LIITE 1 VIRHEEN ARVIOINNISTA

Koko: px
Aloita esitys sivulta:

Download "LIITE 1 VIRHEEN ARVIOINNISTA"

Transkriptio

1 Oulun yliopisto Fysiikan opetuslaboratorio Fysikaalisen kemian laboratorioharjoitukset I 1 Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen on tapana yleensä arvioida jollain tavoin myös mittaustuloksen tarkkuutta Itse asiassa pelkkä tulos ilman mitään tietoa tarkkuudesta on harvoin käyttökelpoinen Siksi on tärkeää, että opit jo tämän kurssin ensimmäisessä laboratoriotyössä esittämään jonkinlaisen arvion tulostesi tarkkuudesta Jos varsinaista virheen arviointia ei kaikissa töissä vaaditakaan, joka kerta on hyvä kuitenkin pohtia tulosten tarkkuutta Seuraavassa tarkastellaan virheen arviointia lähinnä tämän kurssin ensimmäisen työn kannalta Laajempaa näkemystä saadaksesi voit tutustua esimerkiksi kurssin P Fysiikan laboratoriotyöt 1 luentoihin, jotka löytyvät osoitteesta ja siellä esitettyihin virheen arviointia koskeviin tietoihin Erityisesti luentomateriaalin sivut 1-8 ovat hyödyllisiä tässä yhteydessä Virheen arvioinnilla on kaksi päämäärää Sen avulla voidaan 1) Selvittää, mitkä tekijät vaikuttavat eniten mittaustulosten luotettavuuteen Kuvitellaanpa tilannetta, jossa joutuisit rutiininomaisesti määrittämään erilaisten metallikappaleiden tiheyksiä punnitsemalla ja pituusmittauksin Ajatellaan, että olisit valinnut massan määritykseen käyttöösi orsivaa an Tällöin huomaisit melko varmasti tiheyden virhettä arvioidessasi, että kappaleen massan virhe tuottaa myös lopputulokseen huomattavan suuren virheen Nyt voisit korjata mittausmenetelmääsi ottamalla käyttöön näissä mittauksissa käytettävän tarkemman vaa an ) Saada arvio mittaustulosten tarkkuudesta Fysiikan töissäkin saattaa joskus esiintyä tilanteita, joissa havaitaan virheen olevan niin suuri, että kyseisen suureen mittaustapa on kokonaan muutettava Tätä varten on hyvä jokaisessa työssä tarkastella myös virhettä jollakin tavalla ja esittää myös omia pohdintoja virheen suuruudesta Työn ohjaaja saa tätä kautta arvokasta tietoa ja voi tarvittaessa jopa muuttaa mittausmenetelmää Virheen arvioinnissa esiintyy kaksi erilaista tasoa, joilla käytettävää arviointimenetelmää on joka kerran mietittävä erikseen Taso 1: Välittömästi mitattavissa olevan suureen virheen arviointi Tämä tehdään joko arvioimalla suureen virhe suoraan mittalaitteen tarkkuuden perusteella tai mittaamalla suure useampaan kertaan, jolloin virherajana voidaan käyttää esimerkiksi suurinta poikkeamaa havaintoarvojen keskiarvosta Jos mitattava suure saadaan selville tekemällä vain yksi mittaus, arvioidaan mitatun suureen absoluuttisen virheen yläraja suoraan mittalaitteen lukematarkkuuden perusteella Esimerkiksi, jos mittaisit työohjeen kuvan 14 tilanteen mukaisesti metallisylinterin korkeuden mikrometriruuvilla vain kerran ja käytössäsi olisi kuvassa

2 esitetty mikrometriruuvi, olisi mittaustuloksen absoluuttisen virheen yläraja joko mitan lukematarkkuus 0,01 mm tai sen puolikas 0,005 mm Jos olet epävarma, kumpaa näistä kahdesta vaihtoehdosta tulisi käyttää, käytä aina suurempaa Virheen arvioinnissahan ajattelemme aina huonointa mahdollista tilannetta ja määritämme siksi suurimman mahdollisen virheen Näin tässä tilanteessa metallisylinterin korkeudeksi saataisiin (15,9 ± 0,01) mm Tässä työssä punnitset kappaleen vain kerran, jolloin massan absoluuttisen virheen yläraja saadaan selville vaa an lukematarkkuudesta Jos on mahdollista, mitattavasta suureesta pyritään aina tekemään useampia kuin yksi mittaus Tällöin lopullinen mittaustulos on näiden havaintoarvojen keskiarvo Keskiarvon virheenä voidaan tilanteesta riippuen käyttää keskihajontaa, keskiarvon keskivirhettä tai suurinta poikkeamaa keskiarvosta Tässä työssä mittaat metallisylinterin halkaisijat ja korkeuden kymmenen kertaa ja lasket keskiarvon näistä kymmenestä havainnosta Sen jälkeen lasket virheen arviointia varten suurimmat poikkeamat halkaisijoiden ja korkeuden keskiarvoista Usein tämä havaintoarvojen satunnainen virhe on kuitenkin niin pieni, että se jää mittalaitteen lukematarkkuuden rajoihin Siksi on muistettava tarkastaa, kumpi on suurempi laitteen lukematarkkuus vai suurin poikkeama keskiarvosta ja käyttää virherajana näistä suurempaa Taso : Suure ei ole välittömästi mitattavissa, vaan se on kahden tai useamman mitattavissa olevan suureen unktio Tällöin suureen absoluuttisen tai suhteellisen virheen yläraja saadaan selville sopivaa kokonaisdierentiaalimenetelmää soveltaen Tähän tapaukseen tutustumme jatkossa muutamien esimerkkien avulla Seuraavassa käytämme merkintöjä: on laskettava suure, joka riippuu mitattavista toisistaan riippumattomista suureista x, z,kyhtälön = ( x, z, K) mukaisesti, on suureen absoluuttinen virhe, on suureen suhteellinen virhe, joka tavallisesti ilmoitetaan prosentteina,, D Dz,Kovat mitattujen suureiden x, z, K absoluuttiset virheet, jotka on saatu selville esimerkiksi mittojen lukematarkkuuksista tai suurimpina poikkeamina keskiarvoista, x, Dy Dz z,kovat mitattujen suureiden suhteelliset virheet, jotka on saatu selville jakamalla em suureen absoluuttinen virhe suureen havaintoarvolla, a, b, c,k ovat vakioita, jotka voidaan tässä tarkastelussa olettaa virheettömiksi

