Kertaava osa on 2. periodilla ja normaaliosa 3. periodilla ja 4. periodin alussa.
|
|
- Topi Sipilä
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Ohjeita Lukuvuoden talousmatematiikan perusteiden kurssi koostuu kahdesta osasta, joiden avulla tavoitellaan joinain aikaisempina vuosina toteutettua jakoa hitaammin etenevään andante-kurssiin ja normaalikurssiin. Kertaava osa on 2. periodilla ja normaaliosa 3. periodilla ja 4. periodin alussa. Kertaava osa pidetään erityisesti helpottamaan vanhan tutkintojärjestelmän mukaista tutkintoa suorittavien opiskelijoiden selviytymistä pakollisesta matematiikan kurssista. Kertaavalle osalle ovat tietenkin tervetulleita kaikki, jotka haluavat vahvistaa perustaitojaan. Kertaavan osan - opetus on ma ja to oodissa ilmoitetuissa paikoissa. Tiistaina ei ole opetusta ja sen tilalla on ma salissa U3. - Kertaava osa pyrkii helpottamaan normaaliosan asioiden oppimista kertaamalla kurssilla tarvittavia perustietoja ja yhdistämällä niitä taloustieteelliseen kontekstiin. - Opetus etenee niin, - että jokaisen luennon asioista annetaan kotitehtäviä, - joiden ratkaisemiseen saa tarvittaessa opastusta luennon jälkeen ja - joiden ratkaisut esitetään ennen seuraavan luennon alkua, jne.
2 - Kertaavan osan luennot tulevat kurssin kotisivulle ennen opetuksen alkamista. Harjoitustehtävät tulevat kotisivulle kurssin edetessä. - Kurssin 1. välikoe ti on kertaavan osan asioista, - jossa siis on tarjolla helpot pisteet, jos jo nyt osaa nämä asiat tai opettelee ne kertaavan osan aikana. Jos niitä ei osaa, pisteitä ei saa. - Ohjeiden lopussa on joitain luentojen esimerkkejä, joiden avulla voi testata tämän hetkistä tilannetta. - Ilmoittaudu OODI:n kautta, jotta olet mukana opintotoimiston listoilla. Normaaliosa - alkaa 3. periodin alussa. Ajat ja paikat ovat oodissa. - Kurssi etenee viikoittain niin, - että aina kahden luentokerran jälkeen keskiviikkoisin klo on lisäharjoitus, jossa harjoitustehtävien tekemiseen saa tarvittaessa ohjausta - kotitehtävien tekemistä varten, - jotka palautetaan - ennen demoa, jossa esitetään tehtävien ratkaisut, jne.
3 - Luentojen pohjateksti tulee kurssin kotisivuille, minne myös muu kurssiin liittyvä materiaali tulee. Luentojen teksti kattaa kurssin suorittamiseen vaadittavat asiat eikä lisänä (välttämättä) tarvita oppikirjoja. - Luennoilla tulee tähän lisää esimerkkejä, kommentteja ja ym. - Luennoilla käsiteltyihin asioihin liittyvät kotitehtävät tulevat kotisivuille. - Normaaliosan harjoitusten tekemisestä saa lisäpisteitä kurssin suorittamiseen. Maksimihyvitys on 20 % kokonaispistemäärästä. Sen saa, kun tekee vähintään 80 % (normaaliosan) tehtävistä. Lisäpisteet ovat voimassa seuraavan kurssin alkuun asti. - Kunkin viikon kotitehtävien ratkaisut palautetaan viimeistään maanantaina ennen demoa klo 9.00 mennessä. Palautuspaikka Otaniemessä selviää ennen ensimmäistä harjoitusviikkoa. Ratkaisuja ei voi palauttaa muulla tavalla. Ratkaisut kirjoitetaan käsin paitsi Excel-tehtävät. Ratkaisujen ei tarvitse olla täysin oikein, mutta kuitenkin huolellisesti loppuun asti tehtyjä lisäpisteiden saamiseksi. Ota itsellesi kopio ratkaisuistasi. Alkuperäisiä ei palauteta takaisin. - Tehtävien ratkaisut käsitellään demossa ma klo Ratkaisuja ei esitetä sähköisesti. - Excel-harjoitusten (1-2 kertaa) tekemistä varten saa tarvittaessa ohjausta. Ajat selviävät myöhemmin. - Kurssi suoritetaan joko neljällä välikokeella tai loppukokeella välikoe(, jossa tentitään valmistavan osan asiat) on ti klo 15-18, - 2. vk to 4.2. klo 15-18, - 3. vk to klo ja - 4. vk to klo Kokeet ovat salissa Y122 (D-Sali).
