SUORAN SAUVAN VETO TAI PURISTUS

Koko: px
Aloita esitys sivulta:

Download "SUORAN SAUVAN VETO TAI PURISTUS"

Transkriptio

1 SUORAN SAUVAN VETO TAI PURISTUS Kuva esittää puhtaan vedn tai puristuksen alaista suraa sauvaa Jännityskentän resultantti n N ( y, z)da Tietyin edellytyksin n pikkileikkauksen jännityskenttä tasainen, jllin ( yz, ) ja N da daa 1

2 SAINT VENANT n periaate Saint VENANT n periaate: Mitä kauempana kurmituksen vaikutuskhdasta tarkasteltava pikkileikkaus n, sitä vähemmän kurmituksen jakaantuma vaikuttaa kyseisen pikkileikkauksen jännityskenttään. Useimmiten kurmituksen jakaantuman vaikutus pikkileikkauksen jännityskenttään n svellusten kannalta mitätön j muutaman kurmitusalueen tyypillisen mitan päässä siitä. 2

3 Nrmaaliviman ja siirtymän välinen yhteys Kuvan perusteella vidaan kirjittaa dxˆ d xu( xd x) dx jsta venymälle saadaan dxˆ d x (d xu( xd x) d x)) dx du dx dx dx Venymän ja siirtymän yhteys n siis du dx Tämä vidaan kirjittaa mudssa N du dx dx dx E EA Integrimalla tätä yhtälöä saadaan x E N ux ( ) d xu u ux ( ) ua ( ) EA x N A 3

4 Useimmiten riittää, että lasketaan sauvan pituuden muuts b N L ub ( ) ua ( ) dx EA a ( bal) Js nrmaalivima N, kimmmduuli E ja pikkipinta ala A vat vakiita (hmgeeninen ja tasavahva sauva), niin pituuden muuts L n b b N N N N L dx d x ( b a) L EA EA EA EA a a L NL EA ESIMERKKI Määritä kuvan tasapaksun ja hmgeenisen sauvan nrmaalijännityksen ja siirtymän lauseke muuttujan x funktina. Mikä n sauvan alapään siirtymä? Kurmituksena n ma pain ja sauvan pikkileikkauksen ala n A, materiaalin tiheys ja kimmkerrin E. 4

5 RATKAISU: Sauvan palan pain: Gx ( ) gax Sauvan palan vapaakplkuvasta pystytspeht: Gx ( ) Nx ( ) 0 Nx ( ) gax N( x) ( x) gx A Integridaan ja tetaan humin reunaeht ul ( ) 0 x N x gx g x u( x) dxc dx C xdx C EA E E g x g ux ( ) / 1 2 xc ( 1 2 x ) C E 0 E g x 2 C 2E g g RE: ul ( ) 0 LC0 C L 2E 2E g 2 g 2 ux ( ) x L 2E 2E Sauvan alapään siirtymä g g g u() 0 0 L L 2E 2E 2E

6 ESIMERKKI Laske pisteiden B, C ja D siirtymät ub, uc ja u D sekä sauvan pituuden muuts. F F 8kN F 32 kn E 210 GPa A 225mm 2 ESIMERKKI Kuvan symmetristä tasristikka kurmittaa pystysura vima F. Määritä nivelen A siirtymän lauseke. Materiaalin kimmkerrin n E ja sauvjen pikkileikkaus ala A. RATKAISU: S sin S sin 0 S S S cs F 0 S F / 2cs 1 1 Tästä seuraa sauvjen pituuden muutkselle S1( h/cs ) Fh AB AC 2 EA 2EAcs 6

7 Nivel A siirtyy alaspäin uuteen paikkaan A. Piirretään B keskipisteenä ja jana BA säteenä ympyrän kaari AA. Tällöin jana AA ˆ n sauvan pituuden muutksen AB suuruinen. Käytännön rakenteissa siirtymät vat hyvin pieniä rakenteen mittihin verrattuna, jllin ympyrän kaari AA vidaan krvata suraa BAˆ vastaan khtisuralla janalla ja lettaa kulman AAA ˆ suuruudeksi kuvan mukaisesti. Surakulmaisesta klmista saadaan siirtymälle lauseke v A AB Fh 3 cs 2EAcs v A Ratkaisu: ESIMERKKI Laske kuvan ristikn kurmitetun nivelen A pysty ja vaakasiirtymät. Materiaalin kimmkerrin n E ja sauvjen pikkileikkaus ala A. Ristikn kurmituksena n vima F. Nivelen A vkk:sta F S sin 0 S F / sin AC S cs S 0 S F / tan AC AC AB AB 7

8 Lasketaan pituuden muutkset FL 1, F L FL AB AC EAtan EA sin cs EAsin cs Kuvasta saadaan u AB FL EAtan ˆ AB AC v AD DA tan sin FL FL 2 2 EAtan EAsin cs FL 2 1 cs EAsin cs 8

9 TEHTÄVÄ Hyvin jäykkä tappi B yhdistää tisiinsa terässauvan DE, jnka väli BE n 900mm, paksuus 6mm ja kimmkerrin 210GPa sekä kaksi messinkisauvaa, jiden paksuus n 4mm ja kimmkerrin 105GPa. Määritä pisteiden B ja E siirtymä. Vast: 0, 429mm, 1, 29mm TEHTÄVÄ Kuvan pyöreän terässauvan materiaali n S235J2G3 EN Mitita sauvan halkaisija d, kun kurmitus F 10kN. Laske sauvan pituuden muuts, kun kimmmduuli E 205GPa, sekä määritä viman vaikutuspisteen siirtymä. Vast: 101mm,, 38mm,, 48mm, 9