3 Oulun yliopisto Fysiikan opetuslaboratorio Fysikaalisen kemian laboratorioharjoitukset I 1 Suureen absoluuttisen virheen arviointi kokonaisdierentiaalimenetelmän avulla Suureen = ( x, z, K) absoluuttisen virheen ylärajan määrittäminen perustuu unktion kokonaisdierentiaalin d laskemiseen Kokonaisdierentiaali d tarkoittaa suuretta d = dx + dy + dz +K (L11) x y z Virheen arvioinnissa on tärkeää kokonaisdierentiaalin sovellutuksena saatava tulos, jonka mukaan suureen absoluuttisen virheen D suurin mahdollinen arvo saadaan yhtälöstä +K (L1) x y z Kannattaa huomata, että yhtälössä (L1) tarkastelemme pahinta mahdollista tilannetta Ottamalla yhteenlaskussa käyttöön itseisarvot ajattelemme, että kaikki virheet vaikuttavat samaan suuntaan Tällä menetelmällä saamme siis selville suureen absoluuttisen virheen ylärajan Esimerkki 11 Tarkastellaan suuretta absoluuttisen virheen = bx - cy + az Määritä suureen yläraja sekä sen avulla suhteellisen virheen D yläraja Ratkaisu: Jotta päästäisiin soveltamaan yhtälöä (L1), on laskettava unktion ( x, z) osittaisderivaatat muuttujien x, y ja z suhteen eli suureet w, w = x, y tai z Nämä lasketaan aivan kuten tavalliset derivaatat, paitsi että derivoitaessa tietyn muuttujan (esim oletetaan vakioiksi Osittaisderivaatoiksi saadaan x : n ) suhteen muut muuttujat (esim y ja z ) x = bx ; = -cy; = a, y z jolloin yhtälöstä (L1) saadaan absoluuttisen virheen ylärajaksi bx + - cydy + adz = bx + cydy Suhteellisen virheen ylärajaksi saamme + adz

4 4 bx bx - cy + az + bx cydy - cy + az + bx adz - cy + az Suureen suhteellisen virheen ylärajan määrittäminen logaritmisen kokonaisdierentiaalin avulla Usein on helpompaa laskea ensin suureen suhteellisen virheen D yläraja käyttäen logaritmista kokonaisdierentiaalia ja laskea sitten tämän avulla absoluuttisen virheen yläraja Tämä menetelmä soveltuu käytettäväksi erityisesti silloin, kun määritettävä suure riippuu mitattavista suureista siten, että sen yhtälössä esiintyy vain tuloja ja/tai osamääriä Tässä menetelmässä lasketaan ensin suureen luonnollinen logaritmi ln ja muodostetaan tämän kokonaisdierentiaali Yhtälöä (L11) käyttäen saamme (ln ) d(ln ) = dx + dy + dz +K (L1) x y z Koska tiedämme, että d (ln ) = d, saamme suhteellisen virheen ylärajaksi (ln ) x y z +K (L14) Esimerkki 1 Määritä unktion = axy (bz) suhteellisen virheen D yläraja ja laske sen avulla absoluuttisen virheen yläraja Ratkaisu: Muodostetaan ensin unktion luonnollisen logaritmin lauseke æ axy ö ln = lnç = ln a + ln x + ln y - ln b - ln z è bz ø ja lasketaan sitten yhtälössä (L14) esiintyvät osittaisderivaatat ( ln ) 1 ( ln ) 1 ( ln ) 1 = ; = ; = - x x y y z z Yhtälön (L14) perusteella saadaan suhteellisen virheen ylärajaksi D (ln ) x y z Dy - Dz Dy Dz = + + = + + x y z x y z

