Schildtin lukio
|
|
- Lotta Laakso
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 MAA Scildtin lukio LIKIARVO MUISTA: tavallisesti matematiikassa pyritään aina tarkkoiin arvoiin! Kuitenkin esim. mittaustulokset ovat aina likiarvoja. o Luvun katkaiseminen: näin tekevät mm. jotkut tietokoneet ja laskimet ESIM. Katkaise luku 5,7138 neljään numeroon. o Luvun pyöristäminen: tavallinen normaalipyöristys ESIM. Pyöristä luku 5,7138 neljän numeron tarkkuuteen. o Merkitsevät numerot: Kaikki muut merkitseviä paitsi nollat desimaaliluvun alussa ja kokonaisluvun lopussa Tieteellinen merkitsemistapa eli 1-potenssien käyttö ilmoittaa eti merkitsevien numeroiden määrän ESIM. LUKU , 8 374,,3,3 MERKITSEVIEN NUM. LUKUMÄÄRÄ TIETEELLINEN MERK. TAPA LIKIARVON VIRHE Luvun katkaiseminen ja pyöristäminen aieuttaa aina vireen. Jos luvun todellinen arvo on T ja likiarvo L, niin 1 luku T T L on likiarvon absoluuttinen vire ja T T L luku, T, on likiarvon suteellinen vire ilmoitetaan usein T T prosentteina 1
2 MAA Scildtin lukio ESIM. Korvataan Neperin luku e likiarvolla,71. Kuinka suuri on a absoluuttinen vire b suteellinen vire Mittaustuloksissa annetaan usein vireen yläraja ilmoittamalla mittaustulost T LIKIARVON VIRHEEN ARVIOINTI Seuraavassa keinoja, joilla selvitetään likiarvoilla tedyn laskun lopputuloksen vireen suuruutta 1. Tiedetään laskussa käytettävien lätöarvojen vire A. Maksimi-minimikeino vireen yläraja siis pain tilanne saadaan laskemalla suurimman ja pienimmän madollisen arvon erotuksen puolikas: Jos on laskulauseke, saadaan vireelle Tällöin tulos arvio: ma min. B. Virekaavojen käyttö Olkoot luvut T1 ja T, niiden likiarvot L1 ja L ja absoluuttiset vireet T1 ja T. Tällöin jos laskulauseke on summa tai erotus on järkevää käyttää absoluuttista virettä ja vire on T 1 T jos laskulauseke on tulo tai osamäärä on järkevää käyttää suteellista virettä ja vire on T T 1 1 T T jos laskulauseke on potenssi eksponenttina n, on järkevää käyttää suteellista virettä T ja vire on n T HUOM 1. Nämä kaikki perustuvat ns. kolmioepäytälöön a b a b HUOM. Vire tulee aina arvioida ylöspäin eli sitä ei saa koskaan arvioida liian pieneksi.
3 MAA Scildtin lukio. Lätöarvojen virerajoja ei tiedetä Kun tiedetään vain lätöarvot ilman niiden virettä, voidaan käyttää seuraavia perusperiaatteita: jos laskulauseke on summa tai erotus, otetaan lopputulokseen ytä monta desimaalia kuin on epätarkimmassa lätöarvossa. jos laskulauseke on tulo tai osamäärä, otetaan lopputulokseen ytä monta merkitsevää numeroa kuin on epätarkimmassa lätöarvossa. HUOM. Välituloksia ei saa pyöristää! ESIM 1. Fysiikan tunnilla on mitattu kappaleen massa m=,567±,5 kg ja siien vaikuttava vakiovoima F=,±,1 N. Määritä kappaleen kiityvyys virerajoineen a maksimi-minimikeinolla b virekaavoilla. HUOM! Joskus esim. laskimissa pyöristysvireet kumuloituvat arvaamattomasti ja laskin saattaa antaa täysin vääriä arvoja. ESIM. Tutki laskimella mitä on 1 lim. 3
4 MAA Scildtin lukio POLYNOMIEN JAOLLISUUS JA KORKEAMMAN ASTEEN POLYNOMIYHTÄLÖT RATIONAALILAUSEKKEEN SIEVENNYS Muotoa P, Q oleva lauseke on rationaalilauseke. Se pyritään sieventämään madollisimman Q yksinkertaiseen muotoon muuttamalla osoittaja ja nimittäjä tulomuotoon eli jakamalla ne tekijöiin ja sitten supistamalla. Jos rationaalilauseke ei sievene polynomiksi, se jää sievimmilläänkin murtolausekkeeksi. Tekijöiin jakaminen voidaan tedä polynomista riippuen a etsimällä polynomin yteinen tekijä b käyttämällä muistikaavoja c jakamalla polynomi tekijöiin nollakotien avulla d rymittelemällä ESIM. Sievennä rationaalilauseke POLYNOMIN JAKAMINEN JAKOKULMASSA Jos rationaalilauseke ei sievene em. keinoilla, on käytettävä polynomien jakolaskua. Polynomit jaetaan jakokulmassa samantyyppisellä jakoalgoritmilla kuin luvutkin jaetaan. ESIM. Laske jakokulmassa Onko 118 jaollinen 7:lla? 4