10 TEHTÄVÄ Kuvan tasristikn sauvjen mate riaali n terästä S235J2G3 EN Kummankin sauvan pikkileikkauksen ala 100 mm 2 ja kimmkerrin E 200GPa. Laske pisteen A siirtymät, kun F 1kN, 60, h3m Vast: 0, 087mm TEHTÄVÄ Kuvan tasristikn sauvjen mate riaali n terästä S235J2G3 EN Kummankin sauvan pikkileikkauksen ala 100 mm 2 ja kimmkerrin E 200GPa. Laske pisteen A siirtymät, kun F 1kN, 60, h3m Vast: 10

11 Sauvan lämpöjännitykset Kun lämpötilakentän T( x) muuts T n vaki sauvan pituudella L, niin sen lämpöpiteneminen nudattaa kkemuksen mukaan likimääräistä kaavaa L LT missä n sauvan materiaalin pituuden lämpötilakerrin. Sauvan kknaisvenymällä n lauseke T E missä summan ensimmäinen termi jhtuu jännityksistä HOOKEn lain mukaan ja tinen termi liittyy esteettömään lämpöliikkeeseen. Js sauvan piteneminen n täysin estetty liikkumattmilla tukilaitteilla, n sauvan kknaisvenymä 0, jten sauvan pikkileikkauksen lämpöjännitykseksi saadaan ET 11

12 Ratkaisu: ESIMERKKI Sauvan, jnka materiaali n paineastiaterästä P235GH (EN ), lämpötila muuttuu asennuslämpötilasta 20 C tasaisesti määrän 30 C. Tuet letetaan liikkumattmiksi. Määritä sauvan pikkileikkauksen lämpöjännitys. 6 E 210GPa, / C Sauvan vkk:sta nähdään, että sauvan nrmaalivima n vaki. Sauvan pituudenmuuts n NL/ 2 N L/ 2 L LT 0 EA E2A Tämä n ns. yhteenspivuusyhtälö. Tästä saadaan nrmaalivimalle 4 N 3EAT Lämpöjännitykseksi sauvan huemmalla salla saadaan N E T A Vaikka lämpötilan kasvaessa kimmmduuli pienenee, käytetään annettua arva (tulkset jännityksille vat varmalla pulella), jten E 210MPa MPa / C 30 C 100, 8MPa 1 3 Lämpöjännitykseksi sauvan huemmalla salla saadaan N , 4MPa 2A 12

13 TEHTÄVÄ Hyvin jäykkä tappi B yhdistää tisiinsa terässauvan DE, jnka väli BE n 900mm, paksuus 6mm ja pituuden lämpötilakerrin s 12 / C sekä kaksi messinkisauvaa, jiden paksuus n 4mm ja pituuden lämpötilakerrin b 20 / C. Määritä pisteiden B ja E siirtymä, kun lämpötilan muuts n T 35 C. Vast: TEHTÄVÄ Kuvan sauvassa lämpötila nusee 10 C. Mikä n viman F arvn ltava, että sauvan halkaisija ei muutu? Laske myös sauvan pikkileikkauksen jännitys. E 210GPa, 0, / C, d 100mm Vast: 13

14 TEHTÄVÄ Kuvan sauva, jnka materiaali n terästä P265GH (EN ), n liimattu kahdesta sasta. Sauva n asetettu huneenlämpötilassa 20 C liikkumattmien tukien väliin. Lämpötila nusee 70 C. Mikä n varmuus murtumiseen nähden, kun liiman leikkauslujuus n 90MPa? Laske myös sauvan pikkileikkauksen lämpöjännitys. 6 E 210GPa, / C Vast: 1, 65, 126MPa 14

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 09: Tasoristikon sauvaelementti, osa 2.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 09: Tasoristikon sauvaelementti, osa 2. 9/ ELEMENTTIMENETELMÄN PERSTEET SESSIO 9: Tasristikn sauvaelementti, sa. ES9E Svelletaan tasristikn sauvaelementin teriaa kuvan (a) kahden pisteviman kurmittamaan ristikkn, jnka elementtiverkssa (b) n

Lisätiedot

RISTIKKO. Määritelmä:

RISTIKKO. Määritelmä: RISTIKKO Määritelmä: Kitkattmilla nivelillä tisiinsa yhdistettyjen sauvjen mudstamaa rakennetta santaan ristikksi. Ristikn sauvat vat rakennesia, jtka ttavat vastaan vain vet tai puristusrasituksen. Js

Lisätiedot

Lisämateriaalia: tilayhtälön ratkaisu, linearisointi. Matriisimuuttujan eksponenttifunktio:

Lisämateriaalia: tilayhtälön ratkaisu, linearisointi. Matriisimuuttujan eksponenttifunktio: Lisämateriaalia: tilayhtälön ratkaisu, linearisinti Matriisimuuttujan ekspnenttifunkti: Kun A n neliömatriisi, niin määritellään 1 1 1 e I ta t A t A t A 2 6 i! At 2 2 3 3 i i jnka vidaan tdistaa knvergivan

Lisätiedot

Joten tässä esimerkissä mitoitetaan pystyrunko yksiaukkoisena tasaiselle tuulikuormalle ja vaakarunko yksiaukkoisena eristyslasin painolle.