5 Oulun yliopisto Fysiikan opetuslaboratorio Fysikaalisen kemian laboratorioharjoitukset I 5 Absoluuttisen virheen ylärajaksi saadaan siten = ay bz æ Dy Dz ö = ç + + x y z è ø ax axy bz bz axy bz Lopputulosten ilmoittaminen Laboratoriotöissä mittaustulokset kootaan työselostuksessa tavallisesti kohtaan Lopputulokset Siellä tulokset ilmoitetaan yleensä virherajoineen Lisäksi selostukseen kirjoitetaan mittaustulosten käsittelyä esitettäessä asian selkeyttämiseksi ja lukijan helpottamiseksi näkyviin mallisijoituksia ja erilaisia välituloksia Välituloksia ja lopputulosten laskemista ja ilmoittamista koskevat seuraavat säännöt: 1) Tee kaikki pyöristykset vasta lopputuloksiin Nykyisin mittaustulosten käsittelyssä tarvittavat laskut tehdään lähes poikkeuksetta joko laskimella tai tietokoneella, jolloin laskut voidaan helposti tehdä niin hyvällä tarkkuudella, että se ei aiheuta virhettä lopputuloksiin On vain muistettava käyttää lopputuloksen laskemisessa aina välitulosten pyöristämättömiä arvoja Tämä tilanne tulee esille jo tässä työssä, jossa varsinainen lopputulos on metallin tiheys Muista käyttää tiheyttä laskiessasi tilavuuden pyöristämätöntä arvoa ) Kirjoittaessasi välituloksia näkyviin selostukseen käytä tavanomaisia pyöristyssääntöjä eli a) Ota yhteen- ja vähennyslaskuissa välitulokseen mukaan niin monta desimaalia kuin on epätarkimmassa havaintoarvossa b) Ota kerto- ja jakolaskuissa välitulokseen mukaan niin monta merkitsevää numeroa kuin on epätarkimmassa havaintoarvossa ) Ilmoittaessasi lopputuloksen ja sen absoluuttisen virheen muodossa ± muuta ensin lopputulos ja virhe samanmuotoisiksi Jos toinen on esitetty kymmenen potenssin tai etuliitteen avulla ja toinen esimerkiksi desimaalilukuna tai erilaisen etuliitteen avulla, mieti kumpi esitystapa sopii tähän tilanteeseen paremmin ja ilmoita kummatkin samalla tavoin Ilmoita aina lopputulos ja virhe käyttäen samaa desimaalista tarkkuutta Esimerkki 1 Punnittaessa kappale sen massaksi saatiin m = 7,5 g ja massan virherajaksi määritettiin Dm = 0 mg Tässä tilanteessa massan yksikkönä voidaan hyvin käyttää grammaa (g), joten ilmoitetaan virhe muodossa Dm = 0,00 g Lopputulos voitaisiin siten ilmoittaa muodossa m = (7,5 ± 0,00) g Tämän

6 6 lisäksi olisi vielä tutkittava, toteutuuko seuraavassa käsiteltävä ns 15 yksikön sääntö 4) Kun olet saanut lopputuloksen ja virheen ilmoitetuksi samalla desimaalisella tarkkuudella, käytä 15 yksikön sääntöä määrittäessäsi, kuinka monta numeroa otat mukaan lopputulokseen ja virheeseen 15 yksikön säännön mukaan lopputulokseen otetaan mukaan kaikki ne numerot, joiden epätarkkuus on pienempi kuin 15 yksikköä Muista, että virhe pyöristetään aina ylöspäin ja lopputulos aivan tavallisten pyöristyssääntöjen mukaan 15 yksikön säännön mukaan virhe voi siis olla enintään 0,015, 0,15, 1,5 jne Heti, jos virheeksi saadaan esimerkiksi 0,16 täytyy sekä lopputuloksesta että virheestä pudottaa yksi numero pois, jolloin virhe tulisi olemaan 0, Tarkastele suhteelliseen virheeseen mukaan otettavien numeroiden määrä aina erikseen saman 15 yksikön säännön mukaan Myös suhteellisen virheen tapauksessa on muistettava, että se voi olla enintään 0,15 %, 1,5 %, 15 % jne Jos suhteelliseksi virheeksi saadaan esimerkiksi 1,6 %, se pyöristyy muotoon % Esimerkki 14 Eräässä laboratoriotyössä määritettiin kappaleen tilavuus V, jolle saatiin tulos V =18,476cm Tilavuuden absoluuttiseksi virheeksi saatiin DV =11,47 mm Ilmoita mittaustulos oikein virherajoineen Ratkaisu: Tilavuuden ilmoittamisessa käytetyt yksiköt ovat tässä parhaat, joten muutetaan ensin myös absoluuttinen virhe cm :ksi ja käytetään virheessä samaa desimaalista tarkkuutta kuin lopputuloksessa Tällöin saadaan Alustavaksi tulokseksi saadaan näin V = ( 18,476± 0,115) cm DV = 0,115cm Määritetään vielä oikea ilmoitustapa 15 yksikön säännön avulla Edellä annetussa tuloksessa viimeisessä mukana olevassa lopputuloksen numerossa 6 olisi virhettä peräti 115 yksikköä Jos pudotamme yhden numeron pois sekä tuloksesta että virheestä, saamme V = ( 18,47± 0,1) cm Tästäkin täytyy vielä pudottaa numeroita pois, koska viimeisessä tuloksen numerossa on edelleen 1 yksikköä virhettä Seuraava ehdotuksemme V = ( 18,47 ± 0,1) cm toteuttaa 15 yksikön säännön Suhteelliseksi virheeksi saadaan tässä DV V = ( 0,115 18,476) 100% = 0,6578% 15 yksikön säännön mukaan lopputulos ja suhteellinen virhe tulee ilmoittaa muodossa V =18,47 cm ± 0,7 % Kappaleen tilavuus olisi siis tämän mittauksen perusteella V = (18,47± 0,1) cm = 18,47 cm ± 0,7 %

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1 LIITE 1 VIRHEEN RVIOINNIST Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 LIITE 1 VIRHEEN ARVIOINNISTA Mihin tarvitset virheen arviointia? Mittaustulokset ovat aina todellisten luonnonvakioiden ja tutkimuskohdetta kuvaavien suureiden likiarvoja, vaikka mittauslaite olisi miten

Lisätiedot

PERUSMITTAUKSIA. 1 Työn tavoitteet

PERUSMITTAUKSIA. 1 Työn tavoitteet Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1 PERUSMITTAUKSIA 1 Työn tavoitteet Tässä työssä määrität tutkittavaksesi annetun metallikappaleen tiheyden laskemalla sen suoraan

