LUJUUSOPPI. TF00BN90 5op. Sisältö:
|
|
- Elina Sipilä
- 6 vuotta sitten
- Katselukertoja:
Transkriptio
1 LUJUUSOPPI TF00BN90 5op Sisältö: Peruskäsitteet Jännitystila Suoran sauvan veto ja puristus Puhdas leikkaus Poikkileikkaussuureiden laskeminen Suoran palkin taivutus Vääntö Nurjahdus 1
2 Kirjallisuus: Salmi Tapio, Pajunen Sami, Lujuusopin perusteet, 010, Pressus Oy Salmi Tapio, Teknillisen mekaniikan perusteet, 006, Pressus Oy Opintojakson suorittaminen: Oppitunnit ja tarjoamatunnit Harjoitustehtävät (materiaalissa) Koe (ei välikokeita)
3 Mekaniikan jaottelu: 3
4 Peruskäsitteitä (suoran sauvan veto tai puristus) Normaalijännitys ulkoinen kuormittava voima F sisäiset voimat muuttuvat ulkoisiksi (saadaan näkyville) leikkaamalla sauva kahteen osaan sauvan poikkileikkausta vastaan kohtisuoran sisäisen voimajakautuman resultantti on poikkileikkauspinnan normaalivoima N Mikäli sauvan poikkileikkauksen mitat ovat pieniä sauvan pituuteen verrattuna ja poikkileikkausta ei oteta kovin läheltä sauvan päitä, on poikkileikkauksen sisäinen voima likimain tasan jakautunut poikkileikkauspintaan. Tätä voimajakautuman tiheyttä sanotaan poikkileikkauksen normaalijännitykseksi (sigma) ja sen lauseke on N N A A missä A on sauvan poikkileikkauksen pinta ala. Jännityksen yksiköksi saadaan [ N] N [ ] Pa [ A] m Siis jännityksen perusyksikkö on Pa (pascal). 4
5 Lujuusopin ongelmissa jännitysten suuruusluokka on yleensä sellainen, että on luontevampaa käyttää kerrannaisyksiköitä kpa, MPa ja Gpa. Yleisin näistä on Mpa, jonka muunnosyhtälö on N MPa 10 6 Pa 10 6 m N mm Jännitystä kutsutaan vetojännitykseksi, jos sen suunta on poispäin leikkauspinnasta ja puristusjännitykseksi, jos sen se on leikkauspintaan päin. Näin määritelty normaalijännitys on poikkileikkauksen keskimääräinen normaalijännitys ESIMERKKI Kuvan vetosauvan poikkileikkaus on ympyrä, jonka halkaisija d 10mm. Sauvaa venytetään voimalla F 10kN. Laske sauvan keskimääräinen normaalijännitys poikkileikkauksessa 1. Leikkauksen 1 normaalivoima ja pinta ala N F 10kN A 5 78, 54mm ja keskimääräinen normaalijännitys 3 N F N 17 MPa A A 78, 54 mm 5
6 ESIMERKKI Kuvan alumiinitankojen AB ja AC poikkileikkaukset ovat ympyröitä, joiden halkaisijat ovat 10 mm ja 8 mm. Tanko AC on vaakasuorassa ja voima F 5kN. Laske a) tankojen poikkileikkauksien o normaalijännitykset, kun 45, b) kulman arvo niin, että kummassakin tangossa on sama normaalijännitys. Käytetään järjestelmää (N,mm). A A , , Nivelen A vk kuvasta saadaan N sin F 0 N F / sin N N cos 0 N Fcot 1 1 o a) Kun kulma 45, niin o N 5000/cot N 1 o 5000/sin Tankojen poikkileikkausten normaalijännityksiksi tulee N , 5 MPa A 50, 7 1 N , 0 MPa A 78, 54 6
7 b) Ehdosta, että saadaan kulman laskemiseksi yhtälö 1 N1 N Fcot F / sin A A A A 1 1 A1 50, 7 cos 06401, 50, A 78, 54 Tällöin kummankin tangon poikkileikkauksen normaalijännitys on o N cot 50, 8, 9 MPa A 50, 7 1 o Kuvan sauvarakennetta kuormittaa pystysuora voima F 35kN. a) Laske sauvojen poikkileikkausten normaalijännitykset. A 500mm, A 400mm 1 a) Jos halutaan, että kummassakin sauvassa on yhtä suuri normaalijännitys 150MPa, niin mitkä tulee niiden poikkipinta alojen olla tällöin? ( Vast : 171mm, 09mm ) 7
8 Terästangolla (poikkileikkaus kummassakin osassa ympyrä) on kaksi eri halkaisijaa, D=100mm ja d=65mm. Sauvaa vedetään voimalla P=45kN. Laske tangon poikkileikkauksen normaalijännitykset osissa 1 ja. ( Vast : 1 54, 1MPa) Terästanko on liimattu putken sisään. Laske tangon poikkileikkauksen normaalijännitys. Mitoita putken seinämän paksuus siten, että putken poikkileikkauksessa on yhtä suuri normaalijännitys kuin tangossa. Liimaliitos pitää. P 1kN, d 10mm ( Vast : 153MPa,, 1mm) 8
9 Vaaka asennossa olevaa palkkia CBD kuormitetaan sen päästä D alaspäin voimalla P. Pystysauvan AB pinta ala on 550 mm. Määritä voiman P suuruus siten, että sauvan AB normaalijännitys on 40Mpa. ( Vast : 13, 8 kn) Omakotitalon kattoristikoita kannattelee kuistin kohdalla liimapuupalkki (poikkileikkaus 10x360). Kattoristikot ovat k900 jaolla ja kultakin ristikolta palkille tuleva pistekuorma P=13 kn. Laske liimapuupalkkia kannattelevien puupilarien (LP95x95) normaalijännitykset. ( Vast : 4, MPa, 48, MPa) 9
