4. SUOMEN JA SKANDINAVIAN MAGNEETTISISTA MALLEISTA JA KARTOISTA

Koko: px
Aloita esitys sivulta:

Download "4. SUOMEN JA SKANDINAVIAN MAGNEETTISISTA MALLEISTA JA KARTOISTA"

Transkriptio

1 SUOMEN JA SKANDINAVIAN MAGNEETTISISTA MALLEISTA JA KARTOISTA Edellisessä luvussa käsiteltiin globaalista laajuutta olevaa magneettikenttää ja sen kuvaamista palloharmoniseen analyysin avulla multipolimallina. Tulokseksi saadaan magneettikenttää kuvaavia maailmankarttoja, jotka esittävät magneettisen peruskentän (ytimestä peräisin olevan) jakautumisen eri puolilla maapalloa. Kansainväliseen käyttöön toimitetaan joka viides vuosi uudet referenssimallit (IGRF). Uusimmat mallit ovat vuodelta Mallit perustuvat laajaan satelliiteilla (Örsted) tehtyjen mittausten magneettikenttätiedostoon, jota päivitetään magneettisten observatorioiden sekulaarimuutostiedoilla. Kalottiharmoninen esitysmuoto on sukua palloharmoniselle analyysille. Kalotin tapauksessa pintaharmoniset funktiot ovat kalottiharmonisia funktioita. (Julkaisusta: Nevanlinna, H. et al., Spherical cap harmonic analysis applied to the Scandinavian geomagnetic field )

2 118 Usein tarvitaan joltain tietyltä alueelta siellä vallitsevan geomagneettisen kentän globaalista mallia tarkempi kuvaus. Esim. Suomen ja Skandinavian alueella on tehty useita tuhansia magneettisia mittauksia, joiden avulla voidaan saada IGRFmallia tarkempi kuvaus Pohjolan magneettikentästä. Tavoitteena on kehittää magneettikentän malli, joka kuvaa paikan suhteen hitaasti muuttuvan pääkentän sekä Maan kuoresta johtuvan paikan mukana nopeasti vaihtelevan magneettikentän. Käytettävissä oleva magneettikenttäaineisto perustuu vuonna 1965 tehtyyn Skandinavian (Suomi mukaanlukien) aeromagneettiseen kartoitukseen. Mittaukset tehtiin lentokoneesta 3 km korkeudella ja koko alue lennettiin n. 30 km linjavälein. Lopullisessa aineistossa mittapisteiden, lukumäärältään hieman yli 2000, keskimääräinen etäisyys on 30 km. Aeromagneettisias lentoja ei voitu tehdä Suomen itärajan tuntumassa. Nämä alueet mitattiin maastomittauksilla , jolloin tehtiin yli tuhat magneettikentä mittausta Suomenlahdelta Pohjois-Lappiin. Tätä aineistoa päivitetään Skandinaviassa toimivien magneettisten observatorioiden sekulaarimuutosrekisteröinneillä. Näinkin suuri pistetiheys mahdollistaa periaatteessa magneettikentän tarkan kuvauksen magneettisen kartan muodossa yhdistämällä mittauspisteiden havaintoarvot tasaarvoviivoilla. Tällöin tulokseksi saataisiin magneettiset kartat, joissa on runsaasti yksityiskohtia, mutta tavoitteena on saada yleiskuva Skandinavian alueen magneettikentästä. Tällöin havaintoarvoja joudutaan tasoittamaan jollain sopivalla menetelmällä. Tavallisesti havaintojoukkoon sovitetaan jokin paikasta riippuva funktio, josta lasketaan tasoitetut kenttäarvot. Ilmatieteen laitoksella on tällaisia malleja kehitelty jo vuosikymmeniä. Ensimmäiset Suomen kartat tehtiin 1930-luvulla ja siitä lähtien on melko säännöllisesti tuotettu erilaisia magneettikentän numeerisia ja matemaattisia malleja. Mallit päivitetään joka vuosi. Niissä pääkentän osuutta kuvataan IGRF:n avulla, joka vähennettiin pois itse havaintoarvoista. Näin saatu jäännöskenttä on peräisin siis Maan kuorikerroksen magneettisesta materiasta.