Joten tässä esimerkissä mitoitetaan pystyrunko yksiaukkoisena tasaiselle tuulikuormalle ja vaakarunko yksiaukkoisena eristyslasin painolle. 1/16 ITOITUSTEHTÄÄ: ititetaan heisen timisttal HTC-Keilaniemen alumiinirunkisen julkisivuelementin kantavat rakenteet. Rakennus sijaitsee Espn Keilaniemessä kaupunkialueella. II. Rakennemallin mudstaminen

Lisätiedot

pienempää, joten vektoreiden välinen kulma voidaan aina rajoittaa välille o. Erikoisesti on

pienempää, joten vektoreiden välinen kulma voidaan aina rajoittaa välille o. Erikoisesti on 5 Pistetul ja sen svellutuksia Kun kahdella vektrilla, a ja b n hteinen alkupiste, niiden määräämät pulisurat jakavat tasn kahteen saan, kahteen kulmaan, jtka vat tistensa eksplementtikulmia, siis kulmia,

Lisätiedot

LH9-1 Eräässä prosessissa kaasu laajenee tilavuudesta V1 = 3,00 m 3 tilavuuteen V2 = 4,00 m3. Sen paine riippuu tilavuudesta yhtälön.

LH9-1 Eräässä prosessissa kaasu laajenee tilavuudesta V1 = 3,00 m 3 tilavuuteen V2 = 4,00 m3. Sen paine riippuu tilavuudesta yhtälön. LH9- Eräässä rsessissa kaasu laajenee tilavuudesta = 3, m 3 tilavuuteen = 4, m3. Sen aine riiuu tilavuudesta yhtälön 0 0e mukaan. akiilla n arvt = 6, 0 Pa, α = 0, m -3 ja v =, m 3. Laske kaasun tekemä

Lisätiedot

A on sauvan akselia vastaan kohtisuoran leikkauspinnan ala.

A on sauvan akselia vastaan kohtisuoran leikkauspinnan ala. Leikkausjännitys Kuvassa on esitetty vetosauvan vinossa leikkauksessa vaikuttavat voimat ja jännitykset. N on vinon tason normaalivoima ja on leikkausvoima. Q Kuvan c perusteella nähdään N Fcos Q Fsin

Lisätiedot

Harjoituksia MAA5 - HARJOITUKSIA. 1. Olkoon ABCD mielivaltainen nelikulmio. Merkitse siihen vektorit. mutta molemmat puolet itseisarvojen sisällä????

Harjoituksia MAA5 - HARJOITUKSIA. 1. Olkoon ABCD mielivaltainen nelikulmio. Merkitse siihen vektorit. mutta molemmat puolet itseisarvojen sisällä???? MAA5 - HARJOITUKSIA 1. Olkn ABCD mielivaltainen nelikulmi. Merkitse siihen vektrit a) AB b) CA ja DB. 2. Neljäkäs eli vinneliö n suunnikkaan erikistapaus. Mitkä seuraavista väitteistä vat tsia neljäkkäässä

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 23.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Luennon sisältö Hooken laki lineaaris-elastiselle materiaalille (Reddy, kpl 6.2.3) Lujuusoppia: sauva (Reddy,

Lisätiedot

MAA5. HARJOITUKSIA. 1. Olkoon ABCD mielivaltainen nelikulmio. Merkitse siihen vektorit a) AB

MAA5. HARJOITUKSIA. 1. Olkoon ABCD mielivaltainen nelikulmio. Merkitse siihen vektorit a) AB MAA5 HARJOITUKSIA 1 Olkn ABCD mielivaltainen nelikulmi Merkitse siihen vektrit a) AB, b) CA ja DB 2 Neljäkäs eli vinneliö n suunnikkaan erikistapaus Mitkä seuraavista väitteistä vat tsia neljäkkäässä ABCD:

Lisätiedot

Laskuharjoitus 2 Ratkaisut

Laskuharjoitus 2 Ratkaisut Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin ke 7.3. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 2 Ratkaisut 1.

Lisätiedot

MUODONMUUTOKSET. Lähtöotaksumat:

MUODONMUUTOKSET. Lähtöotaksumat: MUODONMUUTOKSET Lähtöotaksumat:. Materiaali on isotrooppista ja homogeenista. Hooken laki on voimassa (fysikaalinen lineaarisuus) 3. Bernoullin hypoteesi on voimassa (tekninen taivutusteoria) 4. Muodonmuutokset

Lisätiedot

Geometrinen piirtäminen

Geometrinen piirtäminen Gemetrinen piirtäminen Nimet: Piirtäkää gemetrisesti nelikulmi, jnka kaikki sivut vat yhtä pitkät. Valmistautukaa selittämään muille, miksi piirtämistapa timii. Opettajalle Ehdtus tunnin rakenteesta: Alustusvaihe

Lisätiedot

MAB2. Kertaustehtävien ratkaisut. 120. a) α = 15 16 1. β = 95 58 45. 95 o 58. b) α = 11,9872 0,9872 = 0,9872 60 = 59,232 0,232 = 0,232 60 = 13,92

MAB2. Kertaustehtävien ratkaisut. 120. a) α = 15 16 1. β = 95 58 45. 95 o 58. b) α = 11,9872 0,9872 = 0,9872 60 = 59,232 0,232 = 0,232 60 = 13,92 MAB Kertaustehtävien ratkaisut 10. a) α = 15 16 1 16 1 15 60 β = 95 58 45 600 15,669 95 58 45 95,979 60 600 b) α = 11,987 0,987 = 0,987 60 = 59, 0, = 0, 60 = 1,9 α = 11 59 1,9 = 11 59 14 β = 95,4998 0,