10 Paineastian tarkistusluukku on kiinnitetty 5 kappaleella ruuveja M10 joiden halkaisija kierteen pohjan kohdalla on 8,593 mm. Tiivistysrenkaan halkaisija on 500 mm. Mikä on ruuvien poikkileikkauksen normaalijännitys kun astiassa on ylipaine 1, MPa? ( Vast : 163MPa) Alumiininen tanko, jonka pituus on 80m, riippuu vapaasti ainoastaan oman painonsa kuormittamana. Määritä tangon suurin normaalijännitys olettaen alumiinin ominaispainoksi 3 6, 6kN/m ( Vast : 13, MPa) 10
11 Määritä oheisen konsolipalkin vetotangon BC poikkileikkauksen, jonka halkaisija on 0mm, normaalijännitys. Palkkia kuormittava voima F 5kN. ( Vast : 191 MPa) Venymä Kun suoraan sauvaan kohdistuu aksiaalinen kuormitus, se aiheuttaa sauvan pituuden muutoksen L, joka voidaan laskea erotuksesta L Lˆ L missä L sauvan alkupituus (kuormittamaton pituus) ja ˆL sauvan lopullinen pituus. Sauvan pituuden muutoksen L suhdetta sen alkuperäiseen pituuteen kutsutaan suhteelliseksi venymäksi (tai lyhyesti venymäksi) ja sitä merkitään kirjaimella (epsilon). Sen lauseke on L L 11
12 Venymäksi saadaan: Normaalijännitys: ESIMERKKI Teräksistä suoraa sauvaa, jonka pituus L 1000mm ja jonka poikkileikkaus on ympyrä, d 10mm, venytetään voimalla F 16, 5kN. Tällöin sen loppupituudeksi tulee Lˆ 1001mm. Laske sauvan venymä ja normaalijännitys. Lasketaan ensin pituuden muutos: L Lˆ L 1001mm 1000mm 1mm L L 1mm 1000mm o, / oo 3 F 16, 5 10 N 10 MPa A 5 mm ESIMERKKI Kuvan hyvin joustavasta materiaalista tehdyssä sauvassa AC ei ole venymää, kun se on vaakasuorassa asennossa. Luisti siirretään kohtaan C. Laske tällöin sauvaan syntyvä venymä. Lasketaan ensin lopullinen pituus ˆ o L L/cos 30 1, 1547 L Pituuden muutos L Lˆ L 1, 1547L L 0, 1547L Venymäksi saadaan: L 01547, L 01547, 1547, / L L o o 1
13 Nostettaessa kuvan betonielementtiä havaitaan teräsvaijerien kiristyttyä, että välimatka CD on 1130 mm. Laske vaijerien AC ja BC venymä, kun niiden kuormittamaton pituus on 1500 mm. ( Vast : 5960 ) Poissonin luku Kokeellisesti voidaan todeta, että venytettäessä (puristettaessa) sauvaa tapahtuu pituussuuntaisen venymän lisäksi kutistumista (laajenemista) poikittaissuunnassa. Siis venytetyn sauvan poikittaismitat pienenevät ja puristetun kasvavat. 13
14 Kokemuksen perustuen siis havaitaan, että kun venymät ovat riittävän pieni, niin poikittaissuuntaisen venymän suhde pitkittäiseen venymään on negatiivinen vakio. Sen vastalukua merkitään symbolilla (nyy) ja kutsutaan POISSON in luvuksi. Myös nimitystä suppeumaluku käytetään. Isotrooppisilla materiaaleilla 0 1/. Jos 1/, niin materiaali on kokoonpuristumatonta eli sen tilavuus ei muutu. (Esimerkiksi kumi ja parafiini.) Teräksen 0,3, betoni 0,,0,, korkki 0,. Metallisauvaa vedetään voimalla P 35kN, Sauvan pituus L 00mm ja sen halkaisija d 6mm. Havaitaan, että sen pituuden muutos L 055mm, ja halkaisijan muutos d 0, 0058mm Laske metallin Poissonin vakio ja sen kimmomoduuli E. ( Vast : 035,, 450, GPa) 14
15 Jännityksen ja venymän välinen yhteys Aksiaalisesti kuormitetuille sauvoille tehtävistä kokeista saatavat jännitysvenymäkäyrät eli käyrät poikkeavat toisistaan huomattavastikin eri materiaaleilla. Kuvassa on esitetty käyrä, joka on luonteenomainen sitkeille rakenneteräksille. Käyrästä voidaan havaita myötöalue venymän 0,00 molemmin puolin. Myödöllä tarkoitetaan kohtaa, jossa venymä kasvaa jännityksen pysyessä likimain samana. Materiaaleja, joissa sauvan murtumista edeltää voimakas venyminen, kutsutaan sitkeiksi. Tällaisia ovat esimerkiksi monet teräkset ja metalliseokset tavallisissa käyttöolosuhteissa. Hauraita ovat sellaiset materiaalit, jotka murtuvat jo melko pienillä venymillä. Tällaisia ovat esimerkiksi valurauta, keraamiset materiaalit, betoni, eräät metalliseokset ja lasi. 15