5 MAA Scildtin lukio ESIM. Jaa jakokulmassa POLYNOMIN JAOLLISUUS JAKOYHTÄLÖ: jaettava = jakaja osamäärä + jakojäännös eli P Q V J Tutkitaan erityisesti tilannetta missä jakaja on muotoa a. Koska jakojäännös on aina alempaa astetta kuin jakaja, tässä tilanteessa jakojäännös on vakio. Saadaan siis Jakolasku menee tasan vain kun jakojäännös c, josta seuraa: P a. Tämä tarkoittaa, että a on polynomin P nollakota jos ja vain jos jakojäännös on nolla eli P on jaollinen a :lla. 4 3 ESIM. Tutki onko polynomilla P 3 64 tekijä a b 4 5
6 MAA Scildtin lukio. ASTEEN YHTÄLÖN IMAGINAARISET RATKAISUT Toisen asteen ytälöllä a + b + c = on korkeintaan ratkaisua reaalilukujen joukossa. Ratkaisujen lukumäärän määrää diskriminantti D = b 4ac. Jos D >, niin reaalijuuria on kaksi Jos D =, niin reaalijuuria on yksi Jos D <, niin reaalijuuria ei ole Kuitenkin, jos D <, niin ytälöllä on kaksi juurta kompleksilukujen joukossa C = {a + bi; a, b R}, missä i on imaginaariyksikkö, jolle pätee i = 1. Muotoa a + bi olevia lukuja sanotaan imaginaariluvuiksi. Esim 1 Ratkaise ytälöt kompleksilukujen joukossa a + 8 = b = KORKEAMMAN ASTEEN POLYNOMIYHTÄLÖ ratkaistaan jakamalla polynomi tekijöiin eli esitetään polynomi madollisimman pieniasteisten polynomien tulona saadaan jakamalla polynomilla on juuria aina asteluvun ilmoittama määrä kompleksilukujen joukossa!, osa juurista voi olla ytä suuria, jolloin sanotaan, että ne ovat kaksin-, kolmin-, nelin-, jne. kertaisia juuria SIIS n-asteinen polynomi voidaan jakaa tekijöiin: P a 1... n, missä 1,,..., n ovat P :n nollakotia ja a on P :n korkeimman asteluvun termin kerroin. 6
7 MAA Scildtin lukio käytännössä ensimmäinen tekijä nollakota on löydettävä valistuneella arvauksella. Tätä auttaa seuraava lause: Jos polynomin kertoimet ovat kokonaislukuja, niin polynomin rationaaliset nollakodat ovat muotoa q p, missä p on vakiotermin ja q korkeimman asteen termin kertoimen tekijä. 3 ESIM. Ratkaise ytälö 5 3 YHTÄLÖN RATKAISEMINEN NUMEERISESTI Käytetään, kun tarkkaa ratkaisua ei saada tai sitä ei tarvita Menetelmä riippuu ytälön ominaisuuksista Menetelmästä riippumatta kannattaa aina tutkia ratkaisujen lukumäärää tekemällä A. teoreettista tutkimusta unktion kulku derivaatan avulla ns. Bolzanon lause: Jos suljetulla välillä jatkuvalla unktiolla on välin päätepisteissä erimerkkiset arvot, niin välillä on ainakin yksi nollakota JA / TAI B. graaista esim. laskimen avulla tutki unktion kulkua graaisella laskimella taulukoi unktion arvoja 7
8 MAA Cygnaeus-lukio ESIM. Tutki kuinka monta reaalista juurta on ytälöllä =. 1. PUOLITUSMENETELMÄ Alkeellinen menetelmä ratkaista ytälö, yödyntää Bolzanon lausetta IDEA: 1. Lasketaan unktion arvo välin päätepisteissä jos erimerkkiset ratkaisu tällä välillä.. Otetaan välin keskipiste, lasketaan arvo ja katsotaan kumman alkuperäisen päätepisteen kanssa erimerkkinen ratkaisu tällä välillä. Tätä jatketaan riittävän pitkälle. 3. Jos on annettu absoluuttisen vireen raja ε, niin tutkikaan kunnes välin puolikkaan pituus on alle ε. toimii mille ytälölle taansa, mutta on yvin työläs erityisesti, jos ratkaisu alutaan tarkasti ESIM. Määritä puolitusmenetelmää käyttäen ytälön cos ratkaisujen likiarvo niin, että absoluuttinen vire on korkeintaan,5. 8