Lisätiedot

0.3 LOPPUTULOKSEN ESITTÄMISTARKKUUS

0.3 LOPPUTULOKSEN ESITTÄMISTARKKUUS 18 0. LOPPUTULOKSEN ESITTÄMISTARKKUUS Fysikaalisen mittauksen ja virheenarvioinnin seurauksena määritettävän suureen arvolle saadaan likiarvo ja virhe (epätarkkuus). Lopputulokseen ei ole tarpeen sisällyttää

Lisätiedot

PERUSMITTAUKSIA. 1. Työn tavoitteet. 1.1 Mittausten tarkoitus

PERUSMITTAUKSIA. 1. Työn tavoitteet. 1.1 Mittausten tarkoitus Oulun yliopisto Fysiikan opetuslaboratorio 1 PERUSMITTAUKSIA 1. Työn tavoitteet 1.1 Mittausten tarkoitus Tässä työssä määrität tutkittavaksesi annetun metallikappaleen tiheyden laskemalla sen suoraan tiheyden

Lisätiedot

PERUSMITTAUKSIA. 1. Työn tavoitteet. 1.1 Mittausten tarkoitus

PERUSMITTAUKSIA. 1. Työn tavoitteet. 1.1 Mittausten tarkoitus 1 PERUSMITTAUKSIA 1. Työn tavoitteet 1.1 Mittausten tarkoitus Tässä työssä määrität tutkittavaksesi annetun metallikappaleen tiheyden laskemalla sen suoraan tiheyden määritelmästä eli kappaleen massan

Lisätiedot

Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus.

Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhearviointi Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhelajit A. Tilastolliset virheet= satunnaisvirheet, joita voi arvioida tilastollisin menetelmin B. Systemaattiset virheet = virheet, joita

Lisätiedot

761121P-01 FYSIIKAN LABORATORIOTYÖT 1. Oulun yliopisto Fysiikan tutkinto-ohjelma Kevät 2016

761121P-01 FYSIIKAN LABORATORIOTYÖT 1. Oulun yliopisto Fysiikan tutkinto-ohjelma Kevät 2016 1 76111P-01 FYSIIKAN LABORATORIOTYÖT 1 Oulun yliopisto Fysiikan tutkinto-ohjelma Kevät 016 JOHDANTO Fysiikassa pyritään löytämään luonnosta lainalaisuuksia, joita voidaan mitata kokeellisesti ja kuvata

Lisätiedot

OHJEITA TYÖSELOSTUKSEN LAATIMISEEN

OHJEITA TYÖSELOSTUKSEN LAATIMISEEN OHJEITA TYÖSELOSTUKSEN LAATIMISEEN Raportointi kuuluu tärkeänä osana jokaisen fyysikon työhön riippumatta siitä työskenteleekö hän tutkijana yliopistossa, opettajana koulussa vai teollisuuden palveluksessa.

Lisätiedot

Differentiaali- ja integraalilaskenta

Differentiaali- ja integraalilaskenta Differentiaali- ja integraalilaskenta Opiskelijan nimi: DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona

Lisätiedot

Mittaustarkkuus ja likiarvolaskennan säännöt

Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustulokset ovat aina likiarvoja, joilla on tietty tarkkuus Kokeellisissa luonnontieteissä käsitellään usein mittaustuloksia. Mittaustulokset ovat aina

Lisätiedot

Virheen arviointia

Virheen arviointia 16.4.014 Vireen arviointia NUMEERISIA JA ALGEBRAL- LISIA MENETELMIÄ, MAA1 Virettä, tai oikeammin vireen suuruutta, voidaan arvioida seuraavilla tavoilla: 1. Maksimi-minimikeino (-menettely), nopea ja yksinkertainen,

Lisätiedot

Differentiaalilaskennan tehtäviä

Differentiaalilaskennan tehtäviä Differentiaalilaskennan tehtäviä DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona 2. Derivoimiskaavat 2.1

Lisätiedot

Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä

Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä Tekijä: Mikko Laine Tekijän sähköpostiosoite: miklaine@student.oulu.fi Koulutusohjelma: Fysiikka Mittausten suorituspäivä: 04.02.2013 Työn

Lisätiedot

Muutoksen arviointi differentiaalin avulla

Muutoksen arviointi differentiaalin avulla Muutoksen arviointi differentiaalin avulla y y = f (x) y = f (x + x) f (x) dy y dy = f (x) x x x x x + x Luento 7 1 of 15 Matematiikan ja tilastotieteen laitos Turun yliopisto Muutoksen arviointi differentiaalin

Lisätiedot

Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014

Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014 Mittaustuloksen esittäminen Virhetarkastelua Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014 SI järjestelmä Kansainvälinen mittayksikköjärjestelmä Perussuureet ja perusyksiköt Suure Tunnus Yksikkö

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta

Lisätiedot

Mittaustekniikka (3 op)

Mittaustekniikka (3 op) 530143 (3 op) Yleistä Luennoitsija: Ilkka Lassila Ilkka.lassila@helsinki.fi, huone C319 Assistentti: Ville Kananen Ville.kananen@helsinki.fi Luennot: ti 9-10, pe 12-14 sali E207 30.10.-14.12.2006 (21 tuntia)

Lisätiedot

Fysiikan laboratoriotyöt 3 Sähkömotorinen voima

Fysiikan laboratoriotyöt 3 Sähkömotorinen voima Fysiikan laboratoriotyöt 3 Sähkömotorinen voima Työn suorittaja: Antti Pekkala (1988723) Mittaukset suoritettu 8.10.2014 Selostus palautettu 16.10.2014 Valvonut assistentti Martti Kiviharju 1 Annettu tehtävä

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko).