4 - Loppukokeiden ajat ovat oodissa. - Välikokeista ei ole uusintoja. Kokeissa ei saa käyttää omia laskimia eikä taulukkokirjoja tms. - Tulos määräytyy niin, että - kokeiden osuus kokonaistuloksesta on 80 % ja laskuharjoitusten osuus 20 % - tai pelkästään kokeiden perusteella. - Parempi tulos jää voimaan. - Kaikilla neljällä välikokeella on yhtä suuri painoarvo lopputulokseen. - Tulosta saa yrittää parantaa loppukokeessa. - Kurssista pääsee läpi, kun saa yhteensä vähintään 50 % kokonaispistemäärästä (yleisen kursseille annetun ohjeen mukaisesti). Tavoitteeseen pääsee helposti (joskaan ei vaivattomasti) osallistumalla em. tilaisuuksiin ja laskemalla kotitehtävät. Ajankäytöstä yms. - Luentoihin, lisäharjoituksiin ja demoihin osallistuminen ei ole pakollista. Luonnollisesti tähän ei kuitenkaan sisälly takuuta, että näiden mahdollisuuksien väliin jättämisestä ei olisi mitään haittaa. Kurssilla on tarjolla lähes 100 h kontaktiopetusta. Siitä ei ole uusintoja verkko-opetuksena varsin runsaan luentomateriaalin lisäksi. - Asioiden kunnollinen oppiminen vaatii hallinnollisen normin mukaan 6 opintopisteen kurssilla opiskelijalta keskimäärin 160 tunnin työn. Keskimääräinen ei tarkoita keskimääräistä koko väestössä vaan tällaisia asioita opiskelevista yliopisto-opiskelijoista. Vaikka tavoite olisi vaatimattomampi,
5 ilman työtä siihen ei pääse, ellei ole opetellut kurssilla käsiteltäviä asioita jo muualla. Erityisesti harjoitustehtävien tekeminen on hyödyllistä. - Lisäinformaatiota tulee erityisesti ensimmäisellä mutta myös myöhemmillä luennoilla sekä myös kotisivuille. Pyrkikää välttämään sähköpostin käyttöä tällaisten asioiden selvittelyssä. Olen tavattavissa mm. luentojen ja muun opetuksen jälkeen ja sopimuksen mukaan myös muutenkin. Tässä on muutamia esimerkkejä kertaavan osan luennoista Ratkaisut tulevat kertaavan osan luennoissa vähän myöhemmin. Laskemalla näitä (ilman MAOL:in taulukkoa ja vain tavallisen funktiolaskimen avulla) voit testata, kuinka hyvin perustiedot ovat aktiivisesti hallussa. Esim. Opiskelija X oli ottanut 10 vuoden ajan puolivuosittain 3000 lainaa 4 % vuosikorolla. Kertyneen pääoman korko maksettiin aina vuosipuoliskon lopussa. Paljonko korkoja kertyy yhteensä 10 vuoden aikana? Esim. (jatkoa edelliseen) Paljonko korkoja kertyy koko 10 vuoden laina-ajalta, kun korkoja ei maksetakaan opiskeluaikana, vaan ne liitetään puolivuosittain lainan pääomaan?
6 Esim. Opiskelija X:llä on velkaa Takaisinmaksusta sovitaan pankin kanssa, että laina maksetaan kuukausittain 20 vuodessa, vuosikorko on 3.6 % ja joka kuukausi pankille maksetaan saman suuruinen erä b. Kuinka suuri on maksuerä b? Esim. Lämpötilan mittaamien perustuu nesteen lämpölaajenemiseen ja yhteys lämpötilan ja nestepatsaan korkeuden välillä on määritelty lineaariseksi jakamalla patsaan korkeus tasavälisesti asteisiin. Jako tehdään Celsius- ja Fahrenheit-asteikolla eri tavalla ja niiden välillä ovat kiintopisteinä 0 C = 32 F ja 100 C = 212 F. Määrää funktio, joka muuntaa lämpötilan Fahrenheit-asteina (x) lämpötilaksi Celsius-asteina (y). Esim. Kiinteistöhuoltoyhtiön välittämissä kaukolämpösopimuksissa on ehto, jonka mukaan - perusmaksu toimituksesta on /kk - ja kulutuksesta maksetaan tehtaalle /MWh 50 MWh:n määrään asti - ja 50 MWh:n ylittävältä määrältä /MWh. Määrää funktio, joka kuvaa kulutuksen x ja laskun suuruuden y välisen yhteyden. Esim. Kiinteistö on sitoutunut ilmoittamaan käytetyn kaukolämmön määrän noin viikon välein Energialaitokselle. Lämmittimen hoitaja on kuitenkin ollut huolimaton ja välistä on jäänyt pois yksi viikko. Viereisten viikkojen arvot ovat: (MWh) ja
7 Määrää lineaarinen funktio, jonka avulla saadaan arvio lukemalle Esim. Kiinteistöyhtiö ostaa kaukolämpöeriä markkinahintaa halvemmalla samaan konserniin kuuluvalta tehtaalta sopimuksella, jonka mukaan - perusmaksu toimituksesta on /kk - ja kulutuksesta maksetaan tehtaalle /MWh Yhtiö myy kaukolämmön edelleen kuluttajille - 50 %:lla korotettuun hintaan ja - veloittaa kuukaudessa käsittelymaksuna Määrää funktio, joka kuvaa tehtaan myymän kaukolämpömäärä x ja kuluttajan maksaman laskun z välisen yhteyden. Esim. Laske ilman laskinta x 2 3, kun x=8. Esim. Ekonomisti E tutki kultakalakaviaarin kysyntää ja tarjontaa ja sai malleiksi funktiot: kysyntä: f:r + \{0} R +, f(x) = 13262x tarjonta: g:r + \{0} R +, g(x) = 1.16x 1.52 f(x)=kysyntä (kg), g(x)=tarjonta (kg) ja x=hinta ( /kg) Kun markkinat ovat tasapainossa, on f(x) = g(x). Laske, kuinka suuri hinta x on silloin. Esim. Yritys tuottaa vuorokaudessa 1000 härveliä, joiden keskihinta on 50 /kpl. Tuotannon määrän arvellaan kasvavan keskimäärin 5 % vuodessa, mutta hinnan taas laskevan 10 % vuosittain.
