedot1 ENSIMMÄISEN ASTEEN POLYNOMIFUNKTIO
1 ENSIMMÄISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Lämpötila maanpinnalla nähdään suoran ja y-akselin leikkauspisteen y- koordinaatista, joka on noin 10. Kun syvyys on 15 km, nähdään suoralta, että lämpötila
LisätiedotFunktion. Käänteisfunktio. Testi 3. Kauhava Aiheet. Funktio ja funktion kuvaaja. Funktion kasvaminen ja väheneminen.
Funktiot Kauhava 26.11.2010 n kuvaaja n kuvaaja n kuvaaja Linkkejä kurssi2 / Etälukio (edu.) kurssi8 / Etälukio (edu.) (Suurinta osaa tämän linkin takana olevasta materiaalista pohdimme vasta huomenna!)
Lisätiedot5.3 Ensimmäisen asteen polynomifunktio
Yllä olevat polynomit P ( x) = 2 x + 1 ja Q ( x) = 2x 1 ovat esimerkkejä 1. asteen polynomifunktioista: muuttujan korkein potenssi on yksi. Yleisessä 1. asteen polynomifunktioissa on lisäksi vakiotermi;
LisätiedotTalousmatematiikan perusteet: Luento 9
Talousmatematiikan perusteet: Luento 9 Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo ja pituus Vektorien välinen kulma Motivointi Tähän asti olemme tarkastelleet yhden
LisätiedotMatematiikan tukikurssi, kurssikerta 1
Matematiikan tukikurssi, kurssikerta 1 1 Joukko-oppia Matematiikassa joukko on mikä tahansa kokoelma objekteja. Esimerkiksi joukkoa A, jonka jäseniä ovat numerot 1, 2 ja 5 merkitään A = {1, 2, 5}. Joukon
LisätiedotTäydellisyysaksiooman kertaus
Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja
LisätiedotNumeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden
LisätiedotInjektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim.
Injektio Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Funktio f on siis injektio mikäli ehdosta f (x 1 ) = f (x 2 ) seuraa, että x 1 = x 2.
LisätiedotMAB3 - Harjoitustehtävien ratkaisut:
MAB3 - Harjoitustehtävien ratkaisut: 1 Funktio 1.1 Piirretään koordinaatistoakselit ja sijoitetaan pisteet: 1 1. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä.
LisätiedotY ja
1 Funktiot ja raja-arvot Y100 27.10.2008 ja 29.10.2008 Aki Hagelin aki.hagelin@helsinki.fi Department of Psychology / Cognitive Science University of Helsinki 2 Funktiot (Lue Häsä & Kortesharju sivut 4-9)
LisätiedotMatemaatiikan tukikurssi
Matemaatiikan tukikurssi Kurssikerta 1 1 Funktiot Funktion määritelmä Funktio on sääntö, joka liittää kahden eri joukon alkioita toisiinsa. Ollakseen funktio tämän säännön on liitettävä jokaiseen lähtöjoukon
Lisätiedotorigo III neljännes D
Sijoita pisteet A(1,4) ja B(4,5;5) sekä C(-3,4) ja D(-4,--5) y II neljännes C A I neljännes B x origo III neljännes D IV neljännes KOTIT. Sijoita ja nimeä koordinaatistoon pisteitä niin, että pisteet yhdistettäessä
LisätiedotEksponenttifunktio ja Logaritmit, L3b
ja Logaritmit, L3b eksponentti-funktio Eksponentti-funktio Linkkejä kurssi8, / Etälukio (edu.) kurssi8, logaritmifunktio / Etälukio (edu.) Potenssifunktio y = f (x) = 2 Vakiofunktion y = a kuvaaja on vaakasuora
LisätiedotSanomme, että kuvaus f : X Y on injektio, jos. x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2.
Sanomme, että kuvaus f : X Y on injektio, jos x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2. Siis kuvaus on injektio, jos eri alkiot kuvautuvat eri alkioille eli maalijoukon jokainen alkio
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 7 Ti 27.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 7 Ti 27.9.2011 p. 1/39 p. 1/39 Interpolointi Ei tunneta funktion f : R R lauseketta, mutta tiedetään funktion
LisätiedotRajatuotto ja -kustannus, L7
ja -kustannus, L7 1 Kun yritys valmistaa tuotetta jaksossa määrän q (kpl/jakso), niin kassaan kertyvä tuotto on R(q) = p q = p(q) q. Esimerkki. Jos kysyntäfunktio on p = 20 0.1q, niin tuotto funktio on
LisätiedotKarteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21
säilyy Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla c b a 1 2 3 5 1 / 21 säilyy Esimerkkirelaatio R = {(1, b), (3, a), (5, a), (5, c)} c b a 1
LisätiedotHarjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio,
Differentiaaliyhtälöt, Kesä 06 Harjoitus 3 Kaikissa tehtävissä, joissa pitää tarkastella kriittisten pisteiden stabiliteettia, jos kyseessä on satulapiste, ilmoita myös satulauraratkaisun (tai kriittisessä
LisätiedotAlgebran ja Geometrian laskukokoelma
Algebran ja Geometrian laskukokoelma A. Potenssien laskusäännöt Sievennä 1. (r 3 ) 4 2. (2a 3 ) 3 3. x 3 x 5 4. k11 k 5 5. 2a2 a 7 5a 3 6. (-3x 2 y 3 ) 3 7. ( 1 4 ) 3 8. (2 a2 Lisätehtäviä b 3)3 9. (a
Lisätiedot4 Yleinen potenssifunktio ja polynomifunktio
4 Yleinen potenssifunktio ja polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Tutkitaan yhtälöiden ratkaisuja piirtämällä funktioiden f(x) = x, f(x) = x 3, f(x) = x 4 ja f(x) = x 5 kuvaajat. Näin nähdään, monessako
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 9 Korkeamman asteen derivaatat Tutkitaan nyt funktiota f, jonka kaikki derivaatat on olemassa. Kuten tunnettua, funktion toista derivaattaa pisteessä x merkitään f (x).