3 119 Skandinavian ja Suomen alueen magneettikentän kokonaiskomponentin (F) kalottiharmoninen malli Mallin perustana on ns. Sknadinavian aeromagneettinen kartoitus vuodelta 1965, jossa alueen magneettikenttä mitattiin lentokoneella 3 km korkeudella ja 30 km linjavälein. Kuvassa pisteviivat esittävät mittauksista laskettuja 5 min keskiarvoja. Mitattavat komponentit olivat D, H ja Z. Ympyräviiva alueen ympärilla on käytetyn pallokalotin reunaviiva (säde 10 ).

4 123 Kalottiharmoninen malli deklinaatiolle Fennoskandian alueella Sen kuvaamiseen käytettiin palloharmonisen analyysin sovellutusta pallokalotille, ns. kalottiharmonista menetelmää (KHM). Pallokalotiksi valittiin sellainen ympyräkalotti, jonka sisäpuolelle joutuu koko Skandinavia tai Suomi riippuen kumpaa aluetta mallinnettiin. Skandinavian tapauksessa kalotin säde oli 9. KHM:ssä jäännöskenttään sovitetaan kalottiharmonisia funktioita, joiden vastineet pallotapauksessa ovat eri asteiset multipolit. Tyypillisesti korkeimmat kalottiharmoniset asteluvut olivat 16 20, joiden avulla voidaan kuvata n. 200 km laajuisia yksityiskohtia magneettikentästä. Mallin avulla laadittiin Suomen alueelta mittakaavassa 1 : olevat magneettiset kartat, jotka kuvaavat magneettikentän eri komponenttien jakautumista Suomessa. Kartat on julkaistu myös Suomen Kartaston Geologian vihossa. Lisäksi valmistettiin mallista PC:ssä toimiva ohjelma, joka antaa halutuille koordinaateilla tietyt lasketut kentän komponentit. KHM:t ovat yleisesti käytössä haluttaessa kuvata mallin avulla paikallisia magneettikenttiä. Malli on kehitetty Kanadassa 1980-luvulla Kanadan Geologian Tutkimuskeskuksessa (Canadian Geological Survey, Ottawa, G. Haines). KH malleja on Kanadan ja Suomen lisäksi ainakin Italiasta, Espanjasta, Kiinasta, Australiasta ja Etelämantereelta.

5 124 Kalottiharmoninen malli on palloharmonisen mallin sovellus kalottipinnalle. Siinä havaittuja magneettikenttäarvoja kuvataan kalottiharmonisilla funktioilla. Tällaiseen malliin perustuvat Suomen alueen yleismagneettiset kartat. Kalottiharmonisten funktioiden asteluku on 20 ja mallin erotuskyky noin 200 km.

6 125

7 126 Suomen alueen erantokartta Kartta perustuu aeromagneettisiin korkealentomittauksiin 3 km korkeudella 30 km linjavälein. Havaintoaineisto on kuvattu 20. asteen kalottiharmonisella funktiolla. Magneettikentän horisontaalikomponentti Suomessa

8 127 Magneettikentän kokonaiskomponentti Suomessa

9 128 Magneettikentän inklinaatio Suomessa

10 129 Tässä kuvatut alueelliset magneettikenttämaliit antavat siis yleiskuvan magneettikentän jakautumisesta eri vektorikomponenteille. Yleensä lyhyin magneettikentän spatiaalinen aallonpituus on 200 km luokkaa. Tätä suuruusluokkaa olevat magneettikentän vaihtelut ovat peräisin maapallon kuorikerroksen magnetoituneesta materiasta. Lyhyimmät aallonpituudet, jotka tulevat maapallon ytimestä ovat suunnilleen 2500 km. Geologisia rakennetutkimuksia varten tarvitaan kuitenkin paljon yksityiskohtaisempia magneettisia mittauksia yhdistettäväksi muihin olennaisiin geofysikaalisiin suureisiin (esim. painovoima, sähkönjohtavuus jne.). Suomessa on tällaisia tarkoituksia varten suoritettu matalalentomittauksia aeromagneettisia karttoja varten. Niissä lentolinjat ovat olleet m välein ja lentokorkeus muutamia kymmeniä metrejä. Mitattava magneettikentän komponentti on skalaarinen kokonaiskenttä (B). Mittaukset aloitettiin jo luvun alussa ja niitä tehdään edelleen Geologisen Tutkimuskeskuksen toimesta.