Lisätiedot

Ratkaisut 3. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016

Ratkaisut 3. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016 Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit

Lisätiedot

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa;

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa; VITAPIIIASKUT II Tarkastellaan sinimutista vaihtjännitettä ja vaihtvirtaa; u sin π ft ja i sin π ft sekä vaihtvirtapiiriä, jssa n sarjaan kytkettyinä vastus, käämi ja kndensaattri (-piiri) ulkisen vastuksen

Lisätiedot

LUJUUSOPPI. TF00BN90 5op. Sisältö:

LUJUUSOPPI. TF00BN90 5op. Sisältö: LUJUUSOPPI TF00BN90 5op Sisältö: Peruskäsitteet Jännitystila Suoran sauvan veto ja puristus Puhdas leikkaus Poikkileikkaussuureiden laskeminen Suoran palkin taivutus Vääntö Nurjahdus 1 Kirjallisuus: Salmi

Lisätiedot

Analysoidaan lämpöjännitysten, jännityskeskittymien, plastisten muodonmuutosten ja jäännösjännityksien vaikutus

Analysoidaan lämpöjännitysten, jännityskeskittymien, plastisten muodonmuutosten ja jäännösjännityksien vaikutus TAVOITTEET Määritetään aksiaalisesti kuormitetun sauvan muodonmuutos Esitetään menetelmä, jolla ratkaistaan tukireaktiot tapauksessa, jossa statiikan tasapainoehdot eivät riitä Analysoidaan lämpöjännitysten,

Lisätiedot

Fy06 Koe 20.5.2014 Kuopion Lyseon lukio (KK) 1/6

Fy06 Koe 20.5.2014 Kuopion Lyseon lukio (KK) 1/6 Fy06 Ke 0.5.04 Kupin Lysen luki (KK) /6 6p/tehtävä.. Kaksi varattua palla rikkuu lankjen varassa lähellä tisiaan. Pallt vetävät tisiaan puleensa 0,66 N vimalla. Pienemmän palln varaus n kaksinkertainen

Lisätiedot

Tampere University of Technology

Tampere University of Technology Tampere University of Technology EDE- Introduction to Finite Element Method. Exercise 3 Autumn 3.. Solve the deflection curve v(x) exactly for the beam shown y,v q v = q z, xxxx x E I z Integroidaan yhtälö

Lisätiedot

Laskuharjoitus 1 Ratkaisut

Laskuharjoitus 1 Ratkaisut Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin ke 28.2. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 1 Ratkaisut 1.

Lisätiedot

Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma

Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma OuLUMA - Jussi Tyni OuLUMA, sivu 1 Ihastellaan muotoja Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma Luokkataso: lukio Välineet: kynä, paperia, laskin Tavoitteet: Tarkoitus on arkielämään

Lisätiedot

PUHDAS, SUORA TAIVUTUS

PUHDAS, SUORA TAIVUTUS PUHDAS, SUORA TAIVUTUS Qx ( ) Nx ( ) 0 (puhdas taivutus) d t 0 eli taivutusmomentti on vakio dx dq eli palkilla oleva kuormitus on nolla 0 dx suora taivutus Taivutusta sanotaan suoraksi, jos kuormitustaso

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 07: Aksiaalinen sauvaelementti, osa 2.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 07: Aksiaalinen sauvaelementti, osa 2. 7/ EEMENTTIMENETEMÄN PERSTEET SESSIO 7: Aksiaalinen sauvaelementti, osa. RATKAIS EEMENTIN AEESSA Verkon perusyhtälöstä [ K ]{ } = { F} saatavasta solmusiirtymävektorista { } voidaan poimia minkä tahansa

Lisätiedot

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia

Lisätiedot

PubMed pikaopas. 1. Yksinkertainen haku, haku vapain sanoin

PubMed pikaopas. 1. Yksinkertainen haku, haku vapain sanoin PubMed pikapas 1. Yksinkertainen haku 2. Rajaukset 3. Advanced Search 4. Haku MeSH-termein 5. Hakutulksen käsittely, tulstus ja lajittelu 6. Tietyn viitteen etsiminen 1. Yksinkertainen haku, haku vapain

Lisätiedot

SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 2(3) Tehtävien ratkaisuehdotukset

SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 2(3) Tehtävien ratkaisuehdotukset SMG- Piirianalyysi, kesäkurssi, harjitus (3) Tehtävien ratkaisuehdtukset 6 Tarkitus n laskea V ja eveninin ekvivalentin avulla Tämä tarkittaa sitä, että mudstetaan kytkennälle eveninin ekvivalentti vastuksen

Lisätiedot

Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja

Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja TAVOITTEET Tutkitaan väännön vaikutusta suoraan sauvaan Määritetään vääntökuormitetun sauvan jännitysjakauma Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti

Lisätiedot

Harjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä.

Harjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä. Kotitehtävät palautetaan viimeistään keskiviikkona 2.3. ennen luentojen alkua eli klo 14:00 mennessä puiseen kyyhkyslakkaan, jonka numero on 9. Arvostellut kotitehtäväpaperit palautetaan laskutuvassa.