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko). TYÖ 5b LIUKUKITKAKERTOIMEN MÄÄRITTÄMINEN Tehtävä Välineet Taustatietoja On määritettävä puupalikan ja lattian välinen liukukitkakerroin Sekuntikello, metrimitta ja puupalikka (tai jääkiekko) Kitkavoima

Lisätiedot

n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa.

n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. MAA 12 kertaus Funktion kuvaaja n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. Funktion nollakohta on piste, jossa f () = 0, eli kuvaaja leikkaa -akselin. Kuvaajan avulla

Lisätiedot

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1. Työn tavoitteet Tämän työn ensimmäisessä osassa tutkit kuulan, sylinterin ja sylinterirenkaan vierimistä pitkin kaltevaa tasoa.

Lisätiedot

Tee kokeen yläreunaan pisteytysruudukko. Valitse kuusi tehtävää seuraavista kahdeksasta. Perustele vastauksesi!

Tee kokeen yläreunaan pisteytysruudukko. Valitse kuusi tehtävää seuraavista kahdeksasta. Perustele vastauksesi! MAA Loppukoe 70 Jussi Tyni Tee pisteytysruudukko konseptin yläreunaan! Vastauksiin välivaiheet, jotka perustelevat vastauksesi! Lue ohjeet huolellisesti! Tee kokeen yläreunaan pisteytysruudukko Valitse

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x

Lisätiedot

Fysiikan perusteet. SI-järjestelmä. Antti Haarto 21.05.2012. www.turkuamk.fi

Fysiikan perusteet. SI-järjestelmä. Antti Haarto 21.05.2012. www.turkuamk.fi Fysiikan perusteet SI-järjestelmä Antti Haarto 21.05.2012 Fysiikka ja muut luonnontieteet Ihminen on aina pyrkinyt selittämään havaitsemansa ilmiöt Kreikkalaiset filosofit pyrkivät selvittämään ilmiöt

Lisätiedot

FYSIIKAN LABORAATIOTYÖ 4 LÄMMÖNJOHTAVUUDEN, LÄMMÖNLÄPÄISYKERTOI- MEN JA LÄMMÖNSIIRTYMISKERTOIMEN MÄÄRITYS

FYSIIKAN LABORAATIOTYÖ 4 LÄMMÖNJOHTAVUUDEN, LÄMMÖNLÄPÄISYKERTOI- MEN JA LÄMMÖNSIIRTYMISKERTOIMEN MÄÄRITYS FYSIIKAN LABORAATIOTYÖ 4 LÄMMÖNJOHTAVUUDEN, LÄMMÖNLÄPÄISYKERTOI- MEN JA LÄMMÖNSIIRTYMISKERTOIMEN MÄÄRITYS Työselostuksen laatija: Tommi Tauriainen Luokka: TTE7SNC Ohjaaja: Ari Korhonen Työn tekopvm: 28.03.2008

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013 MATEMATIIKKA Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013 PROSENTTILASKENTA Prosentti on 1/100 tai 0,01. Esimerkki 40. Lukuarvo % 0,42 42 0,013 1,3 1,002 100,2 1/25 100/25=4 23/45 51,1

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

Schildtin lukio

Schildtin lukio MAA1.9.15 Scildtin lukio LIKIARVO MUISTA: tavallisesti matematiikassa pyritään aina tarkkoiin arvoiin! Kuitenkin esim. mittaustulokset ovat aina likiarvoja. o Luvun katkaiseminen: näin tekevät mm. jotkut

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Mittalaitteiden staattiset ominaisuudet Mittalaitteita kuvaavat tunnusluvut voidaan jakaa kahteen luokkaan Staattisiin

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin

Lisätiedot

1 Komparatiivinen statiikka ja implisiittifunktiolause

1 Komparatiivinen statiikka ja implisiittifunktiolause Taloustieteen matemaattiset menetelmät 27 materiaali 4 Komparatiivinen statiikka ja implisiittifunktiolause. Johdanto Jo opiskeltu antaa nyt valmiu tutkia taloudellisia malleja Kiinnostava malli voi olla

Lisätiedot

Harjoitustehtävien ratkaisut

Harjoitustehtävien ratkaisut Johdatus numeerisiin menetelmiin Harjoitustehtäviä. Esitä luvun 7 8 a) tarkka arvo desimaalilukuna b) kolmidesimaalinen likiarvo c) nolladesimaalinen likiarvo d) Likiarvo kahden merkitsevän numeron tarkkuudella

Lisätiedot

Yhdistetty funktio. Älä sekoita arvo- eli kuvajoukkoa maalijoukkoon! (wikipedian ongelma!)

Yhdistetty funktio. Älä sekoita arvo- eli kuvajoukkoa maalijoukkoon! (wikipedian ongelma!) Yhdistetty unktio TRIGONOMETRISET FUNKTIOT, MAA7 Määritelmä, yhdistetty unktio: Funktioiden ja g yhdistetty unktio g (luetaan g pallo ) määritellään yhtälöllä g g. Funktio g on ns. ulkounktio ja sisäunktio.