16 Aluksi jännitys on suoraan verrannollinen venymään tiettyyn arvoon, suhteellisuusrajaan p, asti. Vaikka jännitys kasvaa, on venymä vielä täysin palautuvaa kimmorajaan e asti. Venytettäessä sauvaa edelleen saavutetaan ns. myötöraja R e, jolloin venymä kasvaa tarvitsematta lisätä voimaa. Tätä käyrän aluetta kutsutaan myötöalueeksi. Ylempi myötöraja Re h on se jännityksen arvo, jolla myötö alkaa ja alempi myötöraja Re l on pienin myötöalueella esiintyvä jännitys. Puristuspuolella myötörajaa sanotaan usein myös tyssäysrajaksi. Vetokokeen jatkuessa myötövaiheen ohi kasvaa tarvittava jännitys jälleen venymän kasvaessa. Tätä vaihetta kutsutaan myötölujittumiseksi (väli C D). Jännitystä edelleen kasvatettaessa saavutetaan lopulta materiaalin murtolujuus R m (puristuspuolella R -m ). Murtolujuus on nimellisjännityksen arvo kokeen aikana. Tämän jälkeen venymän edelleen kasvaessa sauvaan vaikuttava normaalivoima pienenee ja lopulta murtuminen tapahtuu pisteessä E. Joillakin materiaaleilla, kuten esimerkiksi monilla korkean lujuusluokan teräslajeilla, ei esiinny selvää myötörajaa. Niillä on kuitenkin jännitysvenymäkäyrässä derivaatan epäjatkuvuuskohta. Tämän kohdan jännityksen arvoa pidetään myötörajana (kuva a seuraavalla sivulla). 16
17 Materiaaleilla, joilla ei voida havaita derivaatan epäjatkuvuuskohtaa, käytetään myötörajana pysyvän venymän arvoa 0, %. Tätä venymää merkitään ja se määritetään kuvan b mukaisesti. R P 0, HOOKEn laki ja kimmomoduli Useimpien käytössä olevien rakennusmateriaalien käyttäytyminen on käyrän alkuosalla lineaarisesti kimmoista suhteellisuusrajaan p saakka. Useimmissa tapauksessa käytettäessä rakennemateriaaleina metalleja, muoveja, puuta tai betonia, suunnitellaan rakenteet siten, että niiden käyttäytyminen voidaan olettaa lineaarisesti kimmoiseksi. Tällöin jännityksen ja venymän yhteys voidaan esittää yksinkertaisella yhtälöllä E ( HOOKEn laki) missä E on kimmomoduuli tai kimmokerroin. Sen yksikkö on sama kuin jännityksenkin, koska venymällä ei ole yksikköä. (Yleensä kannattaa käyttää Gpa, esimerkiksi teräksen kimmomoduli E 10 GPa.) s 17
18 ESIMERKKI Kuvan vetosauvan poikkileikkaus on ympyrä, jonka halkaisija d 6mm. Sauvaa venytetään voimalla P 35, kn. Laske sauvan suhteellinen venymä ja lopullinen pituus, kun E 45, 0GPa ja L 00mm. Käytetään järj. (N,mm) N P 3500 A 3 8, 7 N 3500 Normaalijännitys 13, 8 MPa A 8, 7 Lasketaan venymä Hooken laista 13, 8MPa E 751, 10 3 E 45, 0 10 MPa 3 Pituuden muutos saadaan suhteellisen venymän määritelmästä L 3 L L, , 550 mm L Lopulliseksi pituudeksi tulee Lˆ L L 00 0, , 55mm 18
19 ESIMERKKI Kuvan sauva pakotetaan liikkumattomien tukien väliin. Tukiväli on 1mm liian lyhyt. Laske sauvan poikkileikkauksen normaalijännitys. E 10GPa Käytetään järj. (N,mm) Sauvan pituuden muutos L 1mm, joten venymä L 1mm 1815 L 551mm Normaalijännitys (Hooken laista) 3 6 E MPa ( ) 381, 1MPa (puristusjännitys!) Kuvan terässauvaa kuormittaa vaakasuora voima F 0kN. Sauvan poikkileikkauksen ala on A 500mm. Laske sauvan pituuden muutos, kun a 3m ja b 4m sekä E 10GPa ( Vast : 0, 314mm) 19
20 Kuvan jäykkään ympyrän muotoiseen levyyn D, jonka halkaisija on 100 mm, vaikuttaa pintakuormitus p 0 N/mm. Laske normaalijännitykset ja venymät osissa AB ja BC sekä laske levyn D siirtymä. Sauvan paksumpi osa on terästä, jonka kimmomoduuli on 10 GPa ja ohuempi osa alumiinia, jonka EAl 70GPa. ( Vast : 31, 5 MPa, 15, 0 MPa, 0, 370mm) TEHTÄVIÄ Poikkileikkaukseltaan pyöreää terästankoa (halkaisija 16 mm) vedetään sellaisella voimalla, että tanko venyy 0,05 % alkuperäisestä pituudestaan. Kuinka suuria ovat jännitys ja kuormitus? (105 MPa, 1 kn) Teräksinen vetotanko muodostuu kahdesta osasta: 1, metriä pitkästä tangosta, jonka halkaisija on 6 mm 1,6 metriä pitkästä putkesta, jonka sisä ja ulkohalkaisijat ovat 6 ja 7 mm. Kuinka paljon tämä,8 metriä pitkä yhdistetty tanko saa vedettäessä venyä, kun jännitys ei saa ylittää arvoa 50 N/mm? (,4 mm) 0
21 Laske tangon CB pituuden muutos, kun sen pinta ala on 300mm. Sauvan materiaalin kimmomoduuli on 45,0 Gpa. Kuinka paljon voiman vaikutuspiste siirtyy? Voima on suuruudeltaan 0 kn ja sauvan CB pituus kuormittamattomana on m. Vast. L 494, mm, v 83, mm F Hyvin jäykkä palkki on tuettu alumiinisauvalla, jonka materiaalin AlMgSi (SFS 591) kimmomoduuli on 70 Gpa. Sauvan poikkileikkausala on 600 mm. Kuinka pitkä pitää sauvan alun perin olla, kun halutaan, että palkki on aivan vaakasuora, kun sen päähän vaikuttaa voima P 35 kn. ( Vast : 3598, 3mm) 1
22 Kuvan jäykkää vaakasuoraa palkkia kuormittaa voima F 160 kn. Pystytangot ovat terästä S355J0 (EN1005), jonka kimmomoduuli on 10 Gpa ja myötöraja 355 Mpa. Laske, kuinka paljon voiman F vaikutuspiste siirtyy alaspäin, kun A 400mm, A 00mm 1 ( Vast : X mm)
A on sauvan akselia vastaan kohtisuoran leikkauspinnan ala.