9 MAA Cygnaeus-lukio. NEWTONIN MENETELMÄ selvästi keittyneempi ja teokkaampi kuin puolitusmenetelmä, mutta edellyttää, että unktio y on derivoituva sisältää tiettyjä ongelmia, katsotaan niitä esimerkin jälkeen IDEA: 1. Tedään valistunut arvaus ratkaisusta, merkitään tämä alkuarvoksi. Piirretään kotaan tangentti:. Lasketaan tangentin nollakota: 3. Asetetaan se arvoksi 1 ja piirretään tangentti kotaan 1. Jatketaan kuten kodassa 1 ja toistetaan tätä. Näin saadaan Newtonin menetelmän ns. iteraatiokaava ESIM. Ratkaise viiden desimaalin tarkkuudella ytälö cos 3 käyttämällä Newtonin menetelmää. 9 Newtonin menetelmään liittyvät ongelmat: ttp://
10 MAA Cygnaeus-lukio 3. KIINTOPISTEMENETELMÄ iteraatiokaava yvin yksinkertainen ja yleensä varsin teokas IDEA: muutetaan ratkaistava ytälö muotoon g onnistuu aina!. Etsitään siis käyrän y g ja suoran y leikkauskotaa 1. Annetaan alkuarvo. Lasketaan g ja edelleen 1 3 g g 1,, jne SAADAAN g n 1 n Mikäli tämä jono suppenee, niin se tapatuu koti ytälön ytälön, ratkaisua. g, ja siten myös alkuperäisen ONGELMANA SUPPENEVUUS: kiintopistemenetelmää voidaan käyttää vain, jos g 1 sillä välillä, jolla tarkastelua tedään ttp://users.jyu.i/~maakio/maa1/kiintopistemenetelma.tml ESIM. Ratkaise ytälön ln kadesta juuresta suurempi käyttäen kiintopistemenetelmää. 1
11 MAA Cygnaeus-lukio 11 NUMEERINEN DERIVOINTI käytetään, jos unktio on vaikea derivoida tai unktion lauseketta ei voida määrittää esim. taulukoituja arvoja perustuu derivaatan määritelmään derivaatan arvo kodassa I lim II lim oikeanpuoleinen derivaatta lim vasemmanpuoleinen derivaatta Seuraavassa kaksi tapaa määrittää derivaatan arvo numeerisesti: 1. EROTUSOSAMÄÄRÄN KÄYTTÖ Jos erotusosamäärässä II oleva on itseisarvoltaan varsin pieni, tällä tavoin saatava sekantin kulmakerroin on varsin läellä tangentin kulmakerrointa eli tai Voidaan osoittaa, että menetelmän aieuttama vire on suoraan verrannollinen :n suuruuteen.
12 MAA Cygnaeus-lukio. KESKUSDIFFERENSSI Parempaan arvioon päästään määrittämällä sekanttien kulmakertoimet tarkasteltavan kodan molemmille puolille ja ottamalla niiden keskiarvo. Tätä kutsutaan keskusdierenssiksi. Nyt voidaan osoittaa, että vire on suoraan verrannollinen :n neliöön. ESIM. Määritä unktion e derivaatan arvo kodassa sekä erotusosamäärän että keskusdierenssin avulla :n arvolla,1. Laske molemmissa tapauksissa suteellinen vire. 1 Voidaan osoittaa, että menetelmän aieuttama vire on suoraan verrannollinen :n neliöön. Vireen suteellinen suuruus eri menetelmillä ja eri :n arvoilla: ttp://
13 MAA Cygnaeus-lukio NUMEERINEN INTEGROINTI Lasketaan määrätyn integraalin arvo, kun integraaliunktioita ei osata määrittää integroitavan unktion lauseketta ei tunneta, esim. taulukoituja arvoja MUISTA: b A d F b F a, kun a Numeerinen integrointi perustuu tään tulokseen siten, että korvataan yksinkertaisemmalla unktiolla. Seuraavassa kolme tapaa laskea määrätyn integraalin arvo numeerisesti: 1. SUORAKAIDESÄÄNTÖ: a Korvataan unktio välillä [a,b] vakiolla a Tämä antaa luonnollisesti yleensä varsin uonon likiarvon määrätyn integraalin arvolle. Miten arvioita voidaan parantaa? b jaetaan tarkasteltava väli [a,b] pienempiin osaväleiin: 13
14 MAA Cygnaeus-lukio Vastaava tulos saadaan myös laskemalla :n arvo osavälin loppupisteessä. Tämä on kuitenkin oleellisesti ytä tarkka arvio kuin sekin, kun käytetään välin alkupistettä: Oleellisesti parempaan tarkkuuteen päästään, kun lasketaan :n arvo osavälin keskipisteessä: ESIM1. Laske a alkupistettä b keskipistettä A 1 d jakamalla väli neljään osaväliin ja käyttämällä välin 14