8 Mikä on funktio f:r R, joka kuvaa tuotannon määrää, funktio g:r R +, joka kuvaa yksikköhintaa ja funktio t: R R +, joka kuvaa tuotannon arvoa, x vuoden kuluttua. Mitä t kertoo tuotannon arvon suhteellisesta muutoksesta? Esim. Laske logd ( x y2 3 ), kun logdx =2, logdy=4 ja logdz = 6. z Esim. (jatkoa) Lääkkeen L valmistuksessa käytettävän bakteerikannan suuruutta kuvaava funktio f:r R + \{0}, f(x) = x, missä x = aika (h) ja f(x) = bakteerien määrä. Kuinka kauan kestää, että määrä on 50000? Esim. Kapakalan kysyntää kuvaa funktio f:r + R +, f(x) = x+1.72, missä x= hinta ( /kg) ja f(x) = kysyntä (t). Piirrä f:n kuvaaja. Määrää f:n käänteisfunktio. Mihin tuottajat voivat käyttää sitä? Esim. (jatkoa edelliseen) Tuottajat tekevät kartellin. Mikä yksikköhinta maksimoi markkinoilta saatavan voiton, kun tuotantokustannukset ovat 5 /kg? Esim. Määrää funktion t: R R, t(x) = x 2 + 2x + 3 derivaatta t. Esim. Kehitysmaassa arvioidaan, että bkt ja väkiluku kehittyvät seuraavalla tavalla: Bkt: Väkiluku: f: R + R +, f(x) = 5860(x+1) 0.36 ja g: R + R +, g(x) = x, missä x = aika (v), f(x) = bkt (M ) ja g(x) = väkiluku (milj.)
9 Määrittele funktio s, joka kuvaa bkt:n arvoa asukasta kohti ($/as.). Määrää s:n derivaatta s ja laske derivaatan arvo, kun x=1 ja x=10. Mitä nämä arvot kertovat s:n muutoksesta?
- Ilmoittaudu OODI:n kautta ainakin luentojen kohdalle, jotta olet mukana opintotoimiston listoilla.
Ohjeita Aikaisempaan versioon on tässä lisätty puuttuvat tiedot. - Ilmoittaudu OODI:n kautta ainakin luentojen kohdalle, jotta olet mukana opintotoimiston listoilla. - Kurssi etenee viikoittain niin, että
LisätiedotTalousmatematiikan perusteet: Luento 5. Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus
Talousmatematiikan perusteet: Luento 5 Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus Tähän mennessä Funktiolla f: A B, y = f x kuvataan muuttujan y B riippuvuutta muuttujasta x A Jotta funktio
LisätiedotTalousmatematiikan perusteet: Luento 5. Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus
Talousmatematiikan perusteet: Luento 5 Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus Tähän mennessä Funktiolla f: A B, y = f x kuvataan muuttujan y B riippuvuutta muuttujasta x A Jotta funktio
LisätiedotTalousmatematiikan perusteet: Luento 7. Derivointisääntöjä Yhdistetyn funktion, tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto
Talousmatematiikan perusteet: Luento 7 Derivointisääntöjä Yhdistetyn funktion, tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto Viime luennolla Funktion Derivaatta f (x) kuvaa funktion
LisätiedotTalousmatematiikan perusteet: Luento 8. Tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto
Talousmatematiikan perusteet: Luento 8 Tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto Viime luennoilla Derivointisääntöjä eri funktiotyypeille: Polynomifunktio Potenssifunktio Eksponenttifunktio
LisätiedotTalousmatematiikan perusteet: Luento 2. Sarjat Sovelluksia korkolaskentaan
Talousmatematiikan perusteet: Luento 2 Sarjat Sovelluksia korkolaskentaan Viime luennolla Lukujono on päättyvä tai päättymätön jono reaalilukuja a 1, a 2,, a n, joita sanotaan jonon termeiksi. Erikoistapauksia
LisätiedotTalousmatematiikan perusteet: Luento 3. Funktiot Lineaarinen funktio Paloittain lineaarinen funktio Lineaarinen interpolointi
Talousmatematiikan perusteet: Luento 3 Funktiot Lineaarinen funktio Paloittain lineaarinen funktio Lineaarinen interpolointi s(n) p e m K(t) Tähän mennessä Olemme jo tarkastelleet erilaisten muuttujien
LisätiedotTalousmatematiikan perusteet: Luento 2. Lukujonot Sarjat Sovelluksia korkolaskentaan
Talousmatematiikan perusteet: Luento 2 Lukujonot Sarjat Sovelluksia korkolaskentaan Lukujonoista Miten jatkaisit seuraavia lukujonoja? 1, 3, 5, 7, 1, 2, 4, 8, 1, 3, 9, 27, 1, 1, 2, 3, 5, 8, 8.1.2018 2
LisätiedotTalousmatematiikan perusteet: Luento 3
Talousmatematiikan perusteet: Luento 3 Funktiot Lineaarinen ja paloittain lineaarinen funktio Lineaarinen interpolointi Toisen ja korkeamman asteen polynomifunktiot s(n) p e m K(t) Tähän mennessä Olemme
LisätiedotTalousmatematiikan perusteet: Luento 4. Potenssifunktio Eksponenttifunktio Logaritmifunktio
Talousmatematiikan perusteet: Luento 4 Potenssifunktio Eksponenttifunktio Logaritmifunktio Viime luennolla Funktiolla f: A B kuvataan muuttujan y B riippuvuutta muuttujasta x A A on lähtö- tai määrittelyjoukko
LisätiedotTalousmatematiikan perusteet: Johdanto. Kurssin tavoitteet Käytännön järjestelyt Suosituksia suorittamiseen
Talousmatematiikan perusteet: Johdanto Kurssin tavoitteet Käytännön järjestelyt Suosituksia suorittamiseen Kurssin tavoitteet Matematiikkaa hyödynnetään monilla kauppa- ja taloustieteen osaalueilla Esim.