Leikkausjännitys Kuvassa on esitetty vetosauvan vinossa leikkauksessa vaikuttavat voimat ja jännitykset. N on vinon tason normaalivoima ja on leikkausvoima. Q Kuvan c perusteella nähdään N Fcos Q Fsin
LisätiedotRatkaisut 3. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016
Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit
LisätiedotSTATIIKKA. TF00BN89 5op
STATIIKKA TF00BN89 5op Sisältö: Statiikan peruslait Voiman resultantti ja jako komponentteihin Voiman momentti ja voimapari Partikkelin ja jäykän kappaleen tasapainoyhtälöt Tukivoimat Ristikot, palkit
LisätiedotPUHDAS, SUORA TAIVUTUS
PUHDAS, SUORA TAIVUTUS Qx ( ) Nx ( ) 0 (puhdas taivutus) d t 0 eli taivutusmomentti on vakio dx dq eli palkilla oleva kuormitus on nolla 0 dx suora taivutus Taivutusta sanotaan suoraksi, jos kuormitustaso
LisätiedotLaskuharjoitus 2 Ratkaisut
Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin ke 7.3. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 2 Ratkaisut 1.
LisätiedotAnalysoidaan lämpöjännitysten, jännityskeskittymien, plastisten muodonmuutosten ja jäännösjännityksien vaikutus
TAVOITTEET Määritetään aksiaalisesti kuormitetun sauvan muodonmuutos Esitetään menetelmä, jolla ratkaistaan tukireaktiot tapauksessa, jossa statiikan tasapainoehdot eivät riitä Analysoidaan lämpöjännitysten,
LisätiedotLaskuharjoitus 1 Ratkaisut
Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin ke 28.2. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 1 Ratkaisut 1.
Lisätiedot2 LUJUUSOPIN PERUSKÄSITTEET 25 2.1 Suoran sauvan veto tai puristus 25. 2.2 Jännityksen ja venymän välinen yhteys 34
SISÄLLYSLUETTELO Kirjallisuusluettelo 12 1 JOHDANTO 13 1.1 Lujuusopin sisältö ja tavoitteet 13 1.2 Lujuusopin jako 15 1.3 Mekaniikan mallin muodostaminen 16 1.4 Lujuusopillisen suunnitteluprosessin kulku
LisätiedotMääritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja
TAVOITTEET Tutkitaan väännön vaikutusta suoraan sauvaan Määritetään vääntökuormitetun sauvan jännitysjakauma Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti
LisätiedotKJR-C2002 Kontinuumimekaniikan perusteet
KJR-C2002 Kontinuumimekaniikan perusteet Luento 23.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Luennon sisältö Hooken laki lineaaris-elastiselle materiaalille (Reddy, kpl 6.2.3) Lujuusoppia: sauva (Reddy,
LisätiedotAksiaalisella tai suoralla leikkauksella kuormitettujen rakenneosien lujuusopillinen analyysi ja suunnittelu
TAVOITTEET Statiikan kertausta Kappaleen sisäiset rasitukset Normaali- ja leikkausjännitys Aksiaalisella tai suoralla leikkauksella kuormitettujen rakenneosien lujuusopillinen analyysi ja suunnittelu 1
Lisätiedot10. Jännitysten ja muodonmuutosten yhteys; vaurioteoriat
TAVOITTEET Esitetään vastaavalla tavalla kuin jännitystilan yhteydessä venymätilan muunnosyhtälöt Kehitetään materiaaliparametrien yhteyksiä; yleistetty Hooken laki Esitetään vaurioteoriat, joilla normaali-
LisätiedotSUORAN SAUVAN VETO TAI PURISTUS
SUORAN SAUVAN VETO TAI PURISTUS Kuva esittää puhtaan vedn tai puristuksen alaista suraa sauvaa Jännityskentän resultantti n N ( y, z)da Tietyin edellytyksin n pikkileikkauksen jännityskenttä tasainen,
LisätiedotHarjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä.
Kotitehtävät palautetaan viimeistään keskiviikkona 2.3. ennen luentojen alkua eli klo 14:00 mennessä puiseen kyyhkyslakkaan, jonka numero on 9. Arvostellut kotitehtäväpaperit palautetaan laskutuvassa.
Lisätiedot2 LUJUUSOPIN PERUSKÄSITTEET Suoran sauvan veto tai puristus Jännityksen ja venymän välinen yhteys
SISÄLLYSLUETTELO Kirjallisuusluettelo 12 1 JOHDANTO 13 1.1 Lujuusopin sisältö ja tavoitteet 13 1.2 Lujuusopin jako 15 1.3 Mekaniikan mallin muodostaminen 16 1.4 Lujuusopillinen suunnittelu 18 1.5 Lujuusopin
LisätiedotTAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat
TAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat Lasketaan suurimmat leikkaus- ja taivutusrasitukset Analysoidaan sauvoja, jotka ovat suoria,
LisätiedotSISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa
SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia
LisätiedotMUODONMUUTOKSET. Lähtöotaksumat:
MUODONMUUTOKSET Lähtöotaksumat:. Materiaali on isotrooppista ja homogeenista. Hooken laki on voimassa (fysikaalinen lineaarisuus) 3. Bernoullin hypoteesi on voimassa (tekninen taivutusteoria) 4. Muodonmuutokset
LisätiedotSISÄLTÖ 1. Veto-puristuskoe 2. Jännitys-venymäpiirros 3. Sitkeitten ja hauraitten materiaalien jännitysvenymäkäyttäytyminen
TAVOITTEET Jännitysten ja venymien yhteys kokeellisin menetelmin: jännitysvenymäpiirros Teknisten materiaalien jännitys-venymäpiirros 1 SISÄLTÖ 1. Veto-puristuskoe 2. Jännitys-venymäpiirros 3. Sitkeitten
LisätiedotSUORAN PALKIN RASITUKSET
SUORAN PALKIN RASITUKSET Palkilla tarkoitetaan pitkänomaista rakenneosaa, jota voidaan käsitellä yksiulotteisena eli viivamaisena. Palkkia kuormitetaan pääasiassa poikittaisilla kuormituksilla, mutta usein
LisätiedotLaskuharjoitus 3 Ratkaisut
Vastaukset palautetaan yhtenä PDF-tieostona MyCourses:iin 14.3. klo 14.00 mennessä. Maholliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 3 Ratkaisut 1. Kuvien
Lisätiedot8. Yhdistetyt rasitukset
TAVOITTEET Analysoidaan ohutseinäisten painesäiliöiden jännitystilaa Tehdään yhteenveto edellisissä luennoissa olleille rasitustyypeille eli aksiaalikuormalle, väännölle, taivutukselle ja leikkausvoimalle.