15 MAA Cygnaeus-lukio. PUOLISUUNNIKASSÄÄNTÖ: a Korvataan unktio välillä [a,b] ensimmäisen asteen unktiolla: Asetetaan suora kulkemaan pisteiden a,a ja b,b kautta, jolloin Tämäkin antaa luonnollisesti yleensä varsin uonon likiarvon määrätyn integraalin arvolle. Miten arvioita voidaan parantaa? b jaetaan tarkasteltava väli [a,b] pienempiin osaväleiin: ESIM1. Laske a ytä jakoväliä b neljää jakoväliä A 1 d puolisuunnikassäännöllä käyttämällä 15
16 MAA Cygnaeus-lukio HUOM! Menetelmän virettä voi arvioida kaavalla E n = b a3 t 1n, jossa a < t < b 3. SIMPSONIN SÄÄNTÖ: a Korvataan unktio välillä [a,b] toisen asteen unktiolla: Asetetaan unktio siis paraabeli kulkemaan pisteiden jolloin voidaan osoittaa, että ks. s a b a b a a,, ja b, b, kautta, 16 Tuloksen tarkkuutta voidaan parantaa samoin kuin suorakaidesäännössä ja puolisuunnikassäännössä:
17 MAA Cygnaeus-lukio b Jaetaan tarkasteltava väli [a,b] parilliseen määrään pienempiä osavälejä: Nyt voidaan osoittaa, että ESIM1. Laske A 1 d Simpsonin säännöllä käyttämällä a säännön perusmuotoa b neljää osaväliä HUOM! Menetelmän virettä voi arvioida kaavalla E n = b a5 4 t 18n 4, jossa a < t < b 17
jakokulmassa x 4 x 8 x 3x
Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:
Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.5.08 Kertaus K. a) Polynomi P() = + 8 on jaollinen polynomilla Q() =, jos = on polynomin P nollakohta, eli P() = 0. P() = + 8 = 54 08 +
Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kertaus K. a) Polynomi P() = 3 + 8 on jaollinen polynomilla Q() = 3, jos = 3 on polynomin P nollakohta, eli P(3) = 0. P(3) = 3 3 3 + 8 3 = 54 08 + 54 = 0. Polynomi P on jaollinen polynomilla Q. b) Jaetaan
Harjoituskokeiden ratkaisut Painoon mennyt versio.
Harjoituskokeiden ratkaisut 8.6.7 Painoon mennyt versio. PYRAMIDI NUMEERISIA JA ALGEBRALLISIA MENETELMIÄ RATKAISUT, HARJOITUSKOE SIVU.7.7 Koe a) i) =,, = kpl ii) 9,876 =,9876,99 = 9,9 iii),66,66 =,7 =,7
n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa.
MAA 12 kertaus Funktion kuvaaja n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. Funktion nollakohta on piste, jossa f () = 0, eli kuvaaja leikkaa -akselin. Kuvaajan avulla
MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ?
MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ? Polynomiyhtälön ratkaiseminen Eri lajin yhtälöiden ratkaisutavat poikkeavat toisistaan. Siksi on tärkeää tunnistaa yhtälötyyppi. Polynomiyhtälö on yhtälö, joka voidaan
Virheen arviointia
16.4.014 Vireen arviointia NUMEERISIA JA ALGEBRAL- LISIA MENETELMIÄ, MAA1 Virettä, tai oikeammin vireen suuruutta, voidaan arvioida seuraavilla tavoilla: 1. Maksimi-minimikeino (-menettely), nopea ja yksinkertainen,
Muutoksen arviointi differentiaalin avulla
Muutoksen arviointi differentiaalin avulla y y = f (x) y = f (x + x) f (x) dy y dy = f (x) x x x x x + x Luento 7 1 of 15 Matematiikan ja tilastotieteen laitos Turun yliopisto Muutoksen arviointi differentiaalin
13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle
13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien
5 Differentiaalilaskentaa
5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.
Tee kokeen yläreunaan pisteytysruudukko. Valitse kuusi tehtävää seuraavista kahdeksasta. Perustele vastauksesi!
MAA Loppukoe 70 Jussi Tyni Tee pisteytysruudukko konseptin yläreunaan! Vastauksiin välivaiheet, jotka perustelevat vastauksesi! Lue ohjeet huolellisesti! Tee kokeen yläreunaan pisteytysruudukko Valitse
3.4 Rationaalifunktion kulku ja asymptootit
.4 Rationaalifunktion kulku ja asymptootit Rationaali- eli murtofunktiolla tarkoitetaan funktiota R, jonka lauseke on kahden polynomin osamäärä: P() R(). Q() Ainakin nimittäjässä olevan polynomin asteluvun
Differentiaalilaskenta 1.