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu

Lisätiedot

5. Numeerisesta derivoinnista

5. Numeerisesta derivoinnista Funktion derivaatta ilmaisee riippumattoman muuttujan muutosnopeuden riippuvan muuttujan suteen. Esimerkiksi paikan derivaatta ajan suteen (paikan ensimmäinen aikaderivaatta) on nopeus, joka ilmaistaan

Lisätiedot

Torsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473

Torsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473 Torsioheiluri IIT3S Selostuksen laatija: Eerik Kuoppala Ryhmä B3: Eerik Kuoppala G904 Petteri Viitanen G8473 Mittauspäivämäärä:..4 Selostuksen jättöpäivä: 4.3.4 Torsioheilurin mitatuilla neljän jakson

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =

3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) = BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 6, Syksy 2016 1. (a) Olkoon z = z(x,y) = yx 1/2 + y 1/2. Muodosta z:lle lineaarinen approksimaatio L(x,y) siten että approksimaation ja z:n arvot

Lisätiedot

6 Numeroiden esittäminen

6 Numeroiden esittäminen 6 Numeroiden esittäminen Mittaustuloksen pyöristyssäännöt: poisjäävä < 5 viimeinen ei muutu 6,432 6,43 poisjäävä > 5 viimeinen +1 6,438 6,44 poisjäävä 5 + muita viimeinen +1 6,4351 6,44 poisjäävä = 5 lähimpään

Lisätiedot

PHYS-A1110 Laboratoriotyöosuus. Vastaava opettaja Jani Sainio puh: 050-5756914 jani.sainio@aalto.fi huone 138 (OK 4A)

PHYS-A1110 Laboratoriotyöosuus. Vastaava opettaja Jani Sainio puh: 050-5756914 jani.sainio@aalto.fi huone 138 (OK 4A) PHYS-A1110 Laboratoriotyöosuus Vastaava opettaja Jani Sainio puh: 050-5756914 jani.sainio@aalto.fi huone 138 (OK 4A) Kurssin järjestelyt Miksi? Fysiikka on havaintoja ja niiden selittämistä / ennustamista

Lisätiedot

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018 BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018 Tehtävä 8 on tällä kertaa pakollinen. Aloittakaapa siitä. 1. Kun tässä tehtävässä sanotaan sopii mahdollisimman hyvin, sillä tarkoitetaan

Lisätiedot

Johdantoa. Jokaisen matemaatikon olisi syytä osata edes alkeet jostakin perusohjelmistosta, Java MAPLE. Pascal MathCad

Johdantoa. Jokaisen matemaatikon olisi syytä osata edes alkeet jostakin perusohjelmistosta, Java MAPLE. Pascal MathCad Johdantoa ALGORITMIT MATEMA- TIIKASSA, MAA Vanhan vitsin mukaan matemaatikko tietää, kuinka matemaattinen ongelma ratkaistaan, mutta ei osaa tehdä niin. Vitsi on ajalta, jolloin käytännön laskut eli ongelman

Lisätiedot

Matematiikan peruskurssi (MATY020) Harjoitus 10 to

Matematiikan peruskurssi (MATY020) Harjoitus 10 to Matematiikan peruskurssi (MATY00) Harjoitus 10 to 6.3.009 1. Määrää funktion f(x, y) = x 3 y (x + 1) kaikki ensimmäisen ja toisen kertaluvun osittaisderivaatat. Ratkaisu. Koska f(x, y) = x 3 y x x 1, niin

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1 infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.

Lisätiedot

Betonimatematiikkaa

Betonimatematiikkaa Betonimatematiikkaa.11.017 Kiviaineksen seulontatulokset ja läpäisyarvo Laske seuraavan seulontatuloksen rakeisuusluku ja piirrä rakeisuuskäyrä Seula # mm Seulalle jäänyt Läpäisyarvo g % % Pohja 60 9,0-0,15

Lisätiedot

Mittausepävarmuuden laskeminen

Mittausepävarmuuden laskeminen Mittausepävarmuuden laskeminen Mittausepävarmuuden laskemisesta on useita standardeja ja suosituksia Yleisimmin hyväksytty on International Organization for Standardization (ISO): Guide to the epression

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa.

1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. 1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. Vuodessa Maahan satava massa on 3.7 10 7 kg. Maan massoina tämä on

Lisätiedot

Ene LVI-tekniikan mittaukset ILMASTOINTIKONEEN MITTAUKSET TYÖOHJE

Ene LVI-tekniikan mittaukset ILMASTOINTIKONEEN MITTAUKSET TYÖOHJE Ene-58.4139 LVI-tekniikan mittaukset ILMASTOINTIKONEEN MITTAUKSET TYÖOHJE Aalto yliopisto LVI-tekniikka 2013 SISÄLLYSLUETTELO ILMASTOINTIKONEEN MITTAUKSET...2 1 HARJOITUSTYÖN TAVOITTEET...2 2 TUTUSTUMINEN

Lisätiedot

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A) Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / MS-A3x Differentiaali- ja integraalilaskenta 3, IV/6 Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / 9..-.3. Avaruusintegraalit ja muuttujanvaihdot Tehtävä 3: Laske sopivalla muunnoksella

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 6.3.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Opetusmateriaali. Tutkimustehtävien tekeminen

Opetusmateriaali. Tutkimustehtävien tekeminen Opetusmateriaali Tämän opetusmateriaalin tarkoituksena on opettaa kiihtyvyyttä mallintamisen avulla. Toisena tarkoituksena on hyödyntää pikkuautoa ja lego-ukkoa fysiikkaan liittyvän ahdistuksen vähentämiseksi.

Lisätiedot

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys 0. perusmääritelmiä Lukutyypit Laskusäännöt Laskujärjestys Luonnolliset luvut (N): 1, 2, 3, 4 Kokonaisluvut (Z):... 4, 3, 2, 1, 0, 1, 2, 3, 4... RaConaaliluvut (Q): kaikki luvut, jotka voidaan esieää kahden

Lisätiedot

4. laskuharjoituskierros, vko 7, ratkaisut

4. laskuharjoituskierros, vko 7, ratkaisut 4. laskuharjoituskierros, vko 7, ratkaisut D1. Kone valmistaa kuulalaakerin kuulia, joiden halkaisija vaihtelee satunnaisesti. Halkaisijan on oltava tiettyjen rajojen sisällä, jotta kuula olisi käyttökelpoinen.