Lisätiedotnormaali- ja leikkaus jännitysten laskemiseen pisteessä Määritetään ne tasot, joista suurimmat normaali- ja leikkausjännitykset löytyvät
TAVOITTEET Johdetaan htälöt, joilla muutetaan jännitskomponentit koordinaatistosta toiseen Kätetään muunnoshtälöitä suurimpien normaali- ja leikkaus jännitsten laskemiseen pisteessä Määritetään ne tasot,
LisätiedotSUORAN PALKIN TAIVUTUS
SUORAN PALKIN TAIVUTUS KERTAUSTA! Palkin rasituslajit Palkki tasossa: Tasopalkin rasitukset, sisäiset voimat, ovat normaalivoima N, leikkausvoima Q ja taivutusmomentti M t. Ne voidaan isostaattisessa rakenteessa
LisätiedotRatkaisut 2. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa a) ja b) sekä laske c) kohdan tehtävä.
Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit
LisätiedotKoesuunnitelma Kimmokertoimien todentaminen
KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt Koesuunnitelma Kimmokertoimien todentaminen Ryhmä S: Pekka Vartiainen 427971 Jari Villanen 69830F Anssi Petäjä 433978 Sisällysluettelo 1 Johdanto...
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 3.3.2016 Susanna Hurme Päivän aihe: Ristikon sauvavoimat (Kirjan luvut 6.1-6.4) Osaamistavoitteet: Ymmärtää, mikä on ristikkorakenne Osata soveltaa aiemmin kurssilla
LisätiedotTasokehät. Kuva. Sauvojen alapuolet merkittyinä.
Tasokehät Tasokehä muodostuu yksinkertaisista palkeista ja ulokepalkeista, joita yhdistetään toisiinsa jäykästi tai nivelkehässä nivelellisesti. Palkit voivat olla tasossa missä kulmassa tahansa. Palkkikannattimessa
Lisätiedot7. Suora leikkaus TAVOITTEET 7. Suora leikkaus SISÄLTÖ
TAVOITTEET Kehitetään menetelmä, jolla selvitetään homogeenisen, prismaattisen suoran sauvan leikkausjännitysjakauma kun materiaali käyttäytyy lineaarielastisesti Menetelmä rajataan määrätyn tyyppisiin
LisätiedotRASITUSKUVIOT (jatkuu)
RASITUSKUVIOT (jatkuu) Rakenteiden suunnittelussa yksi tärkeimmistä tehtävistä on rakenteen mitoittaminen kestämään ja kantamaan annetut kuormitukset muotonsa riittävässä määrin säilyttäen. Kun on selvitetty
LisätiedotKJR-C1001: Statiikka L3 Luento : Jäykän kappaleen tasapaino
KJR-C1001: Statiikka L3 Luento 27.2.2018: Jäykän kappaleen tasapaino Apulaisprofessori Konetekniikan laitos Luennon osaamistavoitteet Tämän päiväisen luennon (ja laskuharjoitusten) jälkeen opiskelija
LisätiedotHarjoitus 10. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016
Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit
LisätiedotHarjoitus 6. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016
KJR-C001 Kiinteän aineen mekaniikan perusteet, IV/01 Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 1:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri
LisätiedotMateriaali on lineaarinen, jos konstitutiiviset yhtälöt ovat jännitys- ja muodonmuutostilan suureiden välisiä lineaarisia yhtälöitä.
JÄNNITYS-JAMUODONMUUTOSTILANYHTYS Materiaalimalleista Jännitys- ja muodonmuutostila ovat kytkennässä toisiinsa ja kytkennän antavia yhtälöitä sanotaan materiaaliyhtälöiksi eli konstitutiivisiksi yhtälöiksi.
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 8.3.2016 Susanna Hurme Päivän aihe: Normaalivoiman, leikkausvoiman ja taivutusmomentin käsitteet (Kirjan luku 7.1) Osaamistavoitteet: Ymmärtää, millaisia sisäisiä
LisätiedotTyö 4B8B S4h. AINEEN PITUUDEN MUUTOKSISTA
TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/5 Työ 4B8B S4h. AINEEN PITUUDEN MUUTOKSISTA TYÖN TAVOITE Tavoitteena on ymmärtää aineen kimmoisuuteen liittyviä käsitteitä sekä aineen lämpölaajenemista. Sovelluksena
LisätiedotLAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Konetekniikan koulutusohjelma BK10A0401 Kandidaatintyö ja seminaari
LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Konetekniikan koulutusohjelma BK10A0401 Kandidaatintyö ja seminaari VÄÄNTÖRASITETUN RAKENNEOSAN EURONORMIIN PERUSTUVA KESTÄVYYSLASKENTAYHTÄLÖIDEN
LisätiedotMEI Kontinuumimekaniikka
MEI-55300 Kontinuumimekaniikka 1 MEI-55300 Kontinuumimekaniikka 6. harjoitus jännitysmitat Ratkaisut T 1: Ohuen suoran sauvan pituus referenssitilassa on 0 ja poikkipinta-ala on A 0. Sauvan akselin suuntaisen
Lisätiedottutustuttaa materiaalien lujuusominaisuuksiin luentoja perusteellisemmin
FYSP102 / K2 KIMMOKERTOIMEN MÄÄRITYS Työn tavoitteita tutustuttaa materiaalien lujuusominaisuuksiin luentoja perusteellisemmin kerrata monia toistoja sisältävien laskujen sekä suoransovituksen tekemistä
LisätiedotKANSALLINEN LIITE STANDARDIIN. SFS-EN EUROKOODI 3: TERÄSRAKENTEIDEN SUUNNITTELU. Osa 1-1: Yleiset säännöt ja rakennuksia koskevat säännöt
LIITE 9 1 KANSALLINEN LIITE STANDARDIIN SFS-EN 1993-1-1 EUROKOODI 3: TERÄSRAKENTEIDEN SUUNNITTELU. Osa 1-1: Yleiset säännöt ja rakennuksia koskevat säännöt Esipuhe Tätä kansallista liitettä käytetään yhdessä
LisätiedotKJR-C1001: Statiikka L5 Luento : Palkin normaali- ja leikkausvoima sekä taivutusmomentti
KJR-C1001: Statiikka L5 Luento : Palkin normaali- ja leikkausvoima sekä taivutusmomentti Apulaisprofessori Konetekniikan laitos Statiikan välikoe 12.3.2018 Ajankohta ma 12.3.2018 klo 14:00 17:00 Salijako
Lisätiedot3. SUUNNITTELUPERUSTEET
3. SUUNNITTELUPERUSTEET 3.1 MATERIAALIT Myötölujuuden ja vetomurtolujuuden arvot f R ja f R y eh u m tuotestandardista tai taulukosta 3.1 Sitkeysvaatimukset: - vetomurtolujuuden ja myötörajan f y minimiarvojen
LisätiedotLUJUUSHYPOTEESIT, YLEISTÄ
LUJUUSHYPOTEESIT, YLEISTÄ Lujuushypoteesin tarkoitus: Vastataan kysymykseen kestääkö materiaali tietyn yleisen jännitystilan ( x, y, z, τxy, τxz, τyz ) vaurioitumatta. Tyypillisiä materiaalivaurioita ovat
LisätiedotStabiliteetti ja jäykistäminen
Stabiliteetti ja jäykistäminen Lommahdusjännitykset ja -kertoimet Lommahdus normaalijännitysten vuoksi: Leikkauslommahdus: Eulerin jännitys Lommahduskerroin normaalijännitykselle, pitkä jäykistämätön levy:
LisätiedotPalkki ja laatta toimivat yhdessä siten, että laatta toimii kenttämomentille palkin puristuspintana ja vetoteräkset sijaitsevat palkin alaosassa.