LisätiedotMatemaattisen analyysin tukikurssi
Matemaattisen analyysin tukikurssi 12. Kurssikerta Petrus Mikkola 5.12.2016 Tämän kerran asiat Sini-ja kosifunktio Yksikköympyrä Tangentti- ja kotangenttifunktio Trigonometristen funktioiden ominaisuuksia
Lisätiedot4 Kysyntä, tarjonta ja markkinatasapaino
4 Kysyntä, tarjonta ja markkinatasapaino (Taloustieteen oppikirja, luku 4) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen
Lisätiedot2 arvo muuttujan arvolla
Mb Mallikoe Määritä funktion f ( ) arvo muuttujan arvolla a) b) c) k 6 a) Määritä suorien y 0 ja y leikkauspiste b) Määritä suoran yhtälö, kun se kulkee pisteen (, ) kautta ja on yhdensuuntainen suoran
LisätiedotJohdatus matematiikkaan
Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /
LisätiedotOlkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto:
4 Reaalifunktiot 4. Funktion monotonisuus Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x ja x on voimassa ehto: "jos x < x, niin f (x
LisätiedotDerivaatta: funktion approksimaatio lineaarikuvauksella.
Viikko 5 Tällä viikolla yleistetään R 2 :n ja R 3 :n vektorialgebran peruskäsitteet n-ulotteiseen avaruuteen R n, ja määritellään lineaarikuvaus. Tarkastellaan funktioita, joiden määrittelyjoukko on n-ulotteisen
LisätiedotFunktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.
Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],
LisätiedotTalousmatematiikan perusteet: Luento 8. Vektoreista ja matriiseista Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo
Talousmatematiikan perusteet: Luento 8 Vektoreista ja matriiseista Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo Motivointi Esim. Herkkumatikka maksaa 50 /kg. Paljonko
LisätiedotIV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee
LisätiedotAloita Ratkaise Pisteytä se itse Merkitse pisteet saanut riittävästi pisteitä voit siirtyä seuraavaan osioon ei ole riittävästi
Aloita A:sta Ratkaise osion (A, B, C, D, jne ) yhtälö vihkoosi. Pisteytä se itse ohjeen mukaan. Merkitse pisteet sinulle jaettavaan tehtävä- ja arviointilappuun. Kun olet saanut riittävästi pisteitä (6)
LisätiedotTEHTÄVIEN RATKAISUT. Luku a) Merkintä f (5) tarkoittaa lukua, jonka funktio tuottaa, kun siihen syötetään luku 5.
TEHTÄVIEN RATKAISUT Luku 4.1 183. a) Merkintä f (5) tarkoittaa lukua, jonka funktio tuottaa, kun siihen syötetään luku 5. Lasketaan funktioon syötetyn luvun neliö: 5 = 5. Saatuun arvoon lisätään luku 1:
LisätiedotMatematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista
Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen
Lisätiedot5.6.3 Matematiikan lyhyt oppimäärä
5.6.3 Matematiikan lyhyt oppimäärä Matematiikan lyhyen oppimäärän opetuksen tehtävänä on tarjota valmiuksia hankkia, käsitellä ja ymmärtää matemaattista tietoa ja käyttää matematiikkaa elämän eri tilanteissa
LisätiedotSuoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on
Suoran htälöt Suoran ratkaistu ja leinen muoto: Suoran htälö ratkaistussa, eli eksplisiittisessä muodossa, on ANALYYTTINEN GEOMETRIA MAA5 = k + b, tai = a missä vakiotermi b ilmoittaa suoran ja -akselin
LisätiedotKuvaus. Määritelmä. LM2, Kesä /160
Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä
LisätiedotMAB3 - Harjoitustehtävien ratkaisut:
MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla
LisätiedotOSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO
OSA : YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Kolme kaverusta, Olli, Pekka
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti
Lisätiedot811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 3: Funktiot 4.3 Funktiot Olkoot A ja B joukkoja. Funktio joukosta A joukkoon B on sääntö, joka liittää yksikäsitteisesti määrätyn
Lisätiedot