0.3 LOPPUTULOKSEN ESITTÄMISTARKKUUS

Koko: px
Aloita esitys sivulta:

Download "0.3 LOPPUTULOKSEN ESITTÄMISTARKKUUS"

Transkriptio

1 18 0. LOPPUTULOKSEN ESITTÄMISTARKKUUS Fysikaalisen mittauksen ja virheenarvioinnin seurauksena määritettävän suureen arvolle saadaan likiarvo ja virhe (epätarkkuus). Lopputulokseen ei ole tarpeen sisällyttää sellaisia likiarvon numeroita, joilla ei ole merkitystä, kun virhe otetaan huomioon. Sääntö on: - Mittauksen lopputulosta esitettäessä otetaan mukaan kaikki merkitsevät numerot. - Numeroa pidetään merkitsevänä, jos sen epätarkkuus (virhe) on enintään 15 yksikköä. - Virheeseen otetaan mukaan yhtä monta desimaalia kuin lopputulokseen, mutta virhe pyöristetään aina ylöspäin. Esimerkki: Mittaustulos 0,765 ± 0,0601. Verrataan likiarvoa ja virhettä: 0,765 0, desimaalin (7) virhe on 0,601 yksikköä: mukaan.. desimaalin () virhe on 6,01 yksikköä: mukaan.. desimaalin () virhe on 6,01 yksikköä > 15. Pyöristetty lopputulos on siis 0,7. Tässä pyöristäminen tehdään normaalien pyöristyssääntöjen mukaan.

2 Pyöristetty virhe on 0,07. Tässä pyöristetään aina ylöspäin. Lopputuloksen esitysmuoto on 0,7 ± 0,07. Käytännön ohje: Säännön mukaan virhe voi olla korkeintaan... tai 0,0015 tai 0,015 tai 0,15 tai 1,5 tai... Heti, jos virheeksi saadaan esim. 0,16, täytyy sekä likiarvosta että virheestä pudottaa yksi numero pois, jolloin virhe tulisi olemaan 0,. Suhteellinen virhe esimerkissä on 0,0601 = 0,0878, prosentteina 8,78 %. 0,765 Myös tässä virhe voi olla korkeintaan 15 yksikköä, eli... tai 0,15 % tai 1,5 % tai 15% tai... joten oikea valinta on 9 % ja esitysmuodoksi tulee 0,7 ± 9%. 19

3 Esimerkki: Mittaustulos 185, ± 15. Verrataan likiarvoa ja virhettä 185, numeron (1) virhe on 0,15 yksikköä, mukaan.. numeron (8) virhe on 1,5 yksikköä, mukaan.. numeron () virhe on 1,5 yksikköä, mukaan.. numeron () virhe on 15, yksikköä > 15. Pyöristetty lopputulos on 1800 Pyöristetty virhe on Lopputulos voidaan esittää periaatteessa muodossa 1800 ± Tästä esitystavasta ei kuitenkaan voida päätellä ovatko lopussa olevat nollat merkitseviä numeroita vai ei (ellei tunneta käytettyä lopputuloksen esittämismenetelmää). Siksi tällaisessa tapauksessa tulos on parasta esittää joko kymmenen potenssien tai etuliitteiden (m, k, M,...) avulla niin, että merkitsevien numeroiden määrä näkyy tuloksesta yksikäsitteisesti. Tässä tapauksessa esimerkiksi 18, 10 ± 1,5 10

4 Fysiikan laboratoriotyöt 1 Kevät 016 Viikko Maanantai 18.. Tiistai 19.. Keskiviikko 0.. Torstai 1.. FL 1 Perjantai.. FL FL 1 FL 1 FL Viikko Maanantai 5.. Tiistai 6.. Keskiviikko 7.. Torstai 8.. FL 1 Perjantai 9.. FL FL 1 FL 1 FL

5

6 Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1 PERUSMITTAUKSIA 1. Työn tavoitteet 1.1 Mittausten tarkoitus Tässä työssä määrität tutkittavaksesi annetun metallikappaleen tiheyden laskemalla sen suoraan tiheyden määritelmästä eli kappaleen massan ja tilavuuden suhteesta. Kappaleen massan määrität punnitsemalla kappaleen ja tilavuuden mittaamalla kappaleen ulko- ja sisähalkaisijat sekä korkeuden. Opit arvioimaan mittaustulostesi luotettavuutta niin, että osaat arvioida sekä tilavuuden että tiheyden absoluuttisen ja suhteellisen virheen ylärajat. Kun olet määrittänyt tutkittavan kappaleen tiheyden, voit päätellä, mitä metallia kappale on. 1. Oppimistavoitteet Työn tarkoituksena on opettaa sinua käyttämään kolmea tärkeää perusmittausvälinettä analyysivaakaa, työntömittaa ja mikrometriruuvia. Jos jatkat tämän kurssin jälkeen kohti vaativampia fysiikan, kemian tai tekniikan mittauksia, tulet käyttämään näitä mittalaitteita monta kertaa. Opit myös määrittämään vaa an, työntömitan ja mikrometriruuvin lukematarkkuuden, mikä on tärkeää arvioitaessa yksittäisen suureen mittaustarkkuutta. Tässä työssä keskeisenä tavoitteena on myös harjoitella mittaustulosten luotettavuuden arviointia. Opit arvioimaan omien mittaustesi perusteella yksittäisen mittaustuloksen virhettä. Tuloksen luotettavuutta parannetaan usein mittaamalla sama suure monta kertaa, jolloin suureen virhe voidaan arvioida tarkastelemalla yksittäisten mittaustulosten poikkeamaa tulosten keskiarvosta. Opit myös soveltamaan luennoilla käsiteltyä kokonaisdifferentiaalimenetelmää mittauksissa esiintyvään tilanteeseen, jossa määritettävät suureet (metallikappaleen tilavuus ja tiheys) eivät ole suoraan mitattavissa. Harjoittelet myös käyttämään ns. 15 yksikön sääntöä, joka on yleisesti käytössä oleva ohje sille, miten lopputulos ilmoitetaan virherajoineen. Kolmas tärkeä oppimistavoite on tutustuttaa sinut mittausraportin, jota fysiikan ja kemian töiden yhteydessä usein kutsutaan työselostukseksi, laatimiseen. Kaikki tälle kurssille osallistuvat opiskelijat olivatpa he sitten tulevia fyysikoita, kemistejä, opettajia tai diplomi-insinöörejä tulevat todennäköisesti tulevissa työtehtävissään kirjoittamaan koko joukon erilaisia mittausraportteja. Siksi työselostusten kirjoittaminen on hyvää harjoitusta tulevia työtehtäviäsi ajatellen. Työselostusten laatimisen helpottamiseksi löytyy ohje tämän kurssin sivuilta.