LAATTAPALKKI Palkki ja laatta toimivat yhdessä siten, että laatta toimii kenttämomentille palkin puristuspintana ja vetoteräkset sijaitsevat palkin alaosassa. Laattapalkissa tukimomentin vaatima raudoitus
LisätiedotLaskuharjoitus 7 Ratkaisut
Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin 25.4. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 7 Ratkaisut 1. Kuvan
LisätiedotKJR-C1001: Statiikka L2 Luento : voiman momentti ja voimasysteemit
KJR-C1001: Statiikka L2 Luento 21.2.2018: voiman momentti ja voimasysteemit Apulaisprofessori Konetekniikan laitos Luennon osaamistavoitteet Tämän päiväisen luennon jälkeen opiskelija Pystyy muodostamaan,
LisätiedotRakenteiden mekaniikka TF00BO01, 5op
Rakenteiden mekaniikka TF00BO01, 5op Sisältö: Nivelpalkit Kehät Virtuaalisen työn periaate sauvarakenteelle Muodonmuutosten laskeminen Hyperstaattiset rakenteet Voimamenetelmä Crossin momentintasausmenetelmä
LisätiedotKUPARISAUVOJEN KOVUUS-, VETO-, JA VÄSYTYSKOKEET ANU VÄISÄNEN, JARMO MÄKIKANGAS, MARKKU KESKITALO, JARI OJALA
KUPARISAUVOJEN KOVUUS-, VETO-, JA VÄSYTYSKOKEET 18.12.2008 ANU VÄISÄNEN, JARMO MÄKIKANGAS, MARKKU KESKITALO, JARI OJALA 1 Johdanto Muovauksen vaikutuksesta metallien lujuus usein kasvaa ja venymä pienenee.
LisätiedotMateriaalien mekaniikka
Materiaalien mekaniikka 3. harjoitus jännitys ja tasapainoyhtälöt 1. Onko seuraava jännityskenttä tasapainossa kun tilavuusvoimia ei ole: σ x = σ 0 ( 3x L + 4xy 8y ), σ y = σ 0 ( x L xy + 3y ), τ xy =
LisätiedotRAK-31000 Statiikka 4 op
RAK-31000 Statiikka 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat RAK-31000 Statiikka
LisätiedotJohdatus materiaalimalleihin
Johdatus materiaalimalleihin 2 kotitehtäväsarja - kimmoisat materiaalimallit Tehtävä Erään epälineaarisen kimmoisen isotrooppisen aineen konstitutiivinen yhtälö on σ = f(i ε )I + Ge () jossa venymätensorin
LisätiedotCHEM-A1410 Materiaalitieteen perusteet
CHEM-A1410 Materiaalitieteen perusteet Laskuharjoitus 18.9.2017, Materiaalien ominaisuudet Tämä harjoitus ei ole arvioitava, mutta tämän tyyppisiä tehtäviä saattaa olla tentissä. Tehtävät perustuvat kurssikirjaan.
LisätiedotELEMENTTIMENETELMÄN PERUSTEET SESSIO 07: Aksiaalinen sauvaelementti, osa 2.
7/ EEMENTTIMENETEMÄN PERSTEET SESSIO 7: Aksiaalinen sauvaelementti, osa. RATKAIS EEMENTIN AEESSA Verkon perusyhtälöstä [ K ]{ } = { F} saatavasta solmusiirtymävektorista { } voidaan poimia minkä tahansa
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 1.3.2016 Susanna Hurme Päivän aihe: Jäykän kappaleen tasapaino ja vapaakappalekuva (Kirjan luvut 5.1-5.4) Osaamistavoitteet: 1. Ymmärtää, mitä tukireaktiot ovat
Lisätiedotl 1 2l + 1, c) 100 l=0
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)
LisätiedotKäyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on
766328A ermofysiikka Harjoitus no. 3, ratkaisut (syyslukukausi 201) 1. (a) ilavuus V (, P ) riippuu lämpötilasta ja paineesta P. Sen differentiaali on ( ) ( ) V V dv (, P ) dp + d. P Käyttämällä annettua
LisätiedotTarkastellaan ympyräsylinterin käyttäytymistä eri muotoisilla tukipinnoilla. Oletetaan sylinterin vierintävastus merkityksettömäksi.