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino

Lisätiedot

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! 6.1 Työ Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! Siirtymä s = r 2 r 1 Kun voiman kohteena olevaa kappaletta voidaan kuvata

Lisätiedot

x n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x

x n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x Osittaisintegrointia käyttäen osoita integraalille I n x n e x dx oikeaksi reduktiokaava I n x n e x + ni n ja laske sen avulla mitä on I 4 kun x. x n e x dx n( e x ) nx n ( e x ) x n e x + ni n x 4 e

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2007

MAOL-Pisteitysohjeet Fysiikka kevät 2007 MAOL-Pisteityshjeet Fysiikka kevät 007 Tyypillisten virheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe -/3 p - laskuvirhe, epäielekäs tuls, vähintään - - vastauksessa yksi erkitsevä

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka Tekijä Pitkä matematiikka 5..017 110 Valitaan suoralta kaksi pistettä ja piirretään apukolmio, josta koordinaattien muutokset voidaan lukea. Vaakasuoran suoran kulmakerroin on nolla. y Suoran a kulmakerroin

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte

VÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte 4/ VÄRÄHTELYMEKANIIKKA SESSIO 4: Yhden vaausaseen vaieneva akkvärähely, harninen kuriusheräe LIIKEYHTÄLÖN JOHTO JA RATKAISU Kuvassa n esiey visksisi vaienneun yhden vaausaseen harnisen akkvärähelijän erusalli.

Lisätiedot

PALKIN KIMMOVIIVA M EI. Kaarevuudelle saatiin aiemmin. Matematiikassa esitetään kaarevuudelle v. 1 v

PALKIN KIMMOVIIVA M EI. Kaarevuudelle saatiin aiemmin. Matematiikassa esitetään kaarevuudelle v. 1 v PALKIN KIMMOVIIVA Palkin akseli taipuu suorassa taivutuksessa kuormitustasossa tasokäyräksi, jota kutsutaan kimmoviivaksi tai taipumaviivaksi. Palkin akselin pisteen siirtymästä y akselin suunnassa käytetään

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora Ympyrä 1/6 Sisältö Ympyrä ja sen yhtälö Tason pisteet, jotka ovat vakioetäisyydellä kiinteästä pisteestä, muodostavat ympyrän eli ympyräviivan. Kiinteä piste on ympyrän keskipiste ja vakioetäisyys sen

Lisätiedot

20.6.2011. Hankinnasta on julkaistu ennakkoilmoitus HILMA- palvelussa 10.5.2011.

20.6.2011. Hankinnasta on julkaistu ennakkoilmoitus HILMA- palvelussa 10.5.2011. SUOJAVAATEPALVELUHANKINTA Peruspalvelukeskus Oiva liikelaits kuuluu Hlllan kunnan rganisaatin ja tuttaa ssiaali- ja perusterveydenhullnpalvelut yhteistiminta-alueen kuntien (Asikkala, Hllla, Hämeenkski,

Lisätiedot

Fysiikan labra Powerlandissa

Fysiikan labra Powerlandissa Fysiikan labra Pwerlandissa Bumper Cars Bumper Cars n suuri autrata jka spii niin vanhille kuin nurillekin kuljettajille. Autt vat varustetut turvavöin ja autja vi ajaa yksin tai pareittain. Lievemmät

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot

GeoCalc 4 Julkaisutiedot

GeoCalc 4 Julkaisutiedot GeCalc 4 Julkaisutiedt Civilpint Oy 04/2019 2(5) 1 GEOCALC 4 JULKAISUTIEDOT 1.1 GEOCALC 4.1 (180419, R3461) Ohjelmistn lisensinti n päivitetty 64 bit versin. Lisenssipalvelimesta pitää lla asennettuna

Lisätiedot

Tekijä Pitkä matematiikka On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 4 5

Tekijä Pitkä matematiikka On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 4 5 Tekijä Pitkä matematiikka 6..06 8 On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 5 sivun AB pituudesta. Pitää siis osoittaa, että DE = AB. 5 Muodostetaan vektori DE. DE =

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Esimerkki: SISÄÄNTULOKATOS

Esimerkki: SISÄÄNTULOKATOS /9 Esimerkki: SISÄÄTULOKATOS YLEISTÄ Mititetaan heisen Tampereella kaupunkialueella sijaitsevan kerrstaln sisääntulkatksen etureunan palkin ja vinn pilarin alumiiniputkiprfiilit. I. Rakennemallin mudstaminen

Lisätiedot

3. Kolmiulotteisten kohteiden esitys ja mallintaminen: jatkoa

3. Kolmiulotteisten kohteiden esitys ja mallintaminen: jatkoa . Klmiultteisten khteiden esitys ja mallintaminen: jatka Mnikulmiverkkn nähden ilmeisiä etuja vat: eksakti analyyttinen esitysmut klmiultteinen mudn mukkaaminen mahdllista vähemmän muistitilaa vaativa

Lisätiedot

3 Lämpölaajaneminen ja tilanyhtälöt

3 Lämpölaajaneminen ja tilanyhtälöt Läölaajaneinen ja tilanyhtälöt Läölaajeneinen POHDI J ETSI - a) Kaksisetalliläöittarissa n liitetty yhteen kaksi eri ateriaalista valistettua etalliliuskaa, jtka läölaajenevat eri tavalla Kska tinen laajenee

Lisätiedot

YMPYRÄ. Ympyrä opetus.tv:ssä. Määritelmä Kehän pituus Pinta-ala Sektori, kaari, keskuskulma, segmentti ja jänne

YMPYRÄ. Ympyrä opetus.tv:ssä. Määritelmä Kehän pituus Pinta-ala Sektori, kaari, keskuskulma, segmentti ja jänne YMPYRÄ Ympyrä opetus.tv:ssä Määritelmä Kehän pituus Pinta-ala Sektori, kaari, keskuskulma, segmentti ja jänne KAPPALEEN TERMEJÄ 1. Ympyrä Ympyrä on niiden tason pisteiden joukko, jotka ovat yhtä kaukana