Lisätiedot

KAASULÄMPÖMITTARI. 1. Työn tavoitteet. 2. Työn taustaa

KAASULÄMPÖMITTARI. 1. Työn tavoitteet. 2. Työn taustaa Oulun ylioisto Fysiikan oetuslaboratorio Fysiikan laboratoriotyöt 3 1 AASULÄMPÖMIARI 1. yön tavoitteet ässä työssä tutustutaan kaasulämömittariin, jonka avulla lämötiloja voidaan määrittää tarkasti. aasulämömittarin

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Sarjakehitelmiä Palautetaan mieliin, että potenssisarja on sarja joka on muotoa a n (x x 0 ) n = a 0 + a 1 (x x 0 ) + a 2 (x x 0 ) 2 + a 3 (x x 0 ) 3 +. n=0 Kyseinen

Lisätiedot

Liukulukulaskenta. Pekka Hotokka

Liukulukulaskenta. Pekka Hotokka Liukulukulaskenta Pekka Hotokka pejuhoto@cc.jyu.fi 10.11.2004 Tiivistelmä Liukulukuja tarvitaan, kun joudutaan esittämään reaalilukuja tietokoneella. Niiden esittämistavasta johtuen syntyy laskennassa

Lisätiedot

Työn tavoitteita. Yleistä. opetella suunnittelemaan itsenäisesti mittaus kurssin teoriatietojen pohjalta

Työn tavoitteita. Yleistä. opetella suunnittelemaan itsenäisesti mittaus kurssin teoriatietojen pohjalta FYSP102 / 1 VIERIMINEN Työn tavoitteita opetella suunnittelemaan itsenäisesti mittaus kurssin teoriatietojen pohjalta harjoitella mittauspöytäkirjan itsenäistä tekemistä sekä työselostuksen laatimista

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet

Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet ifferentiaali- ja integraalilaskenta 2 (CHEM) MS-A27 Hakula/Vuojamo Kurssitentti, 2.2, 28, arvosteluperusteet T Moniosaisten tehtävien osien painoarvo on sama ellei muuta ole erikseen osoitettu. Kokeessa

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu

Lisätiedot

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys Lukutyypit Laskusäännöt Laskujärjestys 0. perusmääritelmiä Luonnolliset luvut (N): 1, 2, 3, 4 Kokonaisluvut (Z):... 4, 3, 2, 1, 0, 1, 2, 3, 4... RaFonaaliluvut (Q): kaikki luvut, jotka voidaan esihää kahden

Lisätiedot

TASAVIRTAPIIRI - VASTAUSLOMAKE

TASAVIRTAPIIRI - VASTAUSLOMAKE TASAVIRTAPIIRI - VASTAUSLOMAKE Ryhmä Tekijä 1 Pari Tekijä 2 Päiväys Assistentti Täytä mittauslomake lyijykynällä. Muista erityisesti virhearviot ja suureiden yksiköt! 4 Esitehtävät 1. Mitä tarkoitetaan

Lisätiedot

Mittaustulosten tilastollinen käsittely

Mittaustulosten tilastollinen käsittely Mittaustulosten tilastollinen käsittely n kertaa toistetun mittauksen tulos lasketaan aritmeettisena keskiarvona n 1 x = x i n i= 1 Mittaustuloksen hajonnasta aiheutuvaa epävarmuutta kuvaa keskiarvon keskivirhe

Lisätiedot

x 4 e 2x dx Γ(r) = x r 1 e x dx (1)

x 4 e 2x dx Γ(r) = x r 1 e x dx (1) HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1

Lisätiedot

VASTUSMITTAUKSIA. 1 Työn tavoitteet

VASTUSMITTAUKSIA. 1 Työn tavoitteet Oulun yliopisto Fysiikan opetuslaboratorio Sähkö ja magnetismiopin laboratoriotyöt VASTUSMTTAUKSA Työn tavoitteet Tässä työssä tutustut Ohmin lakiin ja joihinkin menetelmiin, joiden avulla vastusten resistansseja

Lisätiedot

Betonimatematiikkaa

Betonimatematiikkaa Betonimatematiikkaa.11.017 Kiviaineksen rakeisuusesimerkki Laske seuraavan seulontatuloksen rakeisuusluku ja piirrä rakeisuuskäyrä Seula # mm Seulalle jäänyt Läpäisyarvo % g % Pohja 60 9,0-0,15 30 4,5

Lisätiedot

1 Tieteellinen esitystapa, yksiköt ja dimensiot

1 Tieteellinen esitystapa, yksiköt ja dimensiot 1 Tieteellinen esitystapa, yksiköt ja dimensiot 1.1 Tieteellinen esitystapa Maan ja auringon välinen etäisyys on 1 AU. AU on astronomical unit, joka määritelmänsä mukaan on maan ja auringon välinen keskimääräinen

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: MAB4 Koe Jussi Tyni 1..015 A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: 1. a. Piirrä seuraava suora mahdollisimman tarkasti ruutupaperille:

Lisätiedot

järjestelmät Luento 8

järjestelmät Luento 8 DEE-111 Lineaariset järjestelmät Luento 8 1 Lineaariset järjestelmät Risto Mikkonen 7.8.214 Luento 7 - Recap Z-muunnos ja sen ominaisuudet Lineaaristen dierenssiyhtälöiden käsittely Alku- ja loppuarvot

Lisätiedot

2. a- ja b-kohdat selviä, kunhan kutakuinkin tarkka, niin a-kohta 1 p b-kohta 1 p

2. a- ja b-kohdat selviä, kunhan kutakuinkin tarkka, niin a-kohta 1 p b-kohta 1 p LYHYT MATEMATIIKKA PRELIMINÄÄRIKOE 2.2.2018 RATKAISUT 1. a) 3,50 b) 56 c) 43300 km d) 15 e) 21.08 f) 23.9. kukin oikea vastaus a-kohdassa pelkkä 3,50 ilman yksikköä kelpuutetaan, samoin c-kohdassa pelkkä