NURJAHDUS ERUSKÄSITTEITÄ Katava raketee mitoitusperusteet ovat ujuus jäitykset eivät ylitä iille sallittuja arvoja Jäykkyys siirtymät ja muodomuutokset pysyvät ealta määrätyissä rajoissa Stabiilius raketee
LisätiedotHitsattavien teräsrakenteiden muotoilu
Hitsattavien teräsrakenteiden muotoilu Kohtisuoraan tasoaan vasten levy ei kanna minkäänlaista kuormaa. Tässä suunnassa se on myös äärettömän joustava verrattuna jäykkyyteen tasonsa suunnassa. Levyn taivutus
LisätiedotLuento 14: Ääniaallot ja kuulo
Luento 14: Ääniaallot ja kuulo Pikajohdanto elastisuusteoriaan Ääniaallot Luennon sisältö Pikajohdanto elastisuusteoriaan Ääniaallot Miksi pikajohdanto? Osa ääniaaltojen käsittelystä perustuu elastisuusteoriaan
LisätiedotRuuviliitoksen lujuus
Ruuviliitoksen lujuus Ruuviliitos mitoitetaan osien välisen kitkavoiman perusteella. (F v F a ) > F q = 0,15...0,6 liitettävien osien välinen kitkakerroin F v = esikiristysvoima F a = aksiaalinen vetokuorma
LisätiedotKappaleiden tilavuus. Suorakulmainensärmiö.
Kappaleiden tilavuus Suorakulmainensärmiö. Tilavuus (volyymi) V = pohjan ala kertaa korkeus. Tankomaisista kappaleista puhuttaessa nimitetään korkeutta tangon pituudeksi. Pohjan ala A = b x h Korkeus (pituus)
LisätiedotMEKAANINEN AINEENKOETUS
MEKAANINEN AINEENKOETUS KOVUUSMITTAUS VETOKOE ISKUSITKEYSKOE 1 Kovuus Kovuus on kovuuskokeen antama tulos! Kovuus ei ole materiaaliominaisuus samalla tavalla kuin esimerkiksi lujuus tai sitkeys Kovuuskokeen
LisätiedotVoima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!
6.1 Työ Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! Siirtymä s = r 2 r 1 Kun voiman kohteena olevaa kappaletta voidaan kuvata
LisätiedotMATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +
LisätiedotRatkaisuja, Tehtävät
ja, Tehtävät 988-97 988 a) Osoita, että lausekkeiden x 2 + + x 4 + 2x 2 ja x 2 + - x 4 + 2x 2 arvot ovat toistensa käänteislukuja kaikilla x:n arvoilla. b) Auton jarrutusmatka on verrannollinen nopeuden
Lisätiedotl 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +
LisätiedotKJR-C2002 Kontinuumimekaniikan perusteet, tentti
KJR-C2002 Kontinuumimekaniikan perusteet, tentti 13.12.2017 1. Jos r θ on paikkavektori, niin mitä ovat r θ, esitksiä r θ ja r θ? Kätä Karteesisen koordinaatiston T θ θ r < j < j zθ θ k k z ja / θ < j
LisätiedotKoesuunnitelma KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt. 16.10.2015 Aleksi Purkunen (426943) Joel Salonen (427269)
Koesuunnitelma KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt 16.10.2015 Aleksi Purkunen (426943) Joel Salonen (427269) Sisällysluettelo 1. Johdanto... 2 2. Tutkimusmenetelmät... 2 2.1 Kokeellinen
LisätiedotMATEMATIIKKA PAOJ2 Harjoitustehtävät
MATEMATIIKKA PAOJ2 Harjoitustehtävät 6. Laske kuvan suorakulmion pinta-ala. ( T ) 1. Täytä taulukko m 12 1,45 0,805 2. Täytä taulukko mm 12345 4321 765 23,5 7. Laske kuvan suorakulmion pinta-ala.( T )
LisätiedotLineaarialgebra MATH.1040 / voima
Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.
Lisätiedot2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyv
2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyvien vakioiden määrittämiseen. Jännitystila on siten
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /
MS-A008 Differentiaali- ja integraalilaskenta, V/207 Differentiaali- ja integraalilaskenta Ratkaisut 2. viikolle / 8. 2.4. Jatkuvuus ja raja-arvo Tehtävä : Määritä raja-arvot a) 3 + x, x Vihje: c)-kohdassa
LisätiedotSIPOREX-HARKKOSEINÄÄN TUKEUTUVIEN TERÄSPALKKIEN SUUNNITTELUOHJE 21.10.2006
SIPOREX-HARKKOSEINÄÄN TUKEUTUVIEN TERÄSPALKKIEN SUUNNITTELUOHJE 21.10.2006 Tämä päivitetty ohje perustuu aiempiin versioihin: 18.3.1988 AKN 13.5.1999 AKN/ks SISÄLLYS: 1. Yleistä... 2 2. Mitoitusperusteet...
Lisätiedot2.1 Yhdenmuotoiset suorakulmaiset kolmiot
2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.2 Kulman tangentti 2.3 Sivun pituus tangentin avulla 2.4 Kulman sini ja kosini 2.5 Trigonometristen funktioiden käyttöä 2.7 Avaruuskappaleita 2.8 Lieriö 2.9
LisätiedotA-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.
PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja
LisätiedotCh 12-4&5 Elastisuudesta ja lujuudesta
Ch 12-4&5 Elastisuudesta ja lujuudesta Jännitys ja venymä Hooken laki F = k l Δl = 1 k F Jousivakio k riippuu langan dimensioista Saadaan malli Δl = l o EA F k = E A l o Lisäksi tarvitaan materiaalia kuvaava
LisätiedotKertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)
Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman
LisätiedotLuento 3. Millerin indeksit Kidevirheet Röntgendiffraktio Elastisuusteoria
Luento 3 Millerin indeksit Kidevirheet Röntgendiffraktio Elastisuusteoria Luento 3 Millerin indeksit Kidevirheet Röntgendiffraktio Elastisuusteoria Kidesuunnat Kidesuuntien määrittäminen kuutiollisessa
LisätiedotTee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!