7 PERUSMITTAUKSIA. Pituuden mittaus ja punnitseminen.1 Metrimitta Metrimitalla voidaan sen pituudesta riippuen kätevästi mitata pituuksia 0,1 m 0 m. Metrimitan lukematarkkuus on 0,5 1 mm.. Työntömitta Lyhyitä, alle 0 cm:n välejä mitattaessa päästään suurempaan tarkkuuteen, kun käytetään metrimitan sijaan työntömittaa. Työntömitan lukematarkkuus on 0,05 0,1 mm. Työntömitta on esitetty kuvassa 1.1. Kuvan mukaisesti voidaan kiinteän ja liikkuvan mittausleuan (a 1 ja a ) välissä mitata kappaleiden ulkomittoja ja kiinteän ja liikkuvan mittauskärjen (b 1 ja b ) välissä sisämittoja. Kielen c avulla mitataan syvyyttä. Työntömitan pääasteikko löytyy sen rungolta (d) ja lisäksi työntömittaan kuuluu liikkuvalta osalta eli luistilta (e) löytyvä lukematarkkuutta parantava ns. noniusasteikko eli sivuasteikko. Työntömitassa on yleensä lukituslaite eli salpa (f), joka lukitsee leuat, kärjet ja kielen mittausasemaan. b 1 b d c a 1 a e f a 1, a = leuat, b 1,b = kärjet, c = kieli, d =runko, e = luisti, f = salpa Kuva 1.1. Työntömitta ja sen osat. Ennen mittausta tarkastetaan työntömitan nollakohta ja tarvittaessa otetaan korjaus huomioon vähentämällä nollakohdan lukema etumerkkeineen saadusta työntömitan lukemasta. Tämän jälkeen mitattava kappale asetetaan paikoilleen esimerkiksi ulkohalkaisijan mittaamista varten leukojen a 1 ja a väliin. Työntömitalla mittaamista esittää tarkemmin kuva 1.. Mittaustuloksen kokonaisosa luetaan pääasteikolta (kuvassa 1. g 1 ) sivuasteikon nollaviivan kohdalta. Pääasteikon jaotus on tavallisesti 1 mm. Esimerkiksi kuvan 1. tilanteessa, joka näkyy suurennettuna kuvan oikeassa alanurkassa, sivuasteikon nollaviiva sattuu välille 70 mm ja 71 mm ja kokonaisosaksi saadaan siten kuvan tilanteessa 70 mm. Sivuasteikolla (kuvassa 1. h 1 ) on pääasteikon

8 Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 mittaväli l jaettu n:ään osaan (tavallisesti n on 10, 0 tai 50). Kuvan tilanteessa pääasteikon mittaväli 1 mm on jaettu 0 osaan. Myös nonius-asteikon pituus vastaa pituutta l ja siinä on mittaviivoja etäisyydellä l toisistaan siten, että l = l n, jolloin l = l/n. Kuvassa nonius-asteikon mittaviivojen välimatka vastaa siis todellisuudessa etäisyyttä 1 mm/0 = 0,05 mm. Yleensä tämä työntömitan lukematarkkuus on merkitty mittaan (kuvassa 1. i). Mittaustuloksen murto-osat luetaan nyt katsomalla, mikä sivuasteikon viiva sattuu parhaiten kohdakkain jonkin pääasteikon viivan kanssa. Kuvan 1. tilanteessa sivuasteikon lukemaa 7 vastaava viiva sattuu parhaiten kohdakkain pääasteikon viivan kanssa. Mittaustulos on tässä tilanteessa siten 70,70 mm. i g h g 1 h 1 g 1, g = pääasteikko (cm, tuuma), h 1, h = sivuasteikko (cm, tuuma), i = lukematarkkuus Kuva 1.. Työntömitalla mittaaminen.. Mikrometriruuvi Mikrometriruuvilla tai mikrometrillä voidaan mitata lyhyitä, alle,5 cm:n välejä. Mikrometriruuvin lukematarkkuus on yleensä 0,01 mm. Kuva 1. esittää tyypillistä fysiikan töissä käytettävää mikrometriruuvia. Mikrometriruuvi muodostuu kaarevasta runko-osasta (kuvassa a), jonka toisessa päässä on ruuvikierre (b) ja toisessa päässä vastinkappale eli alasin (c). Kiertämällä ruuvia voidaan säätää ruuvin pään ja alasimen välimatkaa. Ruuvin yhtä kierrosta vastaava nousu on yleensä 0,5 tai 1 mm. Ruuvin mukana kiertyy sylinterinmuotoinen putki, jonka reunassa on asteikko (kuvassa d ja e). Asteikko on jaettu joko 50 osaan nousun ollessa 0,5 mm tai 100 osaan nousun ollessa 1 mm, jolloin pienin jako-osa on 0,01 mm. Tämä mikrometriruuvin lukematarkkuus on usein merkitty näkyville (f.)

9 PERUSMITTAUKSIA Mikrometriruuviin kuuluu tavallisesti lukituslaite (kuvassa g), jolla ruuvi voidaan lukita mittausasemaan. Ruuvia kierrettäessä lukitus ei saa olla päällä. Sylinteriputken päässä tai päällä näkyvä osa on kitkajarru (h). Ruuvin loppukiristys tehdään mittaustilanteessa kitkajarrulla, jolloin saadaan jokaisella mittauskerralla yhtä suuri voimavaikutus mittauskohteeseen. Mikrometriruuvia on vältettävä kiertämästä liian voimakkaasti, koska tämä voi aiheuttaa nollakohdan siirtymisen. Mikrometriruuvilla mitattaessa asteikon nollakohta onkin aina muistettava tarkastaa. Jos nollakohtaa vastaa jokin muu lukema kuin nolla, korjataan mittauslukemaa vähentämällä nollakorjaus etumerkkeineen saadusta mikrometriruuvin lukemasta. Kuvan 1. alanurkan tilanteessa mikrometriruuvin nollalukema on +0,01 mm. e h c b d a f g a = runko, b = ruuvikierre, c = alasin, d = sylinteriputki, e = asteikko, f = lukematarkkuus, g = lukitus, h = kitkajarru Kuva 1.. Mikrometriruuvi. Mikrometriruuvilla mitattaessa kappale Yläasteikko asetetaan kuvan 1. mukaisesti ruuvikierteen ja alasimen väliin ja käännetään kitkajarrusta ruuvi mittausasentoon. Kuvassa käytössä on mikrometriruuvi, jonka kierteen nousu on 0,5 mm. Tässä mikrometri- Ala-asteikko ruuvissa mittauslukeman kokonaiset millimetrit luetaan yläasteikolta ja puolikkaat Kuva 1.. Mikrometriruuvilla mittaaminen. ala-asteikolta. Kuvan tilanteessa kokonaisia millimetrejä saadaan 15, mutta ala-asteikolta huomataan, että lukemaa 15,5 vastaava viiva on vasta tulossa näkyviin, jolloin puolikkaita millimetrejä ei tässä ole. Murto-osat luetaan sylinteriputken reunassa olevalta asteikolta ja kuvassa lukema on 0. Mittaustulos on siten (15 + 0,0 + 0,0) = 15,0 mm. Kuvan 1. alareunassa näkyvä nollakorjaus huomioiden mittaustulokseksi saadaan 15,0 mm 0,01 mm = 15,9 mm.

10 Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 5. Punnitseminen Kevyitä kappaleita, joiden massa on alle 00 g, punnitaan opetuslaboratoriossa kuvassa 1.5 a) näkyvällä digitaalisella analyysivaa alla. Painavampia kappaleita punnittaessa käytetään kuvassa 1.5 b) esitettyä orsivaakaa, jonka käyttöön tutustut lähemmin Fysiikan laboratoriotyöt kurssissa. a) b) Ovet Kappale Nollaus (Tare) On/Off Kuva 1.5. a) Digitaalinen analyysivaaka b) Orsivaaka.. Ennakkotehtävät Ratkaise seuraavat tehtävät ennen saapumista työvuorolle. Palauta ratkaisusi työn ohjaajalle. d 1 d 1. Tutkittava kappale on oheisen kuvan mukainen h sylinterirengas, jonka ulkohalkaisija on d 1, sisähalkaisija on d ja korkeus on h. Johda renkaan tilavuudelle V yhtälö h V = p ( d1 - d ). (1.1) Kuva 1.6. Tutkittava sylinterirengas.. Osoita liitteessä 1 annettujen ohjeiden avulla, että tilavuuden absoluuttisen virheen yläraja D V voidaan laskea yhtälöstä DV phd -phd + 1 p Dd1 Dd + ( d1 - d ) Dh. (1.)