Differentiaalilaskenta. a) Mikä on tangentti? Mikä on sekantti? b) Määrittele funktion monotonisuuteen liittyvät käsitteet: kasvava, aidosti kasvava, vähenevä ja aidosti vähenevä. Anna esimerkit. c) Selitä,
Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:
. Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona
Reaalilukuvälit, leikkaus ja unioni (1/2)
Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut
5. Numeerisesta derivoinnista
Funktion derivaatta ilmaisee riippumattoman muuttujan muutosnopeuden riippuvan muuttujan suteen. Esimerkiksi paikan derivaatta ajan suteen (paikan ensimmäinen aikaderivaatta) on nopeus, joka ilmaistaan
Harjoitustehtävien ratkaisut
Johdatus numeerisiin menetelmiin Harjoitustehtäviä. Esitä luvun 7 8 a) tarkka arvo desimaalilukuna b) kolmidesimaalinen likiarvo c) nolladesimaalinen likiarvo d) Likiarvo kahden merkitsevän numeron tarkkuudella
LIITE 1 VIRHEEN ARVIOINNISTA
Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1 LIITE 1 VIRHEEN RVIOINNIST Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan
Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4
Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa A
Kun yhtälöä ei voi ratkaista tarkasti (esim yhtälölle x-sinx = 1 ei ole tarkkaa ratkaisua), voidaan sille etsiä likiarvo.
Kun yhtälöä ei voi ratkaista tarkasti (esim yhtälölle x-sinx = 1 ei ole tarkkaa ratkaisua), voidaan sille etsiä likiarvo. Iterointi on menetelmä, missä jollakin likiarvolla voidaan määrittää jokin toinen,
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdoituksia Rami Luisto Sivuja: 5
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus 9 3.11.009 alkavalle viikolle Ratkaisuedoituksia Rami Luisto Sivuja: 5 Näissä arjoituksissa saa käyttää kaikkia koulusta tuttuja koulusta tuttujen
VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN
Matematiikan kurssikoe, Maa6 Derivaatta RATKAISUT Sievin lukio Torstai 23.9.2017 VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN MAOL-taulukkokirja on sallittu. Vaihtoehtoisesti voit käyttää aineistot-osiossa olevaa
Tekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a)
K1 a) Tekijä MAA Polynomifunktiot ja -yhtälöt 6.8.016 ( + + ) + ( ) = + + + = + + + = + 4 b) 4 4 ( 5 + ) ( 5 + 1) = 5 + + 5 + 1 4 = + + + 4 = + 5 5 1 1 Vastaus a) 4 + b) 4 + 1 K a) f ( ) = + 1 f () = +
MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)
MS-A4 Differentiaali- ja integraalilaskenta (ELEC2) MS-A6 Differentiaali- ja integraalilaskenta (ENG2) Harjoitukset 3L, syksy 27 Tehtävä. a) Määritä luvun π likiarvo käyttämällä Newtonin menetelmää yhtälölle
1 Peruslaskuvalmiudet
1 Peruslaskuvalmiudet 11 Lukujoukot N {1,, 3, 4,} on luonnollisten lukujen joukko (0 mukana, jos tarvitaan), Z {, 3,, 1, 0, 1,, 3,} on kokonaislukujen joukko, Q m n : m, n Z, n 0 on rationaalilukujen joukko,
2.2 Neliöjuuri ja sitä koskevat laskusäännöt
. Neliöjuuri ja sitä koskevat laskusäännöt MÄÄRITELMÄ 3: Lukua b sanotaan luvun a neliöjuureksi, merkitään a b, jos b täyttää kaksi ehtoa: 1o b > 0 o b a Esim.1 Määritä a) 64 b) 0 c) 36 a) Luvun 64 neliöjuuri
Tekijä Pitkä Matematiikka 11 ratkaisut luku 2
Tekijä Pitkä matematiikka 11 0..017 170 a) Koska 8 = 4 7, luku 8 on jaollinen luvulla 4. b) Koska 104 = 4 6, luku 104 on jaollinen luvulla 4. c) Koska 4 0 = 80 < 8 ja 4 1 = 84 > 8, luku 8 ei ole jaollinen
MATP153 Approbatur 1B Harjoitus 4 Maanantai
MATP53 Approbatur B Harjoitus 4 Maanantai 3..05. Halutaan määritellä funktio f siten, että f() =. Missä pisteissä + funktio voidaan määritellä tällä lausekkeella? Missä pisteissä funktio on näin määriteltynä
Tekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0.
Tekijä Pitkä matematiikka 6 9.5.017 K1 a) Ratkaistaan nimittäjien nollakohdat. x 1= 0 x = 1 ja x = 0 Funktion f määrittelyehto on x 1 ja x 0. Funktion f määrittelyjoukko on R \ {0, 1}. b) ( 1) ( 1) f (
Luku 4. Derivoituvien funktioiden ominaisuuksia.