LisätiedotMAA9.2 2014 Jussi Tyni Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää.
MAA9. 014 Jussi Tyni Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää. A-OSIO: Ei saa käyttää laskinta. MAOL saa olla esillä. Maksimissaan
LisätiedotLASKINTEN JA TAULUKOIDEN TARKISTUS
LASKINTEN JA TAULUKOIDEN TARKISTUS Yo-kokeessa käytettävät laskimet ja taulukkokirjat on tuotava aikuislukion kansliaan tarkistettavaksi viimeistään yo-koetta edeltävänä päivänä kello 18 mennessä. Jos
LisätiedotRahoitusriskit ja johdannaiset Matti Estola Luento 6. Swap -sopimukset
Rahoitusriskit ja johdannaiset Matti Estola Luento 6 Swap -sopimukset 1. Swapit eli vaihtosopimukset Swap -sopimus on kahden yrityksen välinen sopimus vaihtaa niiden saamat tai maksamat rahavirrat keskenään.
LisätiedotLASKINTEN JA TAULUKOIDEN TARKISTUS
LASKINTEN JA TAULUKOIDEN TARKISTUS Yo-kokeessa käytettävät laskimet ja taulukkokirjat on tuotava aikuislukion kansliaan tarkistettavaksi viimeistään yo-koetta edeltävänä päivänä kello 18 mennessä. Jos
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1
LisätiedotTalousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta
Talousmatematiikan perusteet: Luento 6 Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta Motivointi Funktion arvojen lisäksi on usein kiinnostavaa tietää jotakin funktion
LisätiedotTalousmatematiikka (3 op)
Talousmatematiikka (3 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2011 Talousmatematiikka 2011 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Kurssin kotisivu
Lisätiedot4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5)
4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen
LisätiedotÄänekosken lukio Mab4 Matemaattinen analyysi S2016
Äänekosken lukio Mab4 Matemaattinen analyysi S016 A-osa Vastaa kaikkiin A-osan tehtäviin. Vastaukset kirjoitetaan kysymyspaperiin! Taulukkokirjaa saa käyttää. Laskinta ei saa käyttää! A-osan ratkaisut
LisätiedotProsentti- ja korkolaskut 1
Prosentti- ja korkolaskut 1 Prosentti on sadasosa jostakin, kuten sentti eurosta ja senttimetri metristä. Yksi ruutu on 1 prosentti koko neliöstä, eli 1% Kuinka monta prosenttia on vihreitä ruutuja neliöstä?
LisätiedotTalousmatematiikan perusteet, ORMS1030
Tampereen kesäyliopisto, syksy 2016 Talousmatematiikan perusteet, ORMS1030 1. harjoitus, (la 29.10.2016) 1. Laske seuraavat laskut. Laske kukin lasku ensin käsin kynää ja paperia käyttäen. Anna vastaukset
LisätiedotTalousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta
Talousmatematiikan perusteet: Luento 6 Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta Motivointi Funktion arvojen lisäksi on usein kiinnostavaa tietää jotakin funktion
Lisätiedot8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14)
8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, että jokainen pitää markkinoilla määräytyvää hintaa omista toimistaan
LisätiedotTietoturva. 0. Tietoa kurssista P 5 op. Oulun yliopisto Tietojenkäsittelytieteiden laitos Periodi / 2015
811168P 5 op 0. Oulun yliopisto Tietojenkäsittelytieteiden laitos 811168P 5 op : 9.3. 8.5.2015 Luennot: Juha Kortelainen e-mail: juha.kortelainen@oulu.fi puh: 0294 487934 mobile: 040 744 1368 vast. otto:
LisätiedotLUKUVUODEN E-KURSSI MAB3
1 TYK AIKUISLUKIO LUKUVUODEN 2016 2017 E-KURSSI MAB3 Kurssin tunnus ja nimi Kurssin opettaja MAB3 Matemaattisia malleja I Frans Hartikainen frans.hartikainen@tyk.fi (MAB3-kurssin työtila on nähtävillä
LisätiedotTalousmatematiikan perusteet: Luento 7. Derivointisääntöjä Yhdistetyn funktion derivointi
Talousmatematiikan perusteet: Luento 7 Derivointisääntöjä Yhdistetyn funktion derivointi Viime luennolla Funktion Derivaatta f (x) kuvaa funktion muutosnopeutta Toinen derivaatta f x = D f x kuvaa muutosnopeuden
LisätiedotKoontitehtäviä luvuista 1 9
11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:
Lisätiedot4. www-harjoitusten mallivastaukset 2017
TU-91.1001 Kansantaloustieteen perusteet 4. www-harjoitusten mallivastaukset 2017 Tehtävä 1. Oikea vastaus: C Voitto maksimoidaan, kun MR=MC. Kyseisellä myyntimäärällä Q(m) voittomarginaali yhden tuotteen
LisätiedotTalousmatematiikan perusteet: Luento 13. Usean muuttujan funktiot Osittaisderivaatta ja gradientti Suhteellinen muutosnopeus ja osittaisjousto
Talousmatematiikan perusteet: Luento 13 Usean muuttujan funktiot Osittaisderivaatta ja gradientti Suhteellinen muutosnopeus ja osittaisjousto Aiemmilla luennoilla Tähän mennessä olemme tarkastelleet Erilaisia
LisätiedotRahoitusriskit ja johdannaiset Luentokurssi kevät 2011 Lehtori Matti Estola
Rahoitusriskit ja johdannaiset Luentokurssi kevät 2011 Lehtori Matti Estola Itä-Suomen yliopisto, Yhteiskunta- ja Kauppatieteiden tiedekunta, Oikeustieteiden laitos, kansantaloustiede Luennot 22 t, harjoitukset