MAA3 Koe 1.4.2014 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! A-Osio: Ei saa käyttää laskinta. MAOL saa olla alusta asti käytössä. Maksimissaan
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino
Lisätiedot4B6A. KIMMOISUUSTUTKIMUKSIA
FYSIIKAN LABORATORIO V. 9.0 4B6A. KIMMOISUUSTUTKIMUKSIA A. LANGAN KIMMOKERTOIMEN MÄÄRITTÄMINEN. Tavoite. Teoriaa Työssä perehdytään Hooken lakiin normaalijännityksen alaisessa kappaleessa ja määritetään
LisätiedotTERÄSRISTIKON SUUNNITTELU
TERÄSRISTIKON SUUNNITTELU Ristikon mekaniikan malli yleensä uumasauvojen ja paarteiden väliset liitokset oletetaan niveliksi uumasauvat vain normaalivoiman rasittamia paarteet jatkuvia paarteissa myös
LisätiedotKone- ja rakentamistekniikan laboratoriotyöt KON-C3004. Koesuunnitelma: Paineen mittaus venymäliuskojen avulla. Ryhmä C
Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004 Koesuunnitelma: Paineen mittaus venymäliuskojen avulla Ryhmä C Aleksi Mäki 350637 Simo Simolin 354691 Mikko Puustinen 354442 1. Tutkimusongelma ja
LisätiedotLämpötila Lämpölaajeneminen Ideaalikaasu. Luku 17
Lämpötila Lämpölaajeneminen Ideaalikaasu Luku 17 Ch 17-1 3 Termodynaaminen tasapaino Termodynaaminen tasapaino: Tuotaessa kaksi systeemiä lämpökontaktiin niiden termodynaaminen tasapaino on saavutettu,
LisätiedotESIMERKKI 3: Märkätilan välipohjapalkki
ESIMERKKI 3: Märkätilan välipohjapalkki Perustietoja - Välipohjapalkki P103 tukeutuu ulkoseiniin sekä väliseiniin ja väliseinien aukkojen ylityspalkkeihin. - Välipohjan omapaino on huomattavasti suurempi
LisätiedotYmpyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora
Ympyrä 1/6 Sisältö Ympyrä ja sen yhtälö Tason pisteet, jotka ovat vakioetäisyydellä kiinteästä pisteestä, muodostavat ympyrän eli ympyräviivan. Kiinteä piste on ympyrän keskipiste ja vakioetäisyys sen
LisätiedotJuuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. A III, B II, C ei mikään, D I. a) Kolmion kulmien summa on 80. Kolmannen kulman suuruus on 80 85 0 85. Kolmiossa on kaksi 85 :n kulmaa, joten se on tasakylkinen.
LisätiedotSovelletun fysiikan pääsykoe
Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille
LisätiedotJuuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 17.10.016 Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ 1. A III, B II, C ei mikään, D I. a) Kolmion kulmien summa on 180. Kolmannen kulman
LisätiedotLuento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,
Lisätiedot1.3 Pilareiden epäkeskisyyksien ja alkukiertymien huomioon ottaminen
1. MASTOPILARIN MITOITUSMENETELMÄ 1.1 Käyttökohteet Mitoitusmenetelmä soveltuu ensisijaisesti yksilaivaisen, yksikerroksisen mastojäykistetyn teräsbetonikehän tarkkaan analysointiin. Menetelmän soveltamisessa
Lisätiedot2 SUORA SAUVA ja PALKKI Suoran sauvan puhdas veto tai puristus Suoran palkin taivutus Harjoitustehtäviä 71
7 SISÄLLYSLUETTELO Alkulause 5 Kirjallisuus 12 1 JOHDANTO 13 1.1 Yleistä 13 1.2 Rakenteiden statiikan historiallista taustaa 15 1.3 Rakennetyyppejä 17 1.4 Rakenteen tuennat 22 1.5 Kuormitukset 25 2 SUORA
LisätiedotCHEM-A1410 Materiaalitieteen Perusteet Luento 3: Mekaaniset ominaisuudet Ville Jokinen
CHEM-A1410 Materiaalitieteen Perusteet Luento 3: Mekaaniset ominaisuudet 24.09.2019 Ville Jokinen Mitä seuraavat ominaisuudet tarkalleen kuvaavat? Luja? Kova? Pehmeä? Venyvä? Elastinen? Sitkeä? Hauras?
LisätiedotPRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan
Lisätiedoty 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu.
Tehtävä 1 Tarkastellaan paineen ajamaa Poisseuille-virtausta kahden yhdensuuntaisen levyn välissä Levyjen välinen etäisyys on 2h Nopeusjakauma raossa on tällöin u(y) = 1 dp ( y 2 h 2), missä y = 0 on raon
LisätiedotRASITUSKUVIOT. Kuvioiden laatimisen tehostamiseksi kannattaa rasitukset poikkileikkauksissa laskea seuraavassa esitetyllä tavalla:
RASITUSKUVIOT Suurimpien rasitusten ja niiden yhdistelmien selvittämiseksi laaditaan niin sanotut rasituskuviot, joissa esitetään kunkin rasituksen arvot kaikissa rakenteen poikkileikkauksissa. Rasituskuvioita
Lisätiedot1.5 KIEPAHDUS Yleistä. Kuva. Palkin kiepahdus.
.5 KEPAHDUS.5. Yleistä Kuva. Palkin kiepahdus. Tarkastellaan yllä olevan kuvan palkkia. Palkilla vaikuttavasta kuormituksesta palkki taipuu. Jos rakenteen eometria, tuenta ja kuormituksen sijainti palkin
LisätiedotOheismateriaalin käyttö EI sallittua, mutta laskimen käyttö on sallittua Vastaukset tehtäväpaperiin, joka PALAUTETTAVA (vaikka vastaamattomana)!
LUT-Kone Timo Björk BK80A2202 Teräsrakenteet I: 31.3.2016 Oheismateriaalin käyttö EI sallittua, mutta laskimen käyttö on sallittua Vastaukset tehtäväpaperiin, joka PALAUTETTAVA (vaikka vastaamattomana)!
LisätiedotSähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon
30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten
Lisätiedot