11 130 Geologian tutkimuskuksen aeromagneettisista matalalentomittauksista koostettu anomaliakartta, joka kuvaa Maan magneettikentän kuorikerroksen magneettisuutta. Anomalia on laskettu IGRF:n suhteen. Väripalkki oikealla antaa anomalian suuruuden nanotesloina.

12 131 Geogian tutkimuskesku on myöss koonnut Suomen ja lähialueiden aeromagneettiset mittaustulokset yhtenäiseksi kartaksi (1 : ) koko Fennoskandian alueella. 5. GEOMAGNEETTISEN PÄÄKENTÄN SYNNYSTÄ Monessa yhteydessä on jo todettu, että maapallon magneettisuus aiheutuu osittain Maan kuorikerroksen ferromagneettisesta materiasta ja osittain nesteytimen sähkövirroista. Tässä luvussa tarkastellaan lähemmin nesteytimestä lähtevän Maan pääkentän syntymekanismeja. Maapallon nesteydin jakaantuu kahteen osaan: sisä- ja ulkoytimeen. Sisemmän ytimen läpimitta on n. puolet ulkoytimestä, jonka säde on noin 3500 km. Seismisten aaltojen perusteella on päätelty, että sisempi ydin on kiinteässä tilassa kun taas ulompi ydin on nestemäinen. Se koostuu rauta-nikkeliseoksesta. Lämpötila on korkea, n C ja paine yli miljoonakertainen maanpinnalla vallitsevaan ilmanpaineeseen verrattuna. Ydinnesteessä on laajoja konvektiovirtauksia, jotka aiheutuvat sisältäpäin tapahtuvasta lämpiämisestä. Lämmön muodostumisen arvellaan johtuvan tiettyjen aineiden radioaktiivisesta hajaantumisesta syvällä ytimessä. Lämpö laajentaa ydinnestettä, joka ympäristöään keveämpänä nousee ylöspäin ja jäähtyy samalla. Jäähtynyt materia painuu takaisin alaspäin ja näin syntyy ytimeen laaja-alaisia konvektiovirtauksia. Ydinneste on melko hyvin sähköä johtava. Sähkönjohtavuuden (σ) on arveltu olevan S/m (S, tulee nimestä Siemens, on johtavuuden yksikkö SI-järjestelmässä). Vertailun vuoksi mainittakoon, että kuparille, joka on tunnetusti hyvä sähkönjohde, σ = 10 8 S/m, elohopealle σ = 10 6 S/m ja merivedelle 0.2 S/m. Voidaankin sanoa, että ydinneste vastaa sähkönjohtavuudeltaan, tiheydeltään ja viskositeetiltaan elohopeanestettä (tiheys 10 g/cm 3 ) normaalilämpötilassa ja -paineessa. On siis ymmärrettävää, että ytimeen voi muodostua suuria sähkövirtoja, suuruusluokaltaan 10 9 A, jotka aiheuttavat maanpinnalla havaittavan pääkentän. Virtauksen hitaat muutokset havaitaan taas vastaavana hitaana, sekulaarisena, muutoksena magneettikentässä. Vaikka ydinneste on suhteellisen hyvin sähköä johtava, on sillä myös oma sähkövastuksensa, jonka vaikutuksesta Ohmin lain mukaan siellä kiertävät