LisätiedotYO-info K2016 25.1.2016. rehtori Mika Strömberg
YO-info K2016 25.1.2016 rehtori Mika Strömberg LUKION PÄÄTTÖTODISTUS AMMATILLINEN PERUSTUTKINTO YLIOPPILASTODISTUS KEVÄT 2016? LUKION PÄÄTTÖTODISTUS LUKIO-OPINNOT YHTEENSÄ VÄHINTÄÄN 75 KRS - opiskelijan
LisätiedotMATEMATIIKAN YLIOPPILASKOE INFO JA PRELIMINÄÄRI
MATEMATIIKAN YLIOPPILASKOE INFO JA PRELIMINÄÄRI KOKEESEEN VALMISTAUTUMINEN Testaa, että saat omat koneesi abittiin Jos käytät kokeessa omaa laskinta tai talukkokirjaa, tuo ne tarkistettaviksi ennen koetta
LisätiedotTalousmatematiikan perusteet: Luento 4. Polynomifunktio Potenssifunktio Eksponenttifunktio Logaritmifunktio
Talousmatematiikan perusteet: Luento 4 Polynomifunktio Potenssifunktio Eksponenttifunktio Logaritmifunktio Viime luennolla Funktiolla f: A B kuvataan muuttujan y B riippuvuutta muuttujasta x A A on lähtö-
LisätiedotTEHTÄVIEN RATKAISUT. Luku a) Merkintä f (5) tarkoittaa lukua, jonka funktio tuottaa, kun siihen syötetään luku 5.
TEHTÄVIEN RATKAISUT Luku 4.1 183. a) Merkintä f (5) tarkoittaa lukua, jonka funktio tuottaa, kun siihen syötetään luku 5. Lasketaan funktioon syötetyn luvun neliö: 5 = 5. Saatuun arvoon lisätään luku 1:
LisätiedotFysiikan opinnot Avoimen yliopiston opiskelijoille
Fysiikan opinnot Avoimen yliopiston opiskelijoille 2.9.2014 1 Yliopiston lukuvuosi ja opetusperiodit 2014-2015 Yliopiston lukuvuosi 1.8. 31.7. Syyslukukausi I periodi: 1.9.-17.10. lukuvuoden avajaiset
LisätiedotPitkä matematiikka, laaja fysiikka ja kemia
Espoon aikuislukio Aineopiskelijan opas Pitkä matematiikka, laaja fysiikka ja kemia Sisällysluettelo Yleistä. 2 Pitkä matematiikka.3 Laaja fysiikka.5 Laaja kemia.6 Lääketieteelliseen pyrkimässä?...7 Kurssien
Lisätiedot031075P MATEMATIIKAN PERUSKURSSI II 5,0 op
031075P MATEMATIIKAN PERUSKURSSI II 5,0 op Kurssin jokaiseen kolmeen välikokeeseen on ilmoittauduttava erikseen WebOodissa (https://weboodi.oulu.fi/oodi/). Huom! Välikoeilmoittautuminen on PAKOLLINEN.
LisätiedotKorkolasku ja diskonttaus, L6
Korkolasku ja diskonttaus, L6 1 Merkinnät Tarkastellaan tilannetta, jossa pääomalle maksetaan korkoa. Tulemme seuraavassa systemaattisesti käyttämään seuraavia merkintöjä K 0 = alkupääoma p = korkoprosentti
Lisätiedot4 Kysyntä, tarjonta ja markkinatasapaino
4 Kysyntä, tarjonta ja markkinatasapaino (Taloustieteen oppikirja, luku 4) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen
LisätiedotKorkolasku, L6. Koronkorko. Korko-kaavat. Aiheet. Yksinkertainen korkolasku. Koronkorko. Jatkuva korkolasku. Korko-kaavat
Korkolasku, L6 1 Merkinnät Tarkastellaan tilannetta, jossa pääomalle maksetaan korkoa. Tulemme seuraavassa systemaattisesti käyttämään seuraavia merkintöjä K 0 = alkupääoma p = korkoprosentti i = p 100
LisätiedotMS-C2105 Optimoinnin perusteet Malliratkaisut 5
MS-C2105 Optimoinnin perusteet Malliratkaisut 5 Ehtamo Demo 1: Arvaa lähimmäksi Jokainen opiskelija arvaa reaaliluvun välillä [0, 100]. Opiskelijat, joka arvaa lähimmäksi yhtä kolmasosaa (1/3) kaikkien
LisätiedotMATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 8..05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
LisätiedotLC-8011 Työelämän venäjän perusteet 1. Aalto-yliopisto Kielikeskus Alexandra Belikova
LC-8011 Työelämän venäjän perusteet 1 Aalto-yliopisto Kielikeskus Alexandra Belikova Työelämän venäjän perusteet 1: aika ja paikka Opetusperiodi I+II tai II+III tai III+IV (syksy 2016, kevät 2017) - pitempi
LisätiedotTalousmatematiikan perusteet: Luento 12. Usean muuttujan funktiot Osittaisderivaatta Gradientti Suhteellinen muutosnopeus ja osittaisjousto
Talousmatematiikan perusteet: Luento 12 Usean muuttujan funktiot Osittaisderivaatta Gradientti Suhteellinen muutosnopeus ja osittaisjousto Aiemmilla luennoilla Tähän mennessä olemme tarkastelleet Erilaisia
LisätiedotMATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 6.3.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
LisätiedotA-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:
MAB4 Koe Jussi Tyni 1..015 A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: 1. a. Piirrä seuraava suora mahdollisimman tarkasti ruutupaperille:
LisätiedotPRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015
PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)
LisätiedotTuloslaskenta (22C00400, 6 op)
Tuloslaskenta (22C00400, 6 op) OPETUSSUUNNITELMA 3.10.2016 Opettajanyhteystiedot Kurssin tiedot Luennot ja harjoitukset Kurssin asema KTK, erikoistumisopinnot Nimi Kari Toiviainen (TS2013) S-posti kari.toiviainen@aalto.fi
Lisätiedot031010P MATEMATIIKAN PERUSKURSSI I 5,0 op
031010P MATEMATIIKAN PERUSKURSSI I 5,0 op Kurssin jokaiseen kolmeen välikokeeseen on ilmoittauduttava WebOodissa (https://weboodi.oulu.fi/oodi/etusivu.html). Huom! Välikoeilmoittautuminen on PAKOLLINEN.