11 6 PERUSMITTAUKSIA. Mittaukset Valitse työn ohjaajan antamasta kokoelmasta tutkittavaksesi yksi metallirengas. Tarkastele valitsemaasi kappaletta ja yritä päätellä, mitä metallia se voisi olla..1 Kappaleen tilavuus Mittaa valitsemasi kappaleen halkaisijat kymmenestä eri kohdasta työntömitalla ja korkeus samoin kymmenestä kohdasta mikrometriruuvilla. Kirjaa ylös käyttämiesi mittalaitteiden lukematarkkuudet ja muista tarkastaa myös nollakorjaukset.. Kappaleen massa Kappaleen punnituksessa käytetään kuvassa 1.5 a) esitettyä analyysivaakaa. Tarkasta vaa an nollakohta ennen mittausta ja punnitse kappale sitten ohjaajan antamien ohjeiden mukaan. Kirjaa mittauspöytäkirjaan ylös punnitustulos sekä massan virheenä käytettävä vaa an lukematarkkuus. 5. Mittaustulosten käsittely ja tulosten luotettavuuden arviointi 5.1 Kappaleen tilavuuden määritys Laske tutkimasi kappaleen ulko- ja sisähalkaisijoiden sekä korkeuden keskiarvot. Laske tämän jälkeen yksittäisten mittaustulostesi poikkeamat keskiarvosta. Nyt voit määrittää halkaisijoiden ja korkeuden absoluuttisten virheiden ylärajat D d1, D d ja D h vertaamalla mitan lukematarkkuutta ja suurinta poikkeamaa keskiarvosta toisiinsa. Tee halkaisijoiden ja korkeuden keskiarvoihin mahdolliset nollakorjaukset ja laske tämän jälkeen kappaleen tilavuus yhtälöstä (1.1). Määritä sitten tilavuuden absoluuttisen virheen yläraja lausekkeen (1.) avulla sijoittamalla siihen määrittämäsi halkaisijoiden ja korkeuden absoluuttisten virheiden ylärajat. Laske lisäksi tilavuuden suhteellisen virheen yläraja D V V.. Metallin tiheyden määritys Aineen tiheydellä r tarkoitetaan sen massan m ja tilavuuden V suhdetta, ts. m r =. (1.) V

12 Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 7 Sijoita määrittämäsi kappaleen massa ja edellä laskemasi tilavuus yhtälöön (1.) ja laske metallin tiheys. Muodosta sitten yhtälön (1.) perusteella aineen tiheyden luonnollisen logaritmin ln r lauseke massan m ja tilavuuden V luonnollisten logaritmien ln m ja ln V avulla. Määritä tiheyden suhteellisen virheen D r r ylärajan lauseke Liitteen 1 avulla ja sijoita saamaasi lausekkeeseen mittaamasi massan arvo m sekä sen virheraja D m ja edellä laskemasi tilavuuden suhteellisen virheen yläraja D V V. Laske vielä näin saamasi suhteellisen virheen ylärajan avulla tiheyden absoluuttisen virheen Dr yläraja. 6. Lopputulokset ja johtopäätökset Ilmoita lopputuloksina tutkimasi kappaleen tilavuus ja määrittämäsi metallin tiheys sekä niiden absoluuttiset ja suhteelliset virheet. Työselostuksen tärkeässä Johtopäätökset kappaleessa voit tarkastella omia mittaustuloksiasi kriittisesti, kuinka luotettavia ne mielestäsi ovat. Voit myös pohtia sitä, arvasitko oikein, mitä metallia tutkimasi kappale oli. Tarkastele myös työn opetuksellisia tavoitteita, opitko niitä asioita, joista kappaleessa 1. kerrottiin. Tulisiko mieleesi jotain, millä oppimistasi voitaisiin parantaa?

13 OULUN YLIOPISTO Työn suorittaja: FYSIIKAN OPETUSLABORATORIO Mittauspäivä: / 0 klo - Fysiikan laboratoriotyöt 1 Työn ohjaaja: MITTAUSPÖYTÄKIRJA PERUSMITTAUKSIA 1. Kappaleen tilavuus Keskiarvot d 1 (mm) d (mm) h (mm) Mittaustarkkuudet: Työntömitta: Mikrometri: d 1 d Nollakorjaukset: Työntömitta: Mikrometri: h. Kappaleen massa m = Dm = Ohjaajan allekirjoitus

14 Fysiikan laboratoriotyöt 1 Perusmittauksia Tekijän tiedot: Nimi ja sähköpostiosoite Koulutusohjelma Päiväys: Mittausten suorituspäivä Työn ohjaajan nimi:

15 Perusmittauksia 1. Työn tarkoitus Kuvaa lyhyesti ja täsmällisesti työn kohteena olleet ilmiöt, käytetyt mittausmenetelmät sekä ne tutkittavat suureet, joiden arvot oli määritettävä. Ilmaise suureet sanallisesti, ei symbolein. Tässä työssä voisit kirjoittaa esimerkiksi seuraavaa: Työn tarkoituksena oli saada selville metallin tiheys määrittämällä metallista valmistetun sylinterirenkaan tilavuus pituuden mittauksilla ja massa punnitsemalla. Lisäksi tarkoituksena oli opetella käyttämään perusmittausvälineitä, arvioimaan mittaustulosten luotettavuutta ja laatimaan työstä raportti.. Teoria Kirjoita tähän kappaleeseen lyhyt katsaus työn teoriaan. Esitä kaikki tarvittavat yhtälöt numeroituina ja ilman johtoa. Määrittele yhtälöissä esiintyvät suureiden symbolit yksikäsitteisesti. Voit käyttää esityksen pohjana työohjetta, luentoja tai muuta kirjallisuutta. Esitä kuitenkin asia omin sanoin kopioimatta lähteen tekstiä sellaisenaan. Tutkitun sylinterirenkaan tilavuus V saadaan yhtälöstä h V d1 d, (1) missä h on sylinterin korkeus ja d 1 ja d ovat sen ulko- ja sisähalkaisijat. Metallin tiheys on m, () V missä m on metallista valmistetun sylinterin massa ja V on sen tilavuus.. Mittausmenetelmät Esittele koelaitteisto ja kuvaa suoritetut mittaukset siten, että lukija voi esityksesi perusteella tarvittaessa toistaa mittaukset. Jos työssä käytettiin useita välineitä, voit esittää ne esimerkiksi luettelona. Sylinterirenkaan halkaisijat mitattiin työntömitalla ja korkeus mikrometriruuvilla. Luotettavuuden parantamiseksi halkaisijat ja korkeus mitattiin kymmenestä eri kohdasta. Kappaleen massa määritettiin punnitsemalla kappale digitaalisella analyysivaa alla.

16 Perusmittauksia. Mittaustulokset ja niiden käsittely Tämän kappaleen on tarkoitus kertoa lukijalle, miten pääset mittaustuloksistasi lopputuloksiin. Kerro, että lukija voi tarkastaa alkuperäiset havaintoarvosi liitteenä olevasta mittauspöytäkirjasta. Sijoita mittaustulokset teoriaosassa esitettyihin yhtälöihin, joihin viittaat numeroin. Kirjoita mallisijoitus kustakin laskettavasta suureesta yksikköineen näkyviin. Käytä laskuissa riittävää, mutta järkevää numeerista tarkkuutta. Seuraavassa on esimerkki siitä, millainen tämä kappale voisi olla tässä työssä. Välittömät mittaustulokset löytyvät liitteenä olevasta mittauspöytäkirjasta. Alla olevassa Taulukossa 1 on esitetty mittaustulosten keskiarvoina saadut kappaleen halkaisijat ja korkeus. Lisäksi siitä löytyvät mittojen nollalukemat sekä halkaisijoiden ja korkeuden nollakorjatut arvot. Mittaustulosten luotettavuuden arvioinnissa tarvitaan mittaustulosten absoluuttisia virherajoja. Ne on määritetty käyttäen taulukossa mittojen lukematarkkuuksia sekä suurimpia poikkeamia halkaisijoiden ja korkeuden keskiarvoista. Taulukko 1. Mittaustulokset ja niiden virherajat. Ulkohalkaisija d 1 (mm) Sisähalkaisija d (mm) Korkeus h (mm) Keskiarvo 70,70 5,50 15,0 Mittojen nollalukemat 0,00 0,00 0,01 Nollakorjattu keskiarvo 70,70 5,50 15,9 Mitan lukematarkkuus 0,05 0,05 0,01 Suurin poikkema keskiarvosta 0,0 0,0 0,0 Absoluuttinen virhe 0,05 0,05 0,0 Virheeksi valitaan suurempi näistä Sijoittamalla Taulukossa 1 näkyvät lihavoidut halkaisijoiden ja korkeuden arvot yhtälöön (1) kappaleen tilavuudeksi saadaan V h 15,9 mm d d 70,70 5,50 mm 59,5015 mm 5,9 1 cm. Edellä lasketun tilavuuden V ja kappaleen massan m = 95,770 g avulla metallin tiheydeksi saadaan yhtälöstä () m 95,770 g g g, ,706. V 5,95015 cm cm cm