13 132 sähkövirrat koko ajan heikkenevät. Ydinnesteessä täytyy siis olla jokin ohmista häviötä kompensoiva mekanismi, muutenhan magneettikenttä ajan mittaan katoasi pois. Ohmin laista johtuvat virtojen heikkenemisnopeus riippuu paitsi johtavuudesta (σ) niin myös ytimen koosta (L). Voidaan osoittaa, että ohminen vastus pienentää magneettikenttää eksponentiaalisesti siten, että tietyn alkutilanteen magneettikenttä B o vähenee kuten B(t) = B 0 e -t/! (5.1) missä aikavakio! = L 2 "µ o /4# 2 ja L on ytimen säde. Aika, joka kuluu tietyn lähtökentän vaimenemiseen puoleen on ns. puoliintumisaika t 1/2 = τ ln2. Maan ytimelle puoliintumisaika on n vuotta, auringolle n vuotta ja kuparipallolle, jonka halkaisija on 1 m, n. 2 s. Tämä siis merkitsee sitä, että kestäisi muutamia kymmeniä tuhansia vuosia ennenkuin magneettikenttä katoaisi maapallolta kenttää ylläpitävän mekanismin pysähdyttyä. Ohmisen vastuksen kautta tapahtuva kentän pieneneminen estetään ydinvirtauksista saatavalla lisäenergialla. Energian siirto mekaanisesta liikeenergiasta magneettiseksi energiaksi tapahtuu monimutkaisen ns. dynamoprosessin kautta. Ehtona energian saamiseksi nestevirtauksista on, että ns. Reynoldsin luku R m = µ o!lv >> 1. Reynoldsin vaatimus täyttyy siis varsin monilla johtavuuden, virtausnopeuden ja nesteytimen koon arvoilla kunhan vain niiden tulo on >> 1. Maapallon tapauksessa on arvioitu, että oletetuilla johtavuuden arvoilla riittää virtausnopeudeksi 10-7 m/s eli noin metrin vuosivauhti siirtää riittävästi energiaa magneettikentälle. Toisaalta pelkkä virtausnopeus ei ole riittävä ehto magneettikentän syntymiselle. On voitu osoittaa, että virtausgeometria on olennainen tekijä magneettikentän aikaansaamiseksi. Jos nesteytimen virtaukset ovat hyvin symmetrisiä, ei pysyvää kenttää voi muodostua, vaan se kuolee pois. Virtauskentän geometriassa täytyy olla riittävästi epäsymmetriaa ennekuin magneettikentän säilyvyys on taattu. Dynamoprosessin toimintaperiaatetta havainnollistaa kuva 4.4. Siinä on akselin ympäri pyörivä johdinkiekko. Akselin ympäri kiertää johdinsilmukka, joka on kytketty sekä akseliin että kiekon reunaan. Kiekon pyörimisliike satunnaisessa akselin suuntaisessa magneettikentässä indusoi kiekkoon akselista reunoille suuntautuvan sähkövirran. Virta ohjautuu myös silmukkaan, jossa se aiheuttaa akselin suuntaisen magneettikentän vahvistaen alkuperäistä kenttää. Näin siis mekaaninen liike-energia on saatu induktion kautta magneettikentäksi.

14 133 Yksinkertainen kiekkodynamo, sopivilla johtavuuden ja pyörimisnopeuden arvoilla pystyy ylläpitämään vakiokenttää, mutta ei esimerkiksi selittämään kentän napaisuuden vaihtumista. Kytkemällä yhteen kaksi kiekkodynamoa saadaan oskilloiva kenttä aikaan. Mekaanisen dynamon vastineita todellisessa nestytimessä on ehkä vaikea löytää, mutta dynamomalli havainnollistaa sellaisen prosessin olemassaoloa, jossa mekaaninen liike-energia synnyttää uutta magneettikenttää kompensoimaan ohmisen vastuksen kautta tapahtuvia häviöitä. Magnetohydrodynaamisesti tarkasteltuna, jossa siis otetaan huomioon nesteytimen virtauksiin vaikuttavat mekaaniset ja sähkömagneettiset voimat, magneettikentän syntymekanismit ovat hyvin monimutkaisia. Olennaisia tekijöitä ovat ytimen suuri sähkönjohtavuus, ytimen ja sitä ympäröivän vaipan erisuuruiset pyörimisnopeudet, nesteytimen konvektioliike. Ytimessä magneettikentän kenttäviivat ovat kuin "kiinni" nesteytimess, so. kenttäviivojen muoto ja liike riippuu täysin nestevirtauksista. Kuvan 4.5. tilanne esittää kuinka ytimen ja vaipan pyörimisnopeuksien ero muuttaa alunperin dipolimaisen magneettikentän toroidimaiseksi renkaaksi ytimen ympärille ja dipolikenttä vähitellen häviää. Tässä toroidi-tyyppisellä kentällä ymmärretään sellaista kenttäviivojen konfiguraatiota, jolla ei ole säteen suuntaista komponenttia lainkaa, eli sitä ei voi lainkaan havaita maanpinnalla. Poloidinen kenttä (esim. dipoli) havaitaan ytimen ulkopuolellakin. Uutta poloidista kenttää syntyy nesteytimen konvektiokeskuksissa. Niissä ylöspäin suuntautuva nestevirtaus Coriolis-voiman vaikutuksesta on kierteinen. Tästä syystä toroidimaiset kenttäviivarenkaat kiertyvät auki muodostaen poloidimaisen kentän.