LisätiedotMatematiikan peruskurssi (MATY020) Harjoitus 10 to
Matematiikan peruskurssi (MATY00) Harjoitus 10 to 6.3.009 1. Määrää funktion f(x, y) = x 3 y (x + 1) kaikki ensimmäisen ja toisen kertaluvun osittaisderivaatat. Ratkaisu. Koska f(x, y) = x 3 y x x 1, niin
LisätiedotY55 Kansantaloustieteen perusteet sl 2010
Y55 Kansantaloustieteen perusteet sl 2010 1 Ole hyvä ja vastaa kysymyksiin tähän paperiin. Tehtävät on palautettava joko luennolla tai kurssilaatikkoon (Latokartanonkaari 9., 3 krs.) ehdottomasti niitattuina
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotEeva Harjulahti - Insinöörikoulutuksen foorumi 2012 Opetuksen ja oppimisen laatu. Opiskelutyön mitoitus OPMITKU-hanke
Eeva Harjulahti - Insinöörikoulutuksen foorumi 2012 Opetuksen ja oppimisen laatu Opiskelutyön mitoitus OPMITKU-hanke www.tuas.fi Motto: Tavoitteena oppiminen Oppimisen voi saavuttaa keinolla millä hyvänsä.
Lisätiedot1 ENSIMMÄISEN ASTEEN POLYNOMIFUNKTIO
1 ENSIMMÄISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Lämpötila maanpinnalla nähdään suoran ja y-akselin leikkauspisteen y- koordinaatista, joka on noin 10. Kun syvyys on 15 km, nähdään suoralta, että lämpötila
LisätiedotA Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7
1 Tuotteen hinta nousee ensin 10 % ja laskee sitten 10 %, joten lopullinen hinta on... alkuperäisestä hinnasta. alkuperäisestä hinnasta. YLIOPPILASTUTKINTO- LAUTAKUNTA 23.3.2016 MATEMATIIKAN KOE PITKÄ
LisätiedotKANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset
KANSANTALOUSTIETEEN PÄÄSYKOE.6.016: Mallivastaukset Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti Pohjola, Taloustieteen oppikirja, 014] sivuihin. (1) (a) Julkisten menojen kerroin (suljetun
LisätiedotASUMISPAKKI-koulutus Harkittu rahan käyttö. KOTILO-projekti
ASUMISPAKKI-koulutus Harkittu rahan käyttö Harkittu rahankäyttö Omasta taloudellisesta tilanteesta on tärkeää olla tietoinen. On hyvä arvioida tulot ja menot. Pienillä tuloilla selviää, kun suunnittelee
LisätiedotOPETUSSUUNNITELMALOMAKE
OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit
LisätiedotMS-A0103 / Syksy 2015 Harjoitus 2 / viikko 38 / Ennakot
Harjoitus 2 / viikko 38 / Ennakot Sekä tiistain 15.9. että torstain 17.9. luentoja pohjustavat ennakkotehtävät löytyvät MyCoursesin Tehtävät-osiosta. Lisätietoja itse tehtävissä. Tiedostoa viimeksi muokattu:
Lisätiedot4. www-harjoitusten mallivastaukset 2016
TU-91.1001 Kansantaloustieteen perusteet 4. www-harjoitusten mallivastaukset 2016 Tehtävä 1. Oikea vastaus: C Voitto maksimoidaan, kun MR=MC. Kyseisellä myyntimäärällä Q(m) voittomarginaali yhden tuotteen
LisätiedotMAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.
KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen
Lisätiedot031075P MATEMATIIKAN PERUSKURSSI II 5,0 op
031075P MATEMATIIKAN PERUSKURSSI II 5,0 op Kurssin jokaiseen kolmeen välikokeeseen on ilmoittauduttava erikseen WebOodissa (https://weboodi.oulu.fi/oodi/). Huom! Välikoeilmoittautuminen on PAKOLLINEN.