Lisätiedot

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei. PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja

Lisätiedot

CAVERION OYJ:N HALLITUKSEN TYÖJÄRJESTYS. 1. Hallituksen tehtävien ja toiminnan perusta. 2. Hallituksen kokoonpano ja valintamenettely

CAVERION OYJ:N HALLITUKSEN TYÖJÄRJESTYS. 1. Hallituksen tehtävien ja toiminnan perusta. 2. Hallituksen kokoonpano ja valintamenettely CAVERION OYJ:N HALLITUKSEN TYÖJÄRJESTYS 1. Hallituksen tehtävien ja timinnan perusta Hallituksen tehtävät ja timintaperiaatteet perustuvat Sumen lainsäädäntöön, erityisesti sakeyhtiölakiin ja arvpaperimarkkinalakiin

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää

Lisätiedot

102 Käyrä. Piste ( 3,0 ) on käyrällä, jos ja vain jos sen koordinaatit. Siis piste ( 1, 2) Siis piste ( 3,0 ) ei ole käyrällä.

102 Käyrä. Piste ( 3,0 ) on käyrällä, jos ja vain jos sen koordinaatit. Siis piste ( 1, 2) Siis piste ( 3,0 ) ei ole käyrällä. Pramidi 4 Analttinen geometria tehtävien ratkaisut sivu 1 Päivitett 19..6 11 Todistus 1 Kärä x + = x + 4 5 3 31 = x x+ 4, jos ja vain jos pisteen 3,7 koordinaatit toteuttavat kärän htälön. Kun x = 3 ja

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

MAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5

Lisätiedot

z Im (z +1) 2 = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän yhtälön? ( 1) 0 z ( 1) z ( 1) arg = arg(z 0) arg(z ( 1)), z ( 1) z ( 1)

z Im (z +1) 2 = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän yhtälön? ( 1) 0 z ( 1) z ( 1) arg = arg(z 0) arg(z ( 1)), z ( 1) z ( 1) . Osoita geometrisesti, että jos = ja niin pätee Im +) = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän htälön? Kirjoitetaan +) = 0 ) ), ) 0 jossa, ja 0 vastaavat kolmion pisteitä kompleksitasossa.

Lisätiedot

Suorakulmainen kolmio

Suorakulmainen kolmio Suorakulmainen kolmio 1. Määritä terävä kulma α, β ja γ, kun sinα = 0,5782, cos β = 0,745 ja tanγ = 1,222. π 2. Määritä trigonometristen funktioiden sini, kosini ja tangentti, kun kulma α = ja 3 β = 73,2

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 10.3.2016 Susanna Hurme Statiikan välikoe 14.3.2016 Ajankohta ma 14.3.2016 klo 14:15 17:15 Salijako Aalto-Sali: A-Q (sukunimen alkukirjaimen mukaan) Ilmoittautuminen

Lisätiedot

STATIIKKA. TF00BN89 5op

STATIIKKA. TF00BN89 5op STATIIKKA TF00BN89 5op Sisältö: Statiikan peruslait Voiman resultantti ja jako komponentteihin Voiman momentti ja voimapari Partikkelin ja jäykän kappaleen tasapainoyhtälöt Tukivoimat Ristikot, palkit

Lisätiedot

2 LUJUUSOPIN PERUSKÄSITTEET 25 2.1 Suoran sauvan veto tai puristus 25. 2.2 Jännityksen ja venymän välinen yhteys 34

2 LUJUUSOPIN PERUSKÄSITTEET 25 2.1 Suoran sauvan veto tai puristus 25. 2.2 Jännityksen ja venymän välinen yhteys 34 SISÄLLYSLUETTELO Kirjallisuusluettelo 12 1 JOHDANTO 13 1.1 Lujuusopin sisältö ja tavoitteet 13 1.2 Lujuusopin jako 15 1.3 Mekaniikan mallin muodostaminen 16 1.4 Lujuusopillisen suunnitteluprosessin kulku

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 25.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Tämän päivän luento Aiemmin ollaan johdettu palkin voimatasapainoyhtälöt differentiaaligeometrisella tavalla

Lisätiedot

2 LUJUUSOPIN PERUSKÄSITTEET Suoran sauvan veto tai puristus Jännityksen ja venymän välinen yhteys

2 LUJUUSOPIN PERUSKÄSITTEET Suoran sauvan veto tai puristus Jännityksen ja venymän välinen yhteys SISÄLLYSLUETTELO Kirjallisuusluettelo 12 1 JOHDANTO 13 1.1 Lujuusopin sisältö ja tavoitteet 13 1.2 Lujuusopin jako 15 1.3 Mekaniikan mallin muodostaminen 16 1.4 Lujuusopillinen suunnittelu 18 1.5 Lujuusopin

Lisätiedot

RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.

RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu. RATKAISUT 198 197 198. Olkoon suorakulmion erisuuntaisten sivujen pituudet a ja b sekä neliön sivun pituus c. Tehtävä on mielekäs vain, jos suorakulmio ei ole neliö, joten oletetaan, että a b. Suorakulmion

Lisätiedot

PERUSASIOITA ALGEBRASTA

PERUSASIOITA ALGEBRASTA PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen

Lisätiedot

Ratkaisut 2. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa a) ja b) sekä laske c) kohdan tehtävä.