15 134 Kiekkodynamo. Hevoskenkämagneetin napojen väliin on asetettu kierrettävä kuparikiekko. Kun kiekkoa pyöritetään magneettikentässä, syntyy induktiolain mukaan kiekon säteen suuntainen sähkövirta. Jos näin syntynyt virta ohjataan johdinsilmukkaan, joka kiertää kiekon akselin, synnyttää induktiovirta akselin suuntaisen magneettikentän., joka säilyy vaikka erillinen magneetti poistetaan. Näin magneettikenttä säilyy niin kauan kun kiekko on pyörimisliikkeessä. Maan magneettikentän syntymekanismi dynamoteorian mukaan. Kuvassa ympyrä esittää Maan nesteydintä joka pyörii hitaammin kuin sitä ympäröivä vaippakerros (differentiaalirotaatio). Kuvassa (a) kaartuvat viivat kuvaavat Maan dipolaarista magneettikenttää, joka ulottuu ytimestä ulos. Koska ydinneste on sähköä hvyin johtavaa, magneettikentän kenttäviivat ovat nesteeseen "liimautuneina" ja kulkevat nestevirtauksen mukana. (b) Vaipan ja ytimen eri suuruisesta pyörimisnopeudesta johtuu, että ytimeen kiinnittyneet kenttäviivat jäävät jälkeen, ne venyvät ja kaartuvat pitkin nesteytimen pintaa, jolloin dipoliosuus jatkuvasti heikkenee (c). Lopulta dipolikenttä katoaa kokonaan, kun

16 135 kaikki kenttäviivat on imetty ytimeen. Tilanne palautuu dipolimaiseksi nesteytimen konvektiovirtauksissa, joissa nesteytimeen imeytynyt magneettikenttä kelautuu auki muodostaen pieniä silmukoita, joiden summakenttä palauttaa dipolikomponentin takaisin (f).!b!t = 1!µo " 2 B + "#(v # B) Jos magneettikentän muutos ( B/ t) on vähintäin nolla, niin integroitaessa yli tieyn aikavälin ( t) magneettikenttä säilyy. Yhtälön oikean puolen 1. termi on magneettikikentän eksponentiaalista vaimenemista kuvaava ns. diffuusiotermi (kts. yhtälö 5.1). Se aina heikentää magneettikenttää. Oikean puolen toinen termi on induktiovaiktusta kuvaava, missä ytimen virtaus (v) yhdessä magneettikentän kanssa synnyttää uutta magneettikenttää. Jos se on suurempi kuin diffuusiotermi, magneettikenttä säilyy.

Maapallon magneettisen peruskentän aikavaihtelujen ääriarvoja

Maapallon magneettisen peruskentän aikavaihtelujen ääriarvoja Maapallon magneettisen peruskentän aikavaihtelujen ääriarvoja Heikki Nevanlinna Ilmatieteen laitos, Avaruus ja yläilmakehä heikki.nevanlinna@fmi.fi Abstract. A brief review is given about the geomagnetic

Lisätiedot

IL Dnro 46/400/2016 1(5) Majutveden aallokko- ja virtaustarkastelu Antti Kangas, Jan-Victor Björkqvist ja Pauli Jokinen

IL Dnro 46/400/2016 1(5) Majutveden aallokko- ja virtaustarkastelu Antti Kangas, Jan-Victor Björkqvist ja Pauli Jokinen IL Dnro 46/400/2016 1(5) Majutveden aallokko- ja virtaustarkastelu Antti Kangas, Jan-Victor Björkqvist ja Pauli Jokinen Ilmatieteen laitos 22.9.2016 IL Dnro 46/400/2016 2(5) Terminologiaa Keskituuli Tuulen

Lisätiedot

Kertaus 3 Putkisto ja häviöt, pyörivät koneet. KJR-C2003 Virtausmekaniikan perusteet

Kertaus 3 Putkisto ja häviöt, pyörivät koneet. KJR-C2003 Virtausmekaniikan perusteet Kertaus 3 Putkisto ja häviöt, pyörivät koneet KJR-C2003 Virtausmekaniikan perusteet Käsitteelliset tehtävät Käsitteelliset tehtävät Ulkopuoliset virtaukset Miten Reynoldsin luku vaikuttaa rajakerrokseen?