LisätiedotERIA1060 Monialainen yhteistyö perheiden kanssa, luento. ERIA1060 Monialainen yhteistyö perheiden kanssa, luento
ERITYISOPETUKSEN TEHTÄVIIN AMMATILLISIA VALMIUKSIA ANTAVAT OPINNOT LUKUJÄRJESTYS 2019-2020 Opintojaksojen tarkat aika- ja paikkatiedot löydät Sisusta, jonne myös mahdolliset muutokset päivitetään. Opintojaksoille
LisätiedotMalliratkaisut Demot
Malliratkaisut Demot 1 23.1.2017 1. Päätösmuuttujiksi voidaan valita x 1 : tehtyjen peruspöytin lukumäärä x 2 : tehtyjen luxuspöytien lukumäärä. Optimointitehtäväksi tulee max 200x 1 + 350x 2 s. t. 5x
LisätiedotNyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F
Mat-2.34 Investointiteoria Laskuharjoitus 2/2008, Ratkaisut 29.04.2008 Binomihilan avulla voidaan laskea T vuoden ja tietyn kupongin sisältävän joukkovelkakirjan arvo eli hinta rekursiivisesti vaihtelevan
LisätiedotHirviöopiskelija tahtoo vain kaiken?
Hirviöopiskelija tahtoo vain kaiken? Mitä tapahtuu, kun paljon parjattu kaikki mulle heti nyt -sukupolvi valtaa yliopiston? Hirviöopiskelijat, Ylioppilaslehti 10/2009, Ninni Lehtniemi Ylioppilaslehti kysyi
Lisätiedot2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)
Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee
Lisätiedotb) Määritä/Laske (ei tarvitse tehdä määritelmän kautta). (2p)
Matematiikan TESTI, Maa7 Trigonometriset funktiot RATKAISUT Sievin lukio II jakso/017 VASTAA JOKAISEEN TEHTÄVÄÄN! MAOL/LIITE/taulukot.com JA LASKIN ON SALLITTU ELLEI TOISIN MAINITTU! TARKISTA TEHTÄVÄT
LisätiedotA-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.
PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja
LisätiedotTalousmatematiikan perusteet: Luento 9
Talousmatematiikan perusteet: Luento 9 Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo ja pituus Vektorien välinen kulma Motivointi Tähän asti olemme tarkastelleet yhden
LisätiedotTN-IIa (MAT22001), syksy 2017
TN-IIa (MAT22001), syksy 2017 Petteri Piiroinen 4.9.2017 Todennäköisyyslaskennan IIa -kurssin asema opetuksessa Tilastotieteen pääaineopiskelijoille pakollinen aineopintojen kurssi. Suositus: toisen vuoden
LisätiedotOppivat organisaatiot ja tiimityö (3 op) - Tampere
Oppivat organisaatiot ja tiimityö (3 op) - Tampere Opintojaksolla tutustutaan nykyaikaisen, joustavan, oppivana organisaationa toimivan työyhteisön tunnusmerkkeihin ja toimintaperiaatteisiin. Samalla opitaan
Lisätiedot1.1 Funktion määritelmä
1.1 Funktion määritelmä Tämän kappaleen otsikoksi valittu funktio on hyvä esimerkki matemaattisesta käsitteestä, johon usein jopa tietämättämme törmäämme arkielämässä. Tutkiessamme erilaisia Jos joukkojen
Lisätiedot3 Eksponentiaalinen malli
Eksponentiaalinen malli Eksponentiaalinen kasvaminen ja väheneminen 6. Kulunut aika (h) Bakteerien määrä 0 80 0 60 0 0 7 7 0 0 0 6. 90 % 0,90 Pienennöksiä (kpl) Piirroksen korkeus (cm) 0,90 6,0, 0,90 6,0,06,
LisätiedotYO-INFO K2016 ILMOITTAUTUMINEN 2.11.2015. Rehtori Mika Strömberg
YO-INFO K2016 ILMOITTAUTUMINEN 2.11.2015 Rehtori Mika Strömberg LUKION PÄÄTTÖTODISTUS AMMATILLINEN PERUSTUTKINTO YLIOPPILASTODISTUS KEVÄT 2016? LUKION PÄÄTTÖTODISTUS Lukio-opinnot yhteensä vähintään 75
LisätiedotHUOM! Tämä ohje korvaa 19.4.2016 päivätyn ohjeen. Muutokset on merkitty punaisella
Jyväskylän yliopisto 28.4.2016 Humanistinen tiedekunta 31.12.2016 asti Humanistis-yhteiskuntatieteellinen tiedekunta 1.1.2017 alkaen HUOM! Tämä ohje korvaa 19.4.2016 päivätyn ohjeen. Muutokset on merkitty
LisätiedotTalousmatematiikan perusteet, ORMS1030
Vaasan yliopisto, kevät 2017 Talousmatematiikan perusteet, ORMS1030 6. harjoitus, viikko 6 (27.2. 3.3.2017) R1 ma 12 14 F249 R5 ti 14 16 F453 R2 ma 14 16 F453 R6 to 12 14 F104 R3 ti 08 10 F140 R7 pe 08
LisätiedotOpintokokonaisuuden toteuttaminen opettajatiiminä
Opintokokonaisuuden toteuttaminen opettajatiiminä Juho Tiili, Markus Aho, Jarkko Peltonen ja Päivi Viitaharju n koulutusyksikössä opetusta toteutetaan siten, että saman opintokokonaisuuden opintojaksot
LisätiedotA-osio. Ei laskinta! Laske kaikki tehtävät. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa.
MAB2 koe Jussi Tyni Lue ohjeet huolellisesti! Muista, että välivaiheet perustelevat vastauksesi. Muista kirjoittaa konseptille nimesi ja tee pisteytysruudukko konseptin yläreunaan. A-osio. Ei laskinta!