17 Perusmittauksia 5. Tulosten luotettavuuden arviointi Voit esittää arvioita tulosten luotettavuudesta erillisessä omassa kappaleessaan tai voit myös yhdistää tämän kappaleen mittaustulosten käsittelyyn, jolloin voit otsikoida kappaleen Mittaustulosten käsittely ja luotettavuuden arviointi. Tässä työssä tilavuuden ja tiheyden satunnaisvirhettä arvioidaan kokonaisdifferentiaalia käyttäen. Johda tähän sopivat kokonaisdifferentiaalilausekkeet ja esitä myös, mitä sijoitat lausekkeisiin virheitä laskiessasi. Seuraavassa on esimerkki siitä, millainen tämä kohta voisi olla. Arvioidaan tilavuuden ja tiheyden virheet kokonaisdifferentiaalimenetelmää käyttäen. Koska tilavuus V = V(d 1, d,h), tilavuuden absoluuttisen virheen ylärajaksi saadaan V V V d1 d d d 1 V h h, jossa esiintyvät osittaisderivaatat ovat yhtälön (1) perusteella V d h d h d ; V h d h d d h ; V d Näin ollen tilavuuden absoluuttisen virheen ylärajaksi saadaan sijoittamalla Taulukosta 1 lihavoidut mitattujen suureiden nollakorjatut keskiarvot ja niiden absoluuttisten virheiden ylärajat 1 d. V hd 1 d (70,70 1 hd 5,50 d ) mm ( d 1 d 15,9 mm 70,70 mm 15,9 mm 5,50 mm 0,05 mm 0,05 mm ) h 0,0 mm 09,91969 mm 0,1cm, jonka avulla suhteellisen virheen ylärajaksi saadaan V V 0, % 0, % 0,60 %. 5,95015 Tiheyden luonnollinen logaritmi on yhtälön () perusteella ln ln m lnv. Näin ollen metallin tiheyden suhteellisen virheen yläraja on

18 5 Perusmittauksia m ln ln 0,000 95,770 m V V m m 0, ,95015 josta saadaan absoluuttisen virheen ylärajaksi V V 100 % 0, % 0,60 %, g 0, , cm g 0, cm g 0,017 cm. 6. Lopputulokset Kokoa tähän selkeästi näkyville työn lopputuloksena saamiesi suureitten arvot eli tässä työssä kappaleen tilavuuden ja metallin tiheyden arvot. Kiinnitä erityistä huomiota lopputulosten numeeriseen tarkkuuteen ja esitysmuotoon. Ilmaise kaikki tulokset SI-yksiköissä tai sallituissa lisäyksiköissä. Vielä muistutus tulosten ilmoitustavasta: Virheraja ilmoittaa suoraan, kuinka monta yksikköä kunkin numeron epävarmuus on. Yhtään oikeata numeroa ei jätetä ilmoittamatta, ts. mukaan otetaan kaikki merkitsevät numerot. Merkitsevinä numeroina voidaan pitää numeroita, joiden epävarmuus on enintään 15 yksikköä. Lopputulos ja virheraja ilmoitetaan aina samalla desimaalisella tarkkuudella. Esimerkiksi yllä käsitellyn esimerkin tapauksessa tähän voitaisiin kirjoittaa seuraavaa: Kappaleen tilavuudeksi saatiin V (5, 0,) cm 5, cm 0,6 % ja metallin tiheydeksi saatiin g g,71 0,0,71 0,6 %. cm cm

19 6 Perusmittauksia 7. Johtopäätökset Tässä selostuksen kannalta tärkeässä kappaleessa arvioit saamiasi tuloksia ja niiden oikeellisuutta esimerkiksi vertaamalla niitä teoreettisiin tai sopivista taulukoista löytyviin arvoihin. Esitä myös muut omat päätelmäsi työstä tässä. Mikäli tuloksia ei ole kovin paljon, voit myös yhdistää kaksi viimeistä kappaletta esimerkiksi otsikon Tulokset ja niistä saadut johtopäätökset alle. Liitteet Tässä työselostuksessa liitteenä tulee olla mittauspöytäkirja.

PERUSMITTAUKSIA. 1 Työn tavoitteet

PERUSMITTAUKSIA. 1 Työn tavoitteet Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1 PERUSMITTAUKSIA 1 Työn tavoitteet Tässä työssä määrität tutkittavaksesi annetun metallikappaleen tiheyden laskemalla sen suoraan

Lisätiedot

PERUSMITTAUKSIA. 1. Työn tavoitteet. 1.1 Mittausten tarkoitus

PERUSMITTAUKSIA. 1. Työn tavoitteet. 1.1 Mittausten tarkoitus 1 PERUSMITTAUKSIA 1. Työn tavoitteet 1.1 Mittausten tarkoitus Tässä työssä määrität tutkittavaksesi annetun metallikappaleen tiheyden laskemalla sen suoraan tiheyden määritelmästä eli kappaleen massan

Lisätiedot

PERUSMITTAUKSIA. 1. Työn tavoitteet. 1.1 Mittausten tarkoitus

PERUSMITTAUKSIA. 1. Työn tavoitteet. 1.1 Mittausten tarkoitus Oulun yliopisto Fysiikan opetuslaboratorio 1 PERUSMITTAUKSIA 1. Työn tavoitteet 1.1 Mittausten tarkoitus Tässä työssä määrität tutkittavaksesi annetun metallikappaleen tiheyden laskemalla sen suoraan tiheyden

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1 LIITE 1 VIRHEEN RVIOINNIST Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 LIITE 1 VIRHEEN ARVIOINNISTA Mihin tarvitset virheen arviointia? Mittaustulokset ovat aina todellisten luonnonvakioiden ja tutkimuskohdetta kuvaavien suureiden likiarvoja, vaikka mittauslaite olisi miten

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA Oulun yliopisto Fysiikan opetuslaboratorio Fysikaalisen kemian laboratorioharjoitukset I 1 Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja

Lisätiedot

OHJEITA TYÖSELOSTUKSEN LAATIMISEEN

OHJEITA TYÖSELOSTUKSEN LAATIMISEEN OHJEITA TYÖSELOSTUKSEN LAATIMISEEN Raportointi kuuluu tärkeänä osana jokaisen fyysikon työhön riippumatta siitä työskenteleekö hän tutkijana yliopistossa, opettajana koulussa vai teollisuuden palveluksessa.

Lisätiedot

Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä

Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä Tekijä: Mikko Laine Tekijän sähköpostiosoite: miklaine@student.oulu.fi Koulutusohjelma: Fysiikka Mittausten suorituspäivä: 04.02.2013 Työn

Lisätiedot

Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus.

Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhearviointi Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhelajit A. Tilastolliset virheet= satunnaisvirheet, joita voi arvioida tilastollisin menetelmin B. Systemaattiset virheet = virheet, joita

Lisätiedot

Differentiaali- ja integraalilaskenta

Differentiaali- ja integraalilaskenta Differentiaali- ja integraalilaskenta Opiskelijan nimi: DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona

Lisätiedot

761121P-01 FYSIIKAN LABORATORIOTYÖT 1. Oulun yliopisto Fysiikan tutkinto-ohjelma Kevät 2016

761121P-01 FYSIIKAN LABORATORIOTYÖT 1. Oulun yliopisto Fysiikan tutkinto-ohjelma Kevät 2016 1 76111P-01 FYSIIKAN LABORATORIOTYÖT 1 Oulun yliopisto Fysiikan tutkinto-ohjelma Kevät 016 JOHDANTO Fysiikassa pyritään löytämään luonnosta lainalaisuuksia, joita voidaan mitata kokeellisesti ja kuvata

Lisätiedot

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1. Työn tavoitteet Tämän työn ensimmäisessä osassa tutkit kuulan, sylinterin ja sylinterirenkaan vierimistä pitkin kaltevaa tasoa.

Lisätiedot

Differentiaalilaskennan tehtäviä

Differentiaalilaskennan tehtäviä Differentiaalilaskennan tehtäviä DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona 2. Derivoimiskaavat 2.1

Lisätiedot

Mittaustarkkuus ja likiarvolaskennan säännöt

Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustulokset ovat aina likiarvoja, joilla on tietty tarkkuus Kokeellisissa luonnontieteissä käsitellään usein mittaustuloksia. Mittaustulokset ovat aina

Lisätiedot

AKK-MOTORSPORT ry Katsastuksen käsikirja ISKUTILAVUUDEN MITTAAMINEN. 1. Tarkastuksen käyttö

AKK-MOTORSPORT ry Katsastuksen käsikirja ISKUTILAVUUDEN MITTAAMINEN. 1. Tarkastuksen käyttö ISKUTILAVUUDEN MITTAAMINEN 1. Tarkastuksen käyttö 2. Määritelmät 3. Välineet 4. Olosuhteet Kyseisen ohjeen tarkoituksena on ohjeistaa moottorin iskutilavuuden mittaaminen ja laskeminen. Kyseinen on mahdollista

Lisätiedot

Fysiikan laboratoriotyöt 3 Sähkömotorinen voima

Fysiikan laboratoriotyöt 3 Sähkömotorinen voima Fysiikan laboratoriotyöt 3 Sähkömotorinen voima Työn suorittaja: Antti Pekkala (1988723) Mittaukset suoritettu 8.10.2014 Selostus palautettu 16.10.2014 Valvonut assistentti Martti Kiviharju 1 Annettu tehtävä

Lisätiedot

1 TYÖNTÖMITTA. sisä mittakärjet tuuma-nonio lukitusruuvi. 1.1 Yleistä työntömitasta

1 TYÖNTÖMITTA. sisä mittakärjet tuuma-nonio lukitusruuvi. 1.1 Yleistä työntömitasta MITTAVAUNU MATERIAALIA 1( 35) 1 TYÖNTÖMITTA 1.1 Yleistä työntömitasta Työntömitta ( tönäri, mauseri ) kuuluu tekniikan alan perustyökaluihin, joten sen oikeaoppinen käyttö on jokaisen ammattilaisen osattava.

Lisätiedot

Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014

Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014 Mittaustuloksen esittäminen Virhetarkastelua Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014 SI järjestelmä Kansainvälinen mittayksikköjärjestelmä Perussuureet ja perusyksiköt Suure Tunnus Yksikkö

Lisätiedot

Nimi: Muiden ryhmäläisten nimet:

Nimi: Muiden ryhmäläisten nimet: Nimi: Muiden ryhmäläisten nimet: PALKKIANTURI Työssä tutustutaan palkkianturin toimintaan ja havainnollistetaan sen avulla pienten ainepitoisuuksien havainnointia. Työn mittaukset on jaettu kolmeen osaan,

Lisätiedot

Työn tavoitteita. Yleistä. opetella suunnittelemaan itsenäisesti mittaus kurssin teoriatietojen pohjalta

Työn tavoitteita. Yleistä. opetella suunnittelemaan itsenäisesti mittaus kurssin teoriatietojen pohjalta FYSP102 / 1 VIERIMINEN Työn tavoitteita opetella suunnittelemaan itsenäisesti mittaus kurssin teoriatietojen pohjalta harjoitella mittauspöytäkirjan itsenäistä tekemistä sekä työselostuksen laatimista

Lisätiedot

FYSIIKAN LABORAATIOTYÖ 4 LÄMMÖNJOHTAVUUDEN, LÄMMÖNLÄPÄISYKERTOI- MEN JA LÄMMÖNSIIRTYMISKERTOIMEN MÄÄRITYS

FYSIIKAN LABORAATIOTYÖ 4 LÄMMÖNJOHTAVUUDEN, LÄMMÖNLÄPÄISYKERTOI- MEN JA LÄMMÖNSIIRTYMISKERTOIMEN MÄÄRITYS FYSIIKAN LABORAATIOTYÖ 4 LÄMMÖNJOHTAVUUDEN, LÄMMÖNLÄPÄISYKERTOI- MEN JA LÄMMÖNSIIRTYMISKERTOIMEN MÄÄRITYS Työselostuksen laatija: Tommi Tauriainen Luokka: TTE7SNC Ohjaaja: Ari Korhonen Työn tekopvm: 28.03.2008

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta

Lisätiedot

Tee kokeen yläreunaan pisteytysruudukko. Valitse kuusi tehtävää seuraavista kahdeksasta. Perustele vastauksesi!

Tee kokeen yläreunaan pisteytysruudukko. Valitse kuusi tehtävää seuraavista kahdeksasta. Perustele vastauksesi! MAA Loppukoe 70 Jussi Tyni Tee pisteytysruudukko konseptin yläreunaan! Vastauksiin välivaiheet, jotka perustelevat vastauksesi! Lue ohjeet huolellisesti! Tee kokeen yläreunaan pisteytysruudukko Valitse

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot

Torsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473

Torsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473 Torsioheiluri IIT3S Selostuksen laatija: Eerik Kuoppala Ryhmä B3: Eerik Kuoppala G904 Petteri Viitanen G8473 Mittauspäivämäärä:..4 Selostuksen jättöpäivä: 4.3.4 Torsioheilurin mitatuilla neljän jakson

Lisätiedot

PHYS-A1110 Laboratoriotyöosuus. Vastaava opettaja Jani Sainio puh: 050-5756914 jani.sainio@aalto.fi huone 138 (OK 4A)

PHYS-A1110 Laboratoriotyöosuus. Vastaava opettaja Jani Sainio puh: 050-5756914 jani.sainio@aalto.fi huone 138 (OK 4A) PHYS-A1110 Laboratoriotyöosuus Vastaava opettaja Jani Sainio puh: 050-5756914 jani.sainio@aalto.fi huone 138 (OK 4A) Kurssin järjestelyt Miksi? Fysiikka on havaintoja ja niiden selittämistä / ennustamista

Lisätiedot

Koneistusyritysten kehittäminen. Mittaustekniikka. Mittaaminen ja mittavälineet. Rahoittajaviranomainen: Satakunnan ELY-keskus

Koneistusyritysten kehittäminen. Mittaustekniikka. Mittaaminen ja mittavälineet. Rahoittajaviranomainen: Satakunnan ELY-keskus Koneistusyritysten kehittäminen Mittaustekniikka Mittaaminen ja mittavälineet Rahoittajaviranomainen: Satakunnan ELY-keskus Yleistä Pidä työkalut erillään mittavälineistä Ilmoita rikkoutuneesta mittavälineestä

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA FYSIIKAN LABORATORIOTYÖT HILA JA PRISMA MIKKO LAINE 9. toukokuuta 05. Johdanto Tässä työssä muodostamme lasiprisman dispersiokäyrän ja määritämme työn tekijän silmän herkkyysrajan punaiselle valolle. Lisäksi

Lisätiedot

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien

Lisätiedot

Tehtävänä on määrittää fysikaalisen heilurin hitausmomentti heilahdusajan avulla.