Lisätiedot

Fysiikka 7. Sähkömagnetismi

Fysiikka 7. Sähkömagnetismi Fysiikka 7 Sähkömagnetismi Magneetti Aineen magneettiset ominaisuudet ovat seurausta atomiydintä kiertävistä elektroneista (ytimen kiertäminen ja spin). Magneettinen vuorovaikutus Etävuorovaikutus Magneetilla

Lisätiedot

Kaksi yleismittaria, tehomittari, mittausalusta 5, muistiinpanot ja oppikirjat. P = U x I

Kaksi yleismittaria, tehomittari, mittausalusta 5, muistiinpanot ja oppikirjat. P = U x I Pynnönen 1/3 SÄHKÖTEKNIIKKA Kurssi: Harjoitustyö : Tehon mittaaminen Pvm : Opiskelija: Tark. Arvio: Tavoite: Välineet: Harjoitustyön tehtyäsi osaat mitata ja arvioida vastukseen jäävän tehohäviön sähköisessä

Lisätiedot

SMG-4500 Tuulivoima. Toisen luennon aihepiirit VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT TUULET

SMG-4500 Tuulivoima. Toisen luennon aihepiirit VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT TUULET SMG-4500 Tuulivoima Toisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmavirtoihin vaikuttavien voimien yhteisvaikutuksista syntyvät tuulet Globaalit ilmavirtaukset 1 VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT

Lisätiedot

Ch4 NMR Spectrometer

Ch4 NMR Spectrometer Ch4 NMR Spectrometer Tässä luvussa esitellään yleistajuisesti NMR spektrometrin tärkeimmät osat NMR-signaalin mittaaminen edellyttää spektrometriltä suurta herkkyyttä (kykyä mitata hyvin heikko SM-signaali

Lisätiedot

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol

Lisätiedot

Maankamaran kartoitus lentogeofysikaalisin menetelmin

Maankamaran kartoitus lentogeofysikaalisin menetelmin Maankamaran kartoitus lentogeofysikaalisin menetelmin Kaukokartoituspäivät 9.11.2007 Hanna Leväniemi, Taija Huotari, Ilkka Suppala Sisältö Aerogeofysikaaliset mittaukset yleisesti GTK:n lentomittaukset

Lisätiedot

On maamme köyhä ja siksi jää (kirjoitti Runeberg), miksi siis edes etsiä malmeja täältä? Kullan esiintymisestä meillä ja maailmalla

On maamme köyhä ja siksi jää (kirjoitti Runeberg), miksi siis edes etsiä malmeja täältä? Kullan esiintymisestä meillä ja maailmalla On maamme köyhä ja siksi jää (kirjoitti Runeberg), miksi siis edes etsiä malmeja täältä? Kullan esiintymisestä meillä ja maailmalla Tutkimusmenetelmistä GTK:n roolista ja tutkimuksista Lapissa Mikä on

Lisätiedot

Johdanto. 1 Teoriaa. 1.1 Sähkönjohtimen aiheuttama magneettikenttä

Johdanto. 1 Teoriaa. 1.1 Sähkönjohtimen aiheuttama magneettikenttä FYSP105 / K2 HELMHOLTZIN KELAT Johdanto Työssä mitataan ympyränmuotoisten johdinkelojen tuottamaa magneettikenttää kelojen läheisyydessä sekä sähkövirran että etäisyyden funtiona. Sähkömagnetismia ja työssä

Lisätiedot

Vertaileva lähestymistapa järven virtauskentän arvioinnissa

Vertaileva lähestymistapa järven virtauskentän arvioinnissa Vertaileva lähestymistapa järven virtauskentän arvioinnissa Vertaileva lähestymistapa järven virtauskentän arvioinnissa Sisältö: 1. Virtauksiin vaikuttavat tekijät 2. Tuulen vaikutus 3. Järven syvyyden

Lisätiedot

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä Työ 3A VAIHTOVIRTAPIIRI Pari Jonas Alam Antti Tenhiälä Selostuksen laati: Jonas Alam Mittaukset tehty: 0.3.000 Selostus jätetty: 7.3.000 . Johdanto Tasavirtapiirissä sähkövirta ja jännite käyttäytyvät