LisätiedotDEE Aurinkosähkön perusteet (Foundations of Solar Power) Sali SE211 Keskiviikkoisin ja perjantaisin klo
1 DEE-53010 Aurinkosähkön perusteet (Foundations of Solar Power) Sali SE211 Keskiviikkoisin ja perjantaisin klo 12.15 14.00 2 Luennot pidetään salissa SE211 keskiviikkoisin ja perjantaisin klo 12.15 14.00
LisätiedotTalousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla
Talousmatematiikan perusteet: Luento 12 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,
LisätiedotPyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin
Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Syksy 2015 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 27.10.2015 1 / 8 Kangaslampi Lineaarialgebra ja differentiaaliyhtälöt
LisätiedotKohti tentitöntä matematiikkaa
Kohti tentitöntä matematiikkaa Riikka Nurmiainen Esitys Matematiikan, fysiikan ja kemian AMK-opettajien päivillä 2152015 Arviointikokeiluja talotekniikan matematiikan opintojaksoilla Miksi? Koska laskemalla
LisätiedotMATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Merkitään f(x) =x 3 x. Laske a) f( 2), b) f (3) ja c) YLIOPPILASTUTKINTO- LAUTAKUNTA
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 26.3.2018 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
LisätiedotMATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 4.9.04 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
LisätiedotRahoitusriskit ja johdannaiset Matti Estola. luento 7 Swap sopimuksista lisää
Rahoitusriskit ja johdannaiset Matti Estola luento 7 Swap sopimuksista lisää 1. Pankki swapin välittäjänä Yleensä 2 eri-rahoitusalan yritystä eivät tee swap sopimusta keskenään vaan pankin tai yleensäkin
LisätiedotPeriodi KLO Maanantai Tiistai Keskiviikko Torstai Perjantai 8 10 POM2SMU R9 POM2STN R10. R POM1YSU-luento
1 Perusopetuksessa opetettavien aineiden ja aihekokonaisuuksien monialaiset (POM) opinnot (60 op) (OKLPOM 60 op) erityispedagogiikan koulutuksen opiskelijoille lukujärjestyspohja ilmoittautumisohjeet (Kainulainen
Lisätiedotf(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.
Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina
LisätiedotTalousmatematiikan perusteet: Luento 18. Määrätty integraali Epäoleellinen integraali
Talousmatematiikan perusteet: Luento 18 Määrätty integraali Epäoleellinen integraali Motivointi Viime luennoilla opimme integrointisääntöjä: Tavalliset funktiotyypit (potenssi-, polynomi- ja eksponenttifunktiot)
LisätiedotLASKE LAUDATUR CLASSWIZ- LASKIMELLA
LASKE LAUDATUR CLASSWIZ- LASKIMELLA Tiivistelmä Kevään 2019 yo-kokeiden ratkaisut ClassWiz-laskimella laskettuina. Katso lisää laskimista nettisivuiltamme www.casio-laskimet.fi Pepe Palovaara pepe.palovaara@casio.fi
LisätiedotJohdatus ohjelmointiin 811122P Yleiset järjestelyt: Kurssin sivut noppa -järjestelmässä: https://noppa.oulu.fi/noppa/kurssi/811122p/etusivu 0. Kurssin suorittaminen Tänä vuonna kurssin suorittaminen tapahtuu
LisätiedotMatematiikka vuosiluokat 7 9
Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa
LisätiedotKokeessa: 15 tehtävää, joista valitaan 10 ja vain kymmenen - valintaan kannattaa kiinnittää huomiota!!! (Tehtävien valintaa olemme harjoitelleet!
Matematiikan yo-kirjoitukset Kokeessa: 15 tehtävää, joista valitaan 10 ja vain kymmenen - valintaan kannattaa kiinnittää huomiota!!! (Tehtävien valintaa olemme harjoitelleet!) Pitkän matematiikan kokeessa
LisätiedotAikuisopetuksen tehtäviin suuntautuvat opettajan pedagogiset opinnot 60 op
Aikuisopetuksen tehtäviin suuntautuvat opettajan pedagogiset opinnot 60 op Minna Daniel 15.6.2016 1 Opinnot Joka vuosi aloittaa 85 aikuisopetukseen suuntautuvaa opiskelijaa, joista puolet tutkintoopiskelijoita
LisätiedotTalousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla
Talousmatematiikan perusteet: Luento 11 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,
Lisätiedot3 Kuluttajan valintateoria: työn tarjonta ja säästäminen ( Mankiw & Taylor, 2 nd ed, ch 21)
3 Kuluttajan valintateoria: työn tarjonta ja säästäminen ( Mankiw & Taylor, 2 nd ed, ch 21) 1. Työn tarjonta Kuluttajan valintateorian perusmalli soveltuu suoraan kotitalouksien työn tarjontapäätöksen
LisätiedotYLIOPPILAS KEVÄT 2020
YLIOPPILAS KEVÄT 2020 LUKION KURSSIT (LUKION PÄÄTTÖTODISTUS) YLIOPPILASKIRJOITUKSET (YLIOPPILASTUTKINTOTODISTUS) YLIOPPILASTUTKINTO NELJÄ PAKOLLISTA KOETTA VIERAS KIELI ÄIDINKIELI TOINEN KOTIMAINEN KIELI
LisätiedotKorkealämpötilakemia
Korkealämpötilakemia Johdanto kurssiin Ma 29.10.2018 klo 10-12 PR101 Vastuuopettaja kurssilla Eetu-Pekka Heikkinen Huone: TF214 - Prosessin kiltahuoneen portaikosta 2. kerrokseen ja käytävää etelää kohti
Lisätiedot