Ratkaisut 2. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa a) ja b) sekä laske c) kohdan tehtävä. Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit

Lisätiedot

H5 Malliratkaisut - Tehtävä 1

H5 Malliratkaisut - Tehtävä 1 H5 Malliratkaisut - Tehtävä Eelis Mielonen 30. syyskuuta 07 a) 3a (ax + b)3/ + C b) a cos(ax + b) + C a) Tässä tehtävässä päästään harjoittelemaan lukiosta tuttua integrointimenetelmää. Ensimmäisessä kohdassa

Lisätiedot

Mitoitetaan asuinkerrostalon parvekkeen alumiinikaide Lumon Oy:n parvekekaidejärjestelmällä

Mitoitetaan asuinkerrostalon parvekkeen alumiinikaide Lumon Oy:n parvekekaidejärjestelmällä 1/1 ITOITUSTEHTÄÄ ititetaan asuinkerrstaln parvekkeen alumiinikaide Lumn Oy:n parvekekaidejärjestelmällä ititus perustuu seuraaviin eurkdeihin: Yleinen sa: EN 1990 Eurkdi - Suunnittelun perusteet Kurmat:

Lisätiedot

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a)

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a) Pitkä matematiikka YO-koe 9..04. a) b) 7( x ) + = x ( x ) x(5 8 x) > 0 7x + = x x + 8x + 5x > 0 7x = 0 Nollakohdat: 0 8x + 5x = 0 x = 7 x(8x 5) = 0 5 5 x = 0 tai x = Vastaus: 0 < x < 8 8 c) a+ b) a b)

Lisätiedot

Automaatiojärjestelmät 18.3.2010 Timo Heikkinen

Automaatiojärjestelmät 18.3.2010 Timo Heikkinen Autmaatijärjestelmät 18.3.2010 Tim Heikkinen AUT8SN Malliratkaisu 1 Kerr muutamalla lauseella termin tarkittamasta asiasta! (2 p / khta, yhteensä 6 p) 1.1 Hajautus (mitä tarkittaa, edut, haitat) Hajautuksella

Lisätiedot

CHEM-A1410 Materiaalitieteen perusteet

CHEM-A1410 Materiaalitieteen perusteet CHEM-A1410 Materiaalitieteen perusteet Laskuharjoitus 18.9.2017, Materiaalien ominaisuudet Tämä harjoitus ei ole arvioitava, mutta tämän tyyppisiä tehtäviä saattaa olla tentissä. Tehtävät perustuvat kurssikirjaan.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 12 1 Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan

Lisätiedot

TAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat

TAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat TAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat Lasketaan suurimmat leikkaus- ja taivutusrasitukset Analysoidaan sauvoja, jotka ovat suoria,

Lisätiedot

Hilbertin aksioomat ja tarvittavat määritelmät Tiivistelmä Geometria-luentomonisteesta Heikki Pitkänen

Hilbertin aksioomat ja tarvittavat määritelmät Tiivistelmä Geometria-luentomonisteesta Heikki Pitkänen Hilbertin aksioomat ja tarvittavat määritelmät Tiivistelmä Geometria-luentomonisteesta Heikki Pitkänen 1. Hilbertin aksioomat 1-3 Oletetaan tunnetuiksi peruskäsitteet: piste, suora ja suora kulkee pisteen

Lisätiedot

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A) Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut

Lisätiedot

KTJkii-aineistoluovutuksen tietosisältö

KTJkii-aineistoluovutuksen tietosisältö KTJkii-aineistluvutuksen tietsisältö 2008-02-12 Versi 1.05 2009-02-10 Versi 1.06 2010-02-16 Versi 1.07 2011-02-14 Versi 1.08 2012-02-13 Versi 1.09 2013-02-25 Versi 1.10 2014-02-10 Versi 1.11 Yleistä Ominaisuustietjen

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden, sisältöjen ja isteitysten luonnehdinta

Lisätiedot

Q Q 3. [mm 2 ] 1 1 = L

Q Q 3. [mm 2 ] 1 1 = L EDE-00 Elementtimenetelmän perusteet. Harjoitus 5r Syksy 03. 400 mm 0 kn 600 mm A 400 mm B 8 kn 300 mm 5 kn 000 mm 8 kn 300 mm 300 mm 00 mm. Määritä pisteiden A ja B siirtymät elementtimenetelmällä, kun

Lisätiedot

Henkilöstöpalveluiden tiedote 5/2011

Henkilöstöpalveluiden tiedote 5/2011 Lutu 29.12.2011 13:26:00 29.12.2010 Henkilöstöpalveluiden tiedte 5/2011 KEVÄÄN REKRYTOINTIEN AIKATAULUT Kevään 2012 keskitetyt rekrytinnit tteutetaan seuraavan aikataulun mukaan: Tammikuussa täyttölupa-anmusten

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 12. Kurssikerta Petrus Mikkola 5.12.2016 Tämän kerran asiat Sini-ja kosifunktio Yksikköympyrä Tangentti- ja kotangenttifunktio Trigonometristen funktioiden ominaisuuksia

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ.0.08 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 1.3.2016 Susanna Hurme Päivän aihe: Jäykän kappaleen tasapaino ja vapaakappalekuva (Kirjan luvut 5.1-5.4) Osaamistavoitteet: 1. Ymmärtää, mitä tukireaktiot ovat

Lisätiedot

Tapa II: Piirretään voiman F vaikutussuora ja lasketaan momentti sen avulla. Kuva 3. d r. voiman F vaikutussuora