Tehtävänä on määrittää fysikaalisen heilurin hitausmomentti heilahdusajan avulla. TYÖ 9d. FYSIKAALISEN HEILURIN HITAUSMOMENTTI Tehtävä Välineet Taustatietoja Tehtävänä on määrittää fysikaalisen heilurin hitausmomentti heilahdusajan avulla. Fysikaalisena heilurina on metrin teräsmittana,

Lisätiedot

2. Määritelmät Puristussuhde: Iskutilavuuden suhde puristustilavuuteen, suhdeluku.

2. Määritelmät Puristussuhde: Iskutilavuuden suhde puristustilavuuteen, suhdeluku. PALOTILAN JA PURISTUSSUHTEEN MITTAAMINEN 1. Tarkastuksen käyttö Tämän ohjeen tarkoituksena on ohjeistaa moottorin laskennallisen puristustilavuuden ja puristussuhteen laskeminen. Tarkastuksen voi tehdä

Lisätiedot

A = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2.

A = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2. MATP53 Approbatur B Harjoitus 7 Maanantai..5. (Teht. s. 9.) Neliön muotoisesta pahviarkista, jonka sivun pituus on a, taitellaan kanneton laatikko niin, että pahviarkin nurkista leikataan neliön muotoiset

Lisätiedot

n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa.

n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. MAA 12 kertaus Funktion kuvaaja n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. Funktion nollakohta on piste, jossa f () = 0, eli kuvaaja leikkaa -akselin. Kuvaajan avulla

Lisätiedot

KUITUPUUN PINO- MITTAUS

KUITUPUUN PINO- MITTAUS KUITUPUUN PINO- MITTAUS Ohje KUITUPUUN PINOMITTAUS Ohje perustuu maa- ja metsätalousministeriön 16.6.1997 vahvistamaan pinomittausmenetelmän mittausohjeeseen. Ohjeessa esitettyä menetelmää sovelletaan

Lisätiedot

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.5.08 Kertaus K. a) Polynomi P() = + 8 on jaollinen polynomilla Q() =, jos = on polynomin P nollakohta, eli P() = 0. P() = + 8 = 54 08 +

Lisätiedot

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40

Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40 Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40 Alkuviikolla harjoitustehtäviä lasketaan harjoitustilaisuudessa. Loppuviikolla näiden harjoitustehtävien tulee olla ratkaistuina harjoituksiin

Lisätiedot

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Optisessa hilassa on hyvin suuri määrä yhdensuuntaisia, toisistaan yhtä kaukana olevia

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ MIKKO LAINE 2. kesäkuuta 2015 1. Johdanto Tässä työssä määritämme Maan magneettikentän komponentit, laskemme totaalikentän voimakkuuden ja monitoroimme magnetometrin

Lisätiedot

MAA7 7.1 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!

MAA7 7.1 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! MAA7 7.1 Koe Jussi Tyni 9.1.01 1. Laske raja-arvot: a) 5 lim 5 10 b) lim 9 71. a) Määritä erotusosamäärän avulla funktion f (). f ( ) derivaatta 1 b) Millä välillä funktio f ( ) 9 on kasvava? Perustele

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x

Lisätiedot

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

KAASULÄMPÖMITTARI. 1. Työn tavoitteet. 2. Työn taustaa

KAASULÄMPÖMITTARI. 1. Työn tavoitteet. 2. Työn taustaa Oulun ylioisto Fysiikan oetuslaboratorio Fysiikan laboratoriotyöt 3 1 AASULÄMPÖMIARI 1. yön tavoitteet ässä työssä tutustutaan kaasulämömittariin, jonka avulla lämötiloja voidaan määrittää tarkasti. aasulämömittarin

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa 8. NESTEEN VIRTAUS 8.1 Bernoullin laki Tässä laboratoriotyössä tutkitaan nesteen virtausta ja virtauksiin liittyviä energiahäviöitä. Yleisessä tapauksessa nesteiden virtauksen käsittely on matemaattisesti

Lisätiedot

AKK-MOTORSPORT ry Katsastuksen käsikirja

AKK-MOTORSPORT ry Katsastuksen käsikirja NOKKA-AKSELIEN MITTAAMINEN 1. Tarkastuksen käyttö 2. Määritelmät 3. Välineet Kyseisen ohjeen tarkoituksena on ohjeistaa moottorin nokka-akseli(e)n mittaaminen ja ominaisuuksien laskeminen. Ns. A-(perusympyrä)

Lisätiedot

Kuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V.

Kuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V. TYÖ 37. OHMIN LAKI Tehtävä Tutkitaan metallijohtimen päiden välille kytketyn jännitteen ja johtimessa kulkevan sähkövirran välistä riippuvuutta. Todennetaan kokeellisesti Ohmin laki. Välineet Tasajännitelähde

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Laboratorioraportti 3

Laboratorioraportti 3 KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt Laboratorioraportti 3 Laboratorioharjoitus 1B: Ruuvijohde Ryhmä S: Pekka Vartiainen 427971 Jari Villanen 69830F Anssi Petäjä 433978 Mittaustilanne Harjoituksessa

Lisätiedot

Fysiikan perusteet. SI-järjestelmä. Antti Haarto 21.05.2012. www.turkuamk.fi

Fysiikan perusteet. SI-järjestelmä. Antti Haarto 21.05.2012. www.turkuamk.fi Fysiikan perusteet SI-järjestelmä Antti Haarto 21.05.2012 Fysiikka ja muut luonnontieteet Ihminen on aina pyrkinyt selittämään havaitsemansa ilmiöt Kreikkalaiset filosofit pyrkivät selvittämään ilmiöt

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: MAB4 Koe Jussi Tyni 1..015 A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: 1. a. Piirrä seuraava suora mahdollisimman tarkasti ruutupaperille:

Lisätiedot

Karting tekniikkakoulutus KF 6

Karting tekniikkakoulutus KF 6 Karting tekniikkakoulutus KF 6 KF6 moottorin luokitus Tarkista aina ensin: Moottorin luokitusnumero esim. 3/KF6/14 Moottorin numero esim. 10022 Onko ko. moottori luokituskuvien mukainen ulkoisesti. 3 KF6

Lisätiedot

(b) Tunnista a-kohdassa saadusta riippuvuudesta virtausmekaniikassa yleisesti käytössä olevat dimensiottomat parametrit.

(b) Tunnista a-kohdassa saadusta riippuvuudesta virtausmekaniikassa yleisesti käytössä olevat dimensiottomat parametrit. Tehtävä 1 Oletetaan, että ruiskutussuuttimen nestepisaroiden halkaisija d riippuu suuttimen halkaisijasta D, suihkun nopeudesta V sekä nesteen tiheydestä ρ, viskositeetista µ ja pintajännityksestä σ. (a)

Lisätiedot

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0 Juuri 8 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 8.9.07 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) K. a) b) c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 6 6 a a a, a > 0 6 6 a

Lisätiedot

2. Sähköisiä perusmittauksia. Yleismittari.

2. Sähköisiä perusmittauksia. Yleismittari. TURUN AMMATTKORKEAKOULU TYÖOHJE 1 TEKNKKA FYSKAN LABORATORO 2.0 2. Sähköisiä perusmittauksia. Yleismittari. 1. Työn tavoite Tutustutaan tärkeimpään sähköiseen perusmittavälineeseen, yleismittariin, suorittamalla

Lisätiedot

VASTUSMITTAUKSIA. 1 Työn tavoitteet

VASTUSMITTAUKSIA. 1 Työn tavoitteet Oulun yliopisto Fysiikan opetuslaboratorio Sähkö ja magnetismiopin laboratoriotyöt VASTUSMTTAUKSA Työn tavoitteet Tässä työssä tutustut Ohmin lakiin ja joihinkin menetelmiin, joiden avulla vastusten resistansseja

Lisätiedot

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO OSA : YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Kolme kaverusta, Olli, Pekka

Lisätiedot

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko).