Lisätiedot

4 (x 1)(y 3) (y 3) (x 1)(y 3)3 5 3

4 (x 1)(y 3) (y 3) (x 1)(y 3)3 5 3 . Taylorin polynomi; funktion ääriarvot.1. Taylorin polynomi 94. Kehitä funktio f (x,y) = x 2 y Taylorin polynomiksi kehityskeskuksena piste ( 1,2) a) laskemalla osittaisderivaatat, b) kirjoittamalla muuttujat

Lisätiedot

t osatekijät vaikuttavat merkittävästi tuloksen epävarmuuteen Mittaustulosten ilmoittamiseen tulee kiinnittää kriittistä

t osatekijät vaikuttavat merkittävästi tuloksen epävarmuuteen Mittaustulosten ilmoittamiseen tulee kiinnittää kriittistä Mittausepävarmuuden määrittäminen 1 Mittausepävarmuus on testaustulokseen liittyvä arvio, joka ilmoittaa rajat, joiden välissä on todellinen arvo tietyllä todennäköisyydellä Kokonaisepävarmuusarvioinnissa

Lisätiedot

2. Sähköisiä perusmittauksia. Yleismittari.

2. Sähköisiä perusmittauksia. Yleismittari. TURUN AMMATTKORKEAKOULU TYÖOHJE 1 TEKNKKA FYSKAN LABORATORO 2.0 2. Sähköisiä perusmittauksia. Yleismittari. 1. Työn tavoite Tutustutaan tärkeimpään sähköiseen perusmittavälineeseen, yleismittariin, suorittamalla

Lisätiedot

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.5.08 Kertaus K. a) Polynomi P() = + 8 on jaollinen polynomilla Q() =, jos = on polynomin P nollakohta, eli P() = 0. P() = + 8 = 54 08 +

Lisätiedot

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä Työ 3A VAIHTOVIRTAPIIRI Pari Jonas Alam Antti Tenhiälä Selostuksen laati: Jonas Alam Mittaukset tehty: 0.3.000 Selostus jätetty: 7.3.000 . Johdanto Tasavirtapiirissä sähkövirta ja jännite käyttäytyvät

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 2. Lukujen esittäminen ja aritmetiikka 2.1 Kantajärjestelmät ja lukujen esittäminen Käytettävät lukujoukot: Luonnolliset luvut IN = {0,1,2,3,... } Positiiviset kokonaisluvut

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma

Lisätiedot

DEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi

DEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi DEE-4000 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen ratkaisuiksi Yleistä asiaa lämmönjohtumisen yleiseen osittaisdifferentiaaliyhtälöön liittyen Lämmönjohtumisen yleinen osittaisdifferentiaaliyhtälön

Lisätiedot

Funktion raja-arvo. lukumäärien tutkiminen. tutkiminen

Funktion raja-arvo. lukumäärien tutkiminen. tutkiminen Matematiikka algebra geometria Funktion raja-arvo analyysi tarve lukumäärien tutkiminen kuvioiden ja kappaleiden tutkiminen muutosten tutkiminen DERIVAATTA, MAA6 Yhtä vanhoja kuin ihmiskuntakin ~6 000

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 215 1 / 2 Moninkertaisten

Lisätiedot

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Merkitään f(x) =x 3 x. Laske a) f( 2), b) f (3) ja c) YLIOPPILASTUTKINTO- LAUTAKUNTA

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Merkitään f(x) =x 3 x. Laske a) f( 2), b) f (3) ja c) YLIOPPILASTUTKINTO- LAUTAKUNTA 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 26.3.2018 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

Kemometriasta. Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka

Kemometriasta. Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka Kemometriasta Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka Mistä puhutaan? Määritelmiä Määritys, rinnakkaismääritys Mittaustuloksen luotettavuus Kalibrointi Mittausten

Lisätiedot

Nimi: Muiden ryhmäläisten nimet:

Nimi: Muiden ryhmäläisten nimet: Nimi: Muiden ryhmäläisten nimet: PALKKIANTURI Työssä tutustutaan palkkianturin toimintaan ja havainnollistetaan sen avulla pienten ainepitoisuuksien havainnointia. Työn mittaukset on jaettu kolmeen osaan,

Lisätiedot

¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi.

¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi. 10.11.2006 1. Pituushyppääjä on edellisenä vuonna hypännyt keskimäärin tuloksen. Valmentaja poimii tämän vuoden harjoitusten yhteydessä tehdyistä muistiinpanoista satunnaisesti kymmenen harjoitushypyn

Lisätiedot

Käytännöt, työselostuksen rakenne ja mittaustulosten käsittely

Käytännöt, työselostuksen rakenne ja mittaustulosten käsittely Fysiikan laboratoriotyöt Käytännöt, työselostuksen rakenne ja mittaustulosten käsittely 1 (11) 1 Yleistä ysiikan laboratoriotyöt opintojaksosta 1.1 Sisältö ja tavoitteet Opintojakson tavoitteena on perehdyttää

Lisätiedot

Numeerinen analyysi Harjoitus 1 / Kevät 2017

Numeerinen analyysi Harjoitus 1 / Kevät 2017 Numeerinen analyysi Harjoitus 1 / Kevät 2017 Palautus viimeistään perjantaina 3.3. Tehtävä 1: Oheinen MATLAB-funktio toteuttaa eksponenttifunktion evaluoinnin. 1 function y = seriesexp ( x ) 2 oldsum =

Lisätiedot