1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa
Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0
Juuri 8 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 8.9.07 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) K. a) b) c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 6 6 a a a, a > 0 6 6 a
A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.
PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja
Muista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin:
Määrittelyjoukot Muista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin:, 0 ; log, > 0 ;, 0 (parilliset juuret) ; tan, π + nπ Potenssisäännöt Ole tarkkana kantaluvun kanssa 3 3
2 Yhtälöitä ja epäyhtälöitä
2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja
LIITE 1 VIRHEEN ARVIOINNISTA
1 LIITE 1 VIRHEEN ARVIOINNISTA Mihin tarvitset virheen arviointia? Mittaustulokset ovat aina todellisten luonnonvakioiden ja tutkimuskohdetta kuvaavien suureiden likiarvoja, vaikka mittauslaite olisi miten
k-kantaisen eksponenttifunktion ominaisuuksia
3.1.1. k-kantaisen eksponenttifunktion ominaisuuksia f() = k (k > 0, k 1) Määrittely- ja arvojoukko M f = R, A f = R + Jatkuvuus Funktio f on jatkuva Monotonisuus Funktio f aidosti kasvava, kun k > 1 Funktio
MAA7 Harjoitustehtävien ratkaisuja
Harjoitustetävien ratkaisuja MAA7 Harjoitustetävien ratkaisuja. a) < < < < < + < < b) U(, ) tarkoittaa lukuja, jotka ovat alla puolikkaan etäisyydellä luvusta eli kyseessä väli <
Differentiaali- ja integraalilaskenta
Differentiaali- ja integraalilaskenta Opiskelijan nimi: DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden
MATP153 Approbatur 1B Harjoitus 5 Maanantai
MATP153 Approbatur 1B Harjoitus 5 Maanantai 30.11.015 1. (Opiskelutet. 0 s. 81.) Selvitä, miten lauseke sin(4x 3 + cos x ) muodostuu perusfunktioista (polynomeista, trigonometrisistä funktioista jne).
2. Polynomien jakamisesta tekijöihin
Imaginaariluvut mielikuvitustako Koska yhtälön x 2 x 1=0 diskriminantti on negatiivinen, ei yhtälöllä ole reaalilukuratkaisua Tästä taas seuraa, että yhtälöä vastaava paraabeli y=x 2 x 1 ei leikkaa y-akselia
1.1. YHDISTETTY FUNKTIO
1.1. YHDISTETTY FUNKTIO (g o f) () = g(f()) Funktio g = yhdistetyn funktion g o f ulkofunktio Funktio f = yhdistetyn funktion g o f sisäfunktio E.2. Olkoon f() = 2 + 3 ja g() = 4-5. Muodosta funktio a)
Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0
Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 K. a) b) c) d) 6 6 a a a, a > 0 6 6 a a a a, a > 0 5 5 55 5 5 5 5 5 5 5 5 5 5 a a a a a ( a ) a a a, a > 0 K.
Numeeriset menetelmät
Numeeriset menetelmät Luento 10 To 6.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 10 To 6.10.2011 p. 1/35 p. 1/35 Numeerinen integrointi Puolisuunnikassääntö b a f(x)dx = h 2 (f 0 + f
Numeeriset menetelmät
Numeeriset menetelmät Luento 2 To 8.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 2 To 8.9.2011 p. 1/33 p. 1/33 Lukujen tallennus Kiintoluvut (integer) tarkka esitys aritmeettiset operaatiot
MAA7 7.1 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!