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko). TYÖ 5b LIUKUKITKAKERTOIMEN MÄÄRITTÄMINEN Tehtävä Välineet Taustatietoja On määritettävä puupalikan ja lattian välinen liukukitkakerroin Sekuntikello, metrimitta ja puupalikka (tai jääkiekko) Kitkavoima

Lisätiedot

Aineopintojen laboratoriotyöt 1. Veden ominaislämpökapasiteetti

Aineopintojen laboratoriotyöt 1. Veden ominaislämpökapasiteetti Aineopintojen laboratoriotyöt 1 Veden ominaislämpökapasiteetti Aki Kutvonen Op.nmr 013185860 assistentti: Marko Peura työ tehty 19.9.008 palautettu 6.10.008 Sisällysluettelo Tiivistelmä...3 Johdanto...3

Lisätiedot

7. Resistanssi ja Ohmin laki

7. Resistanssi ja Ohmin laki Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi

Lisätiedot

Mittaustulosten tilastollinen käsittely

Mittaustulosten tilastollinen käsittely Mittaustulosten tilastollinen käsittely n kertaa toistetun mittauksen tulos lasketaan aritmeettisena keskiarvona n 1 x = x i n i= 1 Mittaustuloksen hajonnasta aiheutuvaa epävarmuutta kuvaa keskiarvon keskivirhe

Lisätiedot

2. a- ja b-kohdat selviä, kunhan kutakuinkin tarkka, niin a-kohta 1 p b-kohta 1 p

2. a- ja b-kohdat selviä, kunhan kutakuinkin tarkka, niin a-kohta 1 p b-kohta 1 p LYHYT MATEMATIIKKA PRELIMINÄÄRIKOE 2.2.2018 RATKAISUT 1. a) 3,50 b) 56 c) 43300 km d) 15 e) 21.08 f) 23.9. kukin oikea vastaus a-kohdassa pelkkä 3,50 ilman yksikköä kelpuutetaan, samoin c-kohdassa pelkkä

Lisätiedot

Käytännöt, työselostuksen rakenne ja mittaustulosten käsittely

Käytännöt, työselostuksen rakenne ja mittaustulosten käsittely Fysiikan laboratoriotyöt Käytännöt, työselostuksen rakenne ja mittaustulosten käsittely 1 (11) 1 Yleistä ysiikan laboratoriotyöt opintojaksosta 1.1 Sisältö ja tavoitteet Opintojakson tavoitteena on perehdyttää

Lisätiedot

Muutoksen arviointi differentiaalin avulla

Muutoksen arviointi differentiaalin avulla Muutoksen arviointi differentiaalin avulla y y = f (x) y = f (x + x) f (x) dy y dy = f (x) x x x x x + x Luento 7 1 of 15 Matematiikan ja tilastotieteen laitos Turun yliopisto Muutoksen arviointi differentiaalin

Lisätiedot

Hannu Mäkiö. kertolasku * jakolasku / potenssiin korotus ^ Syöte Geogebran vastaus

Hannu Mäkiö. kertolasku * jakolasku / potenssiin korotus ^ Syöte Geogebran vastaus Perusohjeita, symbolista laskentaa Geogebralla Kielen vaihtaminen. Jos Geogebrasi kieli on vielä englanti, niin muuta se Options välilehdestä kohdasta Language suomeksi (finnish). Esittelen tässä muutaman

Lisätiedot

Ene LVI-tekniikan mittaukset ILMASTOINTIKONEEN MITTAUKSET TYÖOHJE

Ene LVI-tekniikan mittaukset ILMASTOINTIKONEEN MITTAUKSET TYÖOHJE Ene-58.4139 LVI-tekniikan mittaukset ILMASTOINTIKONEEN MITTAUKSET TYÖOHJE Aalto yliopisto LVI-tekniikka 2013 SISÄLLYSLUETTELO ILMASTOINTIKONEEN MITTAUKSET...2 1 HARJOITUSTYÖN TAVOITTEET...2 2 TUTUSTUMINEN

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

VAIHTOVIRTAPIIRI. 1 Työn tavoitteet

VAIHTOVIRTAPIIRI. 1 Työn tavoitteet Oulun yliopisto Fysiikan opetuslaboratorio Sähkö- ja magnetismiopin laboratoriotyöt AHTOTAP Työn tavoitteet aihtovirran ja jännitteen suunta vaihtelee ajan funktiona. Esimerkiksi Suomessa käytettävä verkkovirta

Lisätiedot

Trestima Oy Puuston mittauksia

Trestima Oy Puuston mittauksia Koostanut Essi Rasimus ja Elina Viro Opettajalle Trestima Oy Puuston mittauksia Kohderyhmä: 9-luokka Esitiedot: ympyrä, ympyrän piiri, halkaisija ja pinta-ala, lieriön tilavuus, yhdenmuotoisuus, yksikkömuunnokset

Lisätiedot

Virheen arviointia

Virheen arviointia 16.4.014 Vireen arviointia NUMEERISIA JA ALGEBRAL- LISIA MENETELMIÄ, MAA1 Virettä, tai oikeammin vireen suuruutta, voidaan arvioida seuraavilla tavoilla: 1. Maksimi-minimikeino (-menettely), nopea ja yksinkertainen,

Lisätiedot

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7 1 Tuotteen hinta nousee ensin 10 % ja laskee sitten 10 %, joten lopullinen hinta on... alkuperäisestä hinnasta. alkuperäisestä hinnasta. YLIOPPILASTUTKINTO- LAUTAKUNTA 23.3.2016 MATEMATIIKAN KOE PITKÄ

Lisätiedot

Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi

Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi Sivu 1/10 Fysiikan laboratoriotyöt 1 Työ numero 3 Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi Työn suorittaja: Antero Lehto 1724356 Työ tehty: 24.2.2005 Uudet mittaus tulokset: 11.4.2011

Lisätiedot

LASKE LAUDATUR CLASSWIZ- LASKIMELLA

LASKE LAUDATUR CLASSWIZ- LASKIMELLA LASKE LAUDATUR CLASSWIZ- LASKIMELLA Tiivistelmä Kevään 2019 yo-kokeiden ratkaisut ClassWiz-laskimella laskettuina. Katso lisää laskimista nettisivuiltamme www.casio-laskimet.fi Pepe Palovaara pepe.palovaara@casio.fi

Lisätiedot

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus K. a) Polynomi P() = 3 + 8 on jaollinen polynomilla Q() = 3, jos = 3 on polynomin P nollakohta, eli P(3) = 0. P(3) = 3 3 3 + 8 3 = 54 08 + 54 = 0. Polynomi P on jaollinen polynomilla Q. b) Jaetaan

Lisätiedot

MAA7 7.3 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!