Tapa II: Piirretään voiman F vaikutussuora ja lasketaan momentti sen avulla. Kuva 3. d r. voiman F vaikutussuora VOIMAN MOMENTTI Takastellaan jäykkää kappaletta, joka pääsee kietymään akselin O ympäi. VOIMAN MOMENTTI on voiman kietovaikutusta kuvaava suue. Voiman momentti määitellään voiman F ja voiman vaen tulona:

Lisätiedot

HENKKARIKLUBI. Mepco HRM uudet ominaisuudet vinkkejä eri osa-alueisiin 1 (16) 28.5.2015. Lomakkeen kansiorakenne

HENKKARIKLUBI. Mepco HRM uudet ominaisuudet vinkkejä eri osa-alueisiin 1 (16) 28.5.2015. Lomakkeen kansiorakenne 1 (16) Mepc HRM uudet minaisuudet vinkkejä eri sa-alueisiin Khta: Kuvaus: Lmakkeen kansirakenne Lmakkeen kansirakenne Lmakkeet vidaan kategrisida tiettyyn lmakekategriaan. Tämä helpttaa käyttäjiä hakemaan

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / 4 Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa

Lisätiedot

Ratkaisuja, Tehtävät

Ratkaisuja, Tehtävät ja, Tehtävät 988-97 988 a) Osoita, että lausekkeiden x 2 + + x 4 + 2x 2 ja x 2 + - x 4 + 2x 2 arvot ovat toistensa käänteislukuja kaikilla x:n arvoilla. b) Auton jarrutusmatka on verrannollinen nopeuden

Lisätiedot

Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa

Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

Fluidi virtaa vaakasuoran pinnan yli. Pinnan lähelle muodostuvan rajakerroksen nopeusjakaumaa voidaan approksimoida funktiolla

Fluidi virtaa vaakasuoran pinnan yli. Pinnan lähelle muodostuvan rajakerroksen nopeusjakaumaa voidaan approksimoida funktiolla Tehtävä 1 Fluidi virtaa vaakasuoran pinnan yli. Pinnan lähelle muodostuvan rajakerroksen nopeusjakaumaa voidaan approksimoida funktiolla ( πy ) u(y) = U sin, kun 0 < y < δ. 2δ Tässä U on nopeus kaukana

Lisätiedot

Tietolan kansakoulun luokkapäiväkirjat. Ab Kirjastonhoidon päiväkirjat. Tietolan koulukirjaston hoidon päiväkirja

Tietolan kansakoulun luokkapäiväkirjat. Ab Kirjastonhoidon päiväkirjat. Tietolan koulukirjaston hoidon päiväkirja ARKISTOLUETTELO Kunta/Kuntainliitto Pääsarjan nimike Valkeakosken kaupunki A-E, G-H, M, U Arkistonmuodostaja/viranomainen Tietolan kansakoulu Hyllyn numero 91-93 Lukumäärä ja laatu Arkistotunnus Asiakirjakokonaisuuden

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1 / 18

Lisätiedot

Lukion matematiikkakilpailun alkukilpailu 2015

Lukion matematiikkakilpailun alkukilpailu 2015 Lukion matematiikkakilpailun alkukilpailu 015 Avoimen sarjan tehtävät ja niiden ratkaisuja 1. Olkoot a ja b peräkkäisiä kokonaislukuja, c = ab ja d = a + b + c. a) Osoita, että d on kokonaisluku. b) Mitä

Lisätiedot

KOSMOLOGISIA HAVAINTOJA

KOSMOLOGISIA HAVAINTOJA KOSMOLOGISIA HAVAINTOJA 1) Olbersin paradksi Miksi taivas n öisin musta? Js tähdet lisivat jakautuneet keskimäärin tasaisesti äärettömään ja muuttumattmaan avaruuteen, tulisi taivaan listaa yhtä kirkkaana

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

DNA OY:N LAUSUNTO KUSTANNUSSUUNTAUTUNEEN HINNAN MÄÄRITTELYYN SOVELLETTAVASTA MENETELMÄSTÄ SUOMEN TELEVISIOLÄHETYSPALVELUIDEN MARKKINALLA

DNA OY:N LAUSUNTO KUSTANNUSSUUNTAUTUNEEN HINNAN MÄÄRITTELYYN SOVELLETTAVASTA MENETELMÄSTÄ SUOMEN TELEVISIOLÄHETYSPALVELUIDEN MARKKINALLA 1 (6) Vivi 1110/230/2013 DNA OY:N LAUSUNTO KUSTANNUSSUUNTAUTUNEEN HINNAN MÄÄRITTELYYN SOVELLETTAVASTA MENETELMÄSTÄ SUOMEN TELEVISIOLÄHETYSPALVELUIDEN MARKKINALLA [Liikesalaisuudet merkitty hakasulkein]

Lisätiedot

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1)

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1) Kertaus K1. a) OA i k b) B = (, 0, 5) K. K. a) AB (6 ( )) i () ( ( 7)) k 8i 4k AB 8 ( 1) 4 64116 819 b) 1 1 AB( ( 1)) i 1 i 4 AB ( ) ( 4) 416 0 45 5 K4. a) AB AO OB OA OB ( i ) i i i 5i b) Pisteen A paikkavektori

Lisätiedot

Harjoitukset (KOMPRIMOINTI)

Harjoitukset (KOMPRIMOINTI) Kmrmntharjtuksa (7) Harjtukset (KOMPRIMOINI) Kmressreja käytetään esmerkks seuraavssa svelluksssa: kaasujen srt, neumaattnen kuljetus anelmahult rsesstellsuudessa kaasureaktden, kaasujen nesteyttämsen

Lisätiedot