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät

Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät Tekijä: Mikko Laine Tekijän sähköpostiosoite: miklaine@student.oulu.fi Koulutusohjelma: Fysiikka Mittausten suorituspäivä:

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 10 Noste Nesteeseen upotettuun kappaleeseen vaikuttaa nesteen pintaa kohti suuntautuva nettovoima, noste F B Kappaleen alapinnan kohdalla nestemolekyylien

Lisätiedot

Jupiterin magnetosfääri. Pasi Pekonen 26. Tammikuuta 2009

Jupiterin magnetosfääri. Pasi Pekonen 26. Tammikuuta 2009 Jupiterin magnetosfääri Pasi Pekonen 26. Tammikuuta 2009 Johdanto Magnetosfääri on planeetan magneettikentän luoma onkalo aurinkotuuleen. Magnetosfäärissä plasman liikettä hallitsee planeetan magneettikenttä.

Lisätiedot

Magnetismi Mitä tiedämme magnetismista?

Magnetismi Mitä tiedämme magnetismista? Magnetismi Mitä tiedämme magnetismista? 1. Magneettista monopolia ei ole. 2. Sähkövirta aiheuttaa magneettikentän. 3. Magneettikenttä kohdistaa voiman johtimeen, jossa kulkee sähkövirta. Magnetismi Miten

Lisätiedot

Interseptio = se osa sateesta, mikä jää puiden latvustoon (kasvien pinnalle) haihtuakseen sateen jälkeen.

Interseptio = se osa sateesta, mikä jää puiden latvustoon (kasvien pinnalle) haihtuakseen sateen jälkeen. Interseptio = se osa sateesta, mikä jää puiden latvustoon (kasvien pinnalle) haihtuakseen sateen jälkeen. -pienentää maanpinnalle (ja siitä valuntaan joutuvaa) saapuvaa sademäärää -riippuu latvuston kokonaispinta-alasta

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio Sähkömagneettinen induktio Vuonna 1831 Michael Faraday huomasi jotakin, joka muuttaisi maailmaa: sähkömagneettisen induktion. ( Magneto-electricity ) M. Faraday (1791-1867) M.Faraday: Experimental researches

Lisätiedot

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b) MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA VIRTA- JOHDOISSA

ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA VIRTA- JOHDOISSA VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Jussi Sievänen, n86640 Tuomas Yli-Rahnasto, n85769 Markku Taikina-aho, n85766 SATE.2010 Dynaaminen Kenttäteoria ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA

Lisätiedot

TTY FYS-1010 Fysiikan työt I AA 1.2 Sähkömittauksia Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk.

TTY FYS-1010 Fysiikan työt I AA 1.2 Sähkömittauksia Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk. TTY FYS-1010 Fysiikan työt I 14.3.2016 AA 1.2 Sähkömittauksia 253342 Ilari Leinonen, TuTa, 1. vsk. 246198 Markus Parviainen, TuTa, 1. vsk. Sisältö 1 Johdanto 1 2 Työn taustalla oleva teoria 1 2.1 Oikeajännite-

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Oskari Uitto i78966 Lauri Karppi j82095 SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI Sivumäärä: 14 Jätetty tarkastettavaksi: 25.02.2008 Työn

Lisätiedot

Ene-58.4139 LVI-tekniikan mittaukset ILMAN TILAVUUSVIRRAN MITTAUS TYÖOHJE

Ene-58.4139 LVI-tekniikan mittaukset ILMAN TILAVUUSVIRRAN MITTAUS TYÖOHJE Ene-58.4139 LVI-tekniikan mittaukset ILMAN TILAVUUSVIRRAN MITTAUS TYÖOHJE Aalto yliopisto LVI-tekniikka 2013 SISÄLLYSLUETTELO TILAVUUSVIRRAN MITTAUS...2 1 HARJOITUSTYÖN TAVOITTEET...2 2 MITTAUSJÄRJESTELY

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-: SÄHKÖTEKNIIKKA Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan näiden

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

eriste C K R vahvistimeen Kuva 1. Geigerilmaisimen periaate.

eriste C K R vahvistimeen Kuva 1. Geigerilmaisimen periaate. Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 5: RADOAKTVSUUSTYÖ Teoriaa Radioaktiivista säteilyä syntyy, kun radioaktiivisen aineen ytimen viritystila purkautuu

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Tehtävänä on määrittää fysikaalisen heilurin hitausmomentti heilahdusajan avulla.