MAA7 7.3 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! MAA7 7. Koe Jussi Tyni 1..01 1. Laske raja-arvot: a) 5 x lim x5 x 10 b) x 8x16 lim x x 9 x. a) Määritä erotusosamäärän avulla funktion f (5). b) Onko funktio f x vastauksesi lyhyesti 1 9 x ( ) x f ( x)

Lisätiedot

6 Numeroiden esittäminen

6 Numeroiden esittäminen 6 Numeroiden esittäminen Mittaustuloksen pyöristyssäännöt: poisjäävä < 5 viimeinen ei muutu 6,432 6,43 poisjäävä > 5 viimeinen +1 6,438 6,44 poisjäävä 5 + muita viimeinen +1 6,4351 6,44 poisjäävä = 5 lähimpään

Lisätiedot

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014 Yhtälönratkaisusta Johanna Rämö, Helsingin yliopisto 22. syyskuuta 2014 Yhtälönratkaisu on koulusta tuttua, mutta usein sitä tehdään mekaanisesti sen kummempia ajattelematta. Jotta pystytään ratkaisemaan

Lisätiedot

Ohje laboratoriotöiden tekemiseen. Sisältö. 1 Ennen laboratorioon tuloa 2. 2 Mittausten suorittaminen 2

Ohje laboratoriotöiden tekemiseen. Sisältö. 1 Ennen laboratorioon tuloa 2. 2 Mittausten suorittaminen 2 OHJE 1 (13) Ohje laboratoriotöiden tekemiseen Sisältö 1 Ennen laboratorioon tuloa 2 2 Mittausten suorittaminen 2 3 Mittauspöytäkirja 2 3.1 Mittauspöytäkirjan hyväksyminen................. 3 3.2 Tietokoneella

Lisätiedot

MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ?

MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ? MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ? Polynomiyhtälön ratkaiseminen Eri lajin yhtälöiden ratkaisutavat poikkeavat toisistaan. Siksi on tärkeää tunnistaa yhtälötyyppi. Polynomiyhtälö on yhtälö, joka voidaan

Lisätiedot

Liite 1 - Hakkuukonemittaus

Liite 1 - Hakkuukonemittaus Liite 1 - Hakkuukonemittaus Tämä ohje on MMM:n asetuksen nro 15/06, dnro 926/01/2006 liite 1. Asetus tuli voimaan 1 päivänä toukokuuta 2006. Hakkuukoneen, joka otetaan käyttöön 1 päivänä toukokuuta 2007

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

1 Tieteellinen esitystapa, yksiköt ja dimensiot

1 Tieteellinen esitystapa, yksiköt ja dimensiot 1 Tieteellinen esitystapa, yksiköt ja dimensiot 1.1 Tieteellinen esitystapa Maan ja auringon välinen etäisyys on 1 AU. AU on astronomical unit, joka määritelmänsä mukaan on maan ja auringon välinen keskimääräinen

Lisätiedot

Perusopintojen Laboratoriotöiden Työselostus 1

Perusopintojen Laboratoriotöiden Työselostus 1 Perusopintojen Laboratoriotöiden Työselostus 1 Kalle Hyvönen Työ tehty 1. joulukuuta 008, Palautettu 30. tammikuuta 009 1 Assistentti: Mika Torkkeli Tiivistelmä Laboratoriossa tehdyssä ensimmäisessä kokeessa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

Mittausepävarmuuden laskeminen

Mittausepävarmuuden laskeminen Mittausepävarmuuden laskeminen Mittausepävarmuuden laskemisesta on useita standardeja ja suosituksia Yleisimmin hyväksytty on International Organization for Standardization (ISO): Guide to the epression

Lisätiedot

FYSP104 / K2 RESISTANSSIN MITTAAMINEN

FYSP104 / K2 RESISTANSSIN MITTAAMINEN FYSP104 / K2 RESISTANSSIN MITTAAMINEN Työn tavoite tutustua erilaisiin menetelmiin, jotka soveltuvat pienten, keskisuurten ja suurten vastusten mittaamiseen Työssä tutustutaan useisiin vastusmittauksen

Lisätiedot

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai MATP15 Approbatur 1B Ohjaus Keskiviikko 4.11. torstai 5.11.015 1. (Opiskeluteht. 6 s. 0.) Määritä sellainen vakio a, että polynomilla x + (a 1)x 4x a on juurena luku x = 1. Mitkä ovat tällöin muut juuret?.

Lisätiedot

Ratkaisut Tarkastelemme kolmiota ABC, jonka sivujen pituudet ovat!, & ja ' ja niiden vastaiset korkeudet

Ratkaisut Tarkastelemme kolmiota ABC, jonka sivujen pituudet ovat!, & ja ' ja niiden vastaiset korkeudet 197 Lausu logaritmeja käyttämättä jaksollisen desimaaliluvun (kymmenysluvun) 0,578703703 kuutiojuuri jaksollisena desimaalilukuna. [S3, pitempi kurssi] Ratkaisut 1917 197 1917 Tarkastelemme kolmiota ABC,

Lisätiedot

Koesuunnitelma. Tuntemattoman kappaleen materiaalin määritys. Kon c3004 Kone ja rakennustekniikan laboratoriotyöt. Janne Mattila.

Koesuunnitelma. Tuntemattoman kappaleen materiaalin määritys. Kon c3004 Kone ja rakennustekniikan laboratoriotyöt. Janne Mattila. Kon c3004 Kone ja rakennustekniikan laboratoriotyöt Koesuunnitelma Tuntemattoman kappaleen materiaalin määritys Janne Mattila Teemu Koitto Lari Pelanne Sisällysluettelo 1. Tutkimusongelma ja tutkimuksen

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin

Lisätiedot

Puutavaran tukkimittarimittauksessa käytettävä tyvisylinterin pituus ja tarkastusmittauksen mittaussuunta

Puutavaran tukkimittarimittauksessa käytettävä tyvisylinterin pituus ja tarkastusmittauksen mittaussuunta Puutavaran tukkimittarimittauksessa käytettävä tyvisylinterin pituus ja tarkastusmittauksen mittaussuunta Puutavaranmittauksen neuvottelukunnan suosituksen 12.10.2017 taustamateriaali Suositusta muutettu

Lisätiedot

Mittalaitteen tulee toimia luotettavasti kaikissa korjuuolosuhteissa.

Mittalaitteen tulee toimia luotettavasti kaikissa korjuuolosuhteissa. LIITE 1 HAKKUUKONEMITTAUS 1(5) HAKKUUKONEMITTAUS 1 Määritelmä Hakkuukonemittauksella tarkoitetaan hakkuukoneella valmistettavan puutavaran tilavuuden mittausta valmistuksen yhteydessä koneen mittalaitteella.

Lisätiedot

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1 Työ 21 Valon käyttäytyminen rajapinnoilla Työvuoro 40 pari 1 Tero Marttila Joel Pirttimaa TLT 78949E EST 78997S Selostuksen laati Tero Marttila Mittaukset suoritettu 12.11.2012 Selostus palautettu 19.11.2012

Lisätiedot

Luentotesti 3. Kun tutkimuksen kävelynopeustietoja analysoidaan, onko näiden tutkittavien aiheuttama kato

Luentotesti 3. Kun tutkimuksen kävelynopeustietoja analysoidaan, onko näiden tutkittavien aiheuttama kato Tehtävä 1 Osana laajempaa tutkimusprojektia mitattiin kävelynopeutta yli 80-vuotiaita tutkittavia. Osalla tutkittavista oli lääkärintarkastuksen yhteydessä annettu kielto osallistua fyysistä rasitusta

Lisätiedot

Trestima Oy Puuston mittauksia

Trestima Oy Puuston mittauksia Trestima Oy Puuston mittauksia Projektissa tutustutaan puuston mittaukseen sekä yritykseen Trestima Oy. Opettaja jakaa luokan 3 hengen ryhmiin. Projektista arvioidaan ryhmätyöskentely, projektiin osallistuminen

Lisätiedot

Työ 2324B 4h. VALON KULKU AINEESSA

Työ 2324B 4h. VALON KULKU AINEESSA TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/5 Työ 2324B 4h. VALON KULKU AINEESSA TYÖN TAVOITE Työssä perehdytään optisiin ilmiöihin tutkimalla valon kulkua linssisysteemeissä ja prismassa. Tavoitteena on saada

Lisätiedot