MAA7 7.1 Koe Jussi Tyni 9.1.01 1. Laske raja-arvot: a) 5 lim 5 10 b) lim 9 71. a) Määritä erotusosamäärän avulla funktion f (). f ( ) derivaatta 1 b) Millä välillä funktio f ( ) 9 on kasvava? Perustele
Numeerinen integrointi ja derivointi
Numeerinen integrointi ja derivointi Keijo Ruotsalainen Division of Mathematics Interpolaatiokaavat Approksimoitava integraali I = b a f(x)dx. Tasavälinen hila: x i = a+ (b a)i n, i = 0,...,n Funktion
Testaa taitosi 1: Lauseen totuusarvo
Testaa taitosi 1: Lauseen totuusarvo 1. a) Laadi lauseen A (B A) totuustaulu. b) Millä lauseiden A ja B totuusarvoilla a-kohdan lause on tosi? c) Suomenna a-kohdan lause, kun lause A on olen vihainen ja
NELIÖJUURI. Neliöjuuren laskusääntöjä
NELIÖJUURI POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA2 Tarkoittaa positiivista tai nollaa Määritelmä, neliöjuuri: Luvun a R neliöjuuri, merkitään a, on se ei-negatiivinen luku, jonka neliö (eli toiseen potenssiin
6*. MURTOFUNKTION INTEGROINTI
MAA0 6*. MURTOFUNKTION INTEGROINTI Murtofunktio tarkoittaa kahden polynomin osamäärää, ja sen yleinen muoto on P() R : R(). Q() Mikäli osoittajapolynomin asteluku on nimittäjäpolynomin astelukua korkeampi
MAA 2 - POLYNOMIFUNKTIOT
MAA MAA - POLYNOMIFUNKTIOT 1 On annettu muuttujan x polynomi P(x) = x + x + Mitkä ovat sen termien kertoimet, luettele kaikki neljä (?) Mitä astelukua polynomi on? Mikä on polynomin arvo, kun x = 0 Entä
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta
KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut
KOMPLEKSILUVUT C Luonnolliset luvut N Kokonaisluvut Z Rationaaliluvut Q Reaaliluvut R Kompleksi luvut C Negat kokonaisluvut Murtoluvut Irrationaaliluvut Imaginaariluvut Erilaisten yhtälöiden ratkaiseminen
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 6.3.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4
Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / 4 Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa
KERTAUSHARJOITUKSIA. 1. Rationaalifunktio a) ( ) 2 ( ) Vastaus: a) = = 267. a) a b) a. Vastaus: a) a a a a 268.
KERTAUSHARJOITUKSIA. Rationaalifunktio 66. a) b) + + + = + + = 9 9 5) ( ) ( ) 9 5 9 5 9 5 5 9 5 = = ( ) = 6 + 9 5 6 5 5 Vastaus: a) 67. a) b) a a) a 9 b) a+ a a = = a + a + a a + a a + a a ( a ) + = a
3.1 Väliarvolause. Funktion kasvaminen ja väheneminen
Väliarvolause Funktion kasvaminen ja väheneminen LAUSE VÄLIARVOLAUSE Oletus: Funktio f on jatkuva suljetulla välillä I: a < x < b f on derivoituva välillä a < x < b Väite: On olemassa ainakin yksi välille
3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko?
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät luentokalvoihin 1 14. Erityisesti esimerkistä 4 ja esimerkin
PERUSKOULUSTA PITKÄLLE
Raimo Seppänen Tytti Kiiski PERUSKOULUSTA PITKÄLLE KERTAUSTA JA TÄYDENNYSTÄ LUKION PITKÄLLE MATEMATIIKALLE JA MATEMATIIKKAA VAATIVAAN AMMATILLISEEN KOULUTUKSEEN MFKA-KUSTANNUS OY HELSINKI 2007 SISÄLLYS
2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2
.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. Toisen asteen yhtälön a + b + c 0 ratkaisukaavassa neliöjuuren alla olevaa lauseketta b b 4ac + a b b 4ac a D b 4 ac sanotaan yhtälön
Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen
4. Funktiojonot ja funktiotermiset sarjat 4.1. Funktiojono ja funktioterminen sarja 60. Tutki, millä muuttujan R arvoilla funktiojono f k suppenee, kun Mikä on rajafunktio? a) f k () = 2k 2k + 1, b) f
LIITE 1 VIRHEEN ARVIOINNISTA
1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista
Numeeriset menetelmät Pekka Vienonen
Numeeriset menetelmät Pekka Vienonen 1. Funktion nollakohta Newtonin menetelmällä 2. Määrätty integraali puolisuunnikassäännöllä 3. Määrätty integraali Simpsonin menetelmällä Newtonin menetelmä Newtonin
PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015
PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.
2 Raja-arvo ja jatkuvuus
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.6 Raja-arvo ja jatkuvuus. a) Kun suorakulmion kärki on kohdassa =, on suorakulmion kannan pituus. Suorakulmion korkeus on käyrän y-koordinaatti
Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /
MS-A008 Differentiaali- ja integraalilaskenta, V/207 Differentiaali- ja integraalilaskenta Ratkaisut 2. viikolle / 8. 2.4. Jatkuvuus ja raja-arvo Tehtävä : Määritä raja-arvot a) 3 + x, x Vihje: c)-kohdassa
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti
MAB3 - Harjoitustehtävien ratkaisut:
MAB3 - Harjoitustehtävien ratkaisut: 1 Funktio 1.1 Piirretään koordinaatistoakselit ja sijoitetaan pisteet: 1 1. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä.
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,
MATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai
MATP53 Approbatur B Harjoitus 3, ratkaisut Maanantai 6..5. (Teht. 5 ja s. 4.) Olkoot z = + y i ja z = + y i. Osoita, että (a) z + z = z +z, (b) z z = z z, (c) z z = z ja (d) z = z z, kun z. (a) z + z =
Funktion raja-arvo. lukumäärien tutkiminen. tutkiminen
Matematiikka algebra geometria Funktion raja-arvo analyysi tarve lukumäärien tutkiminen kuvioiden ja kappaleiden tutkiminen muutosten tutkiminen DERIVAATTA, MAA6 Yhtä vanhoja kuin ihmiskuntakin ~6 000
Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.
Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan
Derivaatan sovellukset (ääriarvotehtävät ym.)
Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion
Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x
MAA6 Lisätehtäviä Laske lisätehtäviä omaan tahtiisi kurssin aikan Palauta laskemasi tehtävät viimeistään kurssikokeeseen. Tehtävät lasketaan ilman laskint Rationaalifunktio Tehtäviä Hyvitys kurssiarvosanassa
MS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 24.10.2016 Sisältö Derivaatta 1.1 Derivaatta Erilaisia lähestymistapoja: I geometrinen
4 Yleinen potenssifunktio ja polynomifunktio
4 Yleinen potenssifunktio ja polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Tutkitaan yhtälöiden ratkaisuja piirtämällä funktioiden f(x) = x, f(x) = x 3, f(x) = x 4 ja f(x) = x 5 kuvaajat. Näin nähdään, monessako
Merkitse kertolasku 3 3 3 3 potenssin avulla ja laske sen arvo.
13 Luvun potenssi Kertolasku, jonka kaikki tekijät ovat samoja, voidaan merkitä lyhyemmin potenssin avulla. Potenssimerkinnässä eksponentti ilmaisee, kuinka monta kertaa kantaluku esiintyy tulossa. Potenssin
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut
MAB3 - Harjoitustehtävien ratkaisut:
MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10-13
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo -. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x +9, b) log (x) 7, c) x + x 4 =.. Määrää kaikki ne
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x
Matematiikan peruskurssi 2
Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 26..208 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
MATP153 Approbatur 1B Harjoitus 6 Maanantai
. (Teht. s. 93.) Määrää raja-arvo MATP53 Approbatur B Harjoitus 6 Maanantai 7..5 cos x x. Ratkaisu. Suora sijoitus antaa epämääräisen muodon (ei auta). Laventamalla päädytään muotoon ja päästään käyttämään
Mapu 1. Laskuharjoitus 3, Tehtävä 1
Mapu. Laskuharjoitus 3, Tehtävä Lineaarisessa approksimaatiossa funktion arvoa lähtöpisteen x 0 ympäristössä arvioidaan liikkumalla lähtöpisteeseen sovitetun tangentin kulmakertoimen mukaisesti: f(x 0
Kompleksiluvut., 15. kesäkuuta /57
Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen
k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu
LIS AYKSI A kirjaan Reaalimuuttujan analyysi 1.6. Numeerinen integrointi: Gaussin kaavat Edella kasitellyt numeerisen integroinnin kaavat eli kvadratuurikaavat Riemannin summa, puolisuunnikassaanto ja
Numeeriset menetelmät TIEA381. Luento 11. Kirsi Valjus. Jyväskylän yliopisto. Luento 11 () Numeeriset menetelmät / 37
Numeeriset menetelmät TIEA381 Luento 11 Kirsi Valjus Jyväskylän yliopisto Luento 11 () Numeeriset menetelmät 24.4.2013 1 / 37 Luennon 11 sisältö Numeerisesta integroinnista ja derivoinnista Adaptiiviset
1. Olkoon f :, Ratkaisu. Funktion f kuvaaja välillä [ 1, 3]. (b) Olkoonε>0. Valitaanδ=ε. Kun x 1 <δ, niin. = x+3 2 = x+1, 1< x<1+δ
Matematiikan tilastotieteen laitos Differentiaalilaskenta, syksy 2015 Lisätehtävät 1 Ratkaisut 1. Olkoon f :, x+1, x 1, f (x)= x+3, x>1 Piirrä funktion kuvaa välillä [ 1, 3]. (a) Tutki ra-arvon (ε, δ)-määritelmän
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 9 Korkeamman asteen derivaatat Tutkitaan nyt funktiota f, jonka kaikki derivaatat on olemassa. Kuten tunnettua, funktion toista derivaattaa pisteessä x merkitään f (x).
1. Määritä funktion f : [ 1, 3], f (x)= x 3 3x, suurin ja pienin arvo.
Matematiikan ja tilastotieteen laitos Differentiaalilaskenta, syksy 01 Lisätetävät Ratkaisut 1. Määritä funktion f : [ 1, 3], suurin ja pienin arvo. f (x)= x 3 3x, Ratkaisu. Funktio f on jatkuva suljetulla
Yhden muuttujan funktion minimointi
Yhden muuttujan funktion minimointi Aloitetaan yhden muuttujan tapauksesta Tarpeellinen myös useamman muuttujan tapauksessa Tehtävä on muotoa min kun f(x) x S R 1 Sallittu alue on muotoa S = [a, b] tai