Tehtävänä on määrittää fysikaalisen heilurin hitausmomentti heilahdusajan avulla. TYÖ 9d. FYSIKAALISEN HEILURIN HITAUSMOMENTTI Tehtävä Välineet Taustatietoja Tehtävänä on määrittää fysikaalisen heilurin hitausmomentti heilahdusajan avulla. Fysikaalisena heilurina on metrin teräsmittana,

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

DEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi

DEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi DEE-4000 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen ratkaisuiksi Yleistä asiaa lämmönjohtumisen yleiseen osittaisdifferentiaaliyhtälöön liittyen Lämmönjohtumisen yleinen osittaisdifferentiaaliyhtälön

Lisätiedot

Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty.

Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty. Fysiikan laboratorio Työohje 1 / 5 Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty. 1. Työn tavoite Työn tavoitteena on tutustua ionisoivaan sähkömagneettiseen säteilyyn ja tutkia sen absorboitumista

Lisätiedot

Maxwell ja hänen yhtälönsä mitä seurasi?

Maxwell ja hänen yhtälönsä mitä seurasi? Maxwell ja hänen yhtälönsä mitä seurasi? Oleteaan tyhjiö: ei virtoja ei varauksia Muutos magneettikentässä saisi aikaan sähkökentän. Muutos vuorostaan sähkökentässä saisi aikaan magneettikentän....ja niinhän

Lisätiedot

FYSA220/K2 (FYS222/K2) Vaimeneva värähtely

FYSA220/K2 (FYS222/K2) Vaimeneva värähtely FYSA/K (FYS/K) Vaimeneva värähtely Työssä tutkitaan vaimenevaa sähköistä värähysliikettä. Erityisesti pyritään havainnollistamaan kelan inuktanssin, konensaattorin kapasitanssin ja ohmisen vastuksen suuruuksien

Lisätiedot

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 SÄHKÖSTATIIKKA JA MAGNETISMI NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 1. RESISTANSSI Resistanssi kuvaa komponentin tms. kykyä vastustaa sähkövirran kulkua Johtimen tai komponentin jännite on verrannollinen

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET DEE-0: SÄHKÖTEKNIIKAN PEUSTEET Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan

Lisätiedot

9. Polarimetria. 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä. 3. Polarisaattorit 4. CCD polarimetria

9. Polarimetria. 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä. 3. Polarisaattorit 4. CCD polarimetria 9. Polarimetria 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä 3. Polarisaattorit 4. CCD polarimetria 10.1 Stokesin parametrit 10.1

Lisätiedot

Esimerkki - Näkymätön kuu

Esimerkki - Näkymätön kuu Inversio-ongelmat Inversio = käänteinen, päinvastainen Inversio-ongelmilla tarkoitetaan (suoran) ongelman ratkaisua takaperin. Arkipäiväisiä inversio-ongelmia ovat mm. lääketieteellinen röntgentomografia

Lisätiedot

TASAVIRTAPIIRI - VASTAUSLOMAKE

TASAVIRTAPIIRI - VASTAUSLOMAKE TASAVIRTAPIIRI - VASTAUSLOMAKE Ryhmä Tekijä 1 Pari Tekijä 2 Päiväys Assistentti Täytä mittauslomake lyijykynällä. Muista erityisesti virhearviot ja suureiden yksiköt! 4 Esitehtävät 1. Mitä tarkoitetaan

Lisätiedot

&()'#*#+)##'% +'##$,),#%'

&()'#*#+)##'% +'##$,),#%' "$ %"&'$ &()'*+)'% +'$,),%' )-.*0&1.& " $$ % &$' ((" ")"$ (( "$" *(+)) &$'$ & -.010212 +""$" 3 $,$ +"4$ + +( ")"" (( ()""$05"$$"" ")"" ) 0 5$ ( ($ ")" $67($"""*67+$++67""* ") """ 0 5"$ + $* ($0 + " " +""

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina Jakso 1. iot-savartin laki, Ampèren laki, vektoripotentiaali Tässä jaksossa lasketaan erimuotoisten virtajohtimien aiheuttamien magneettikenttien suuruutta kahdella eri menetelmällä, iot-savartin lain

Lisätiedot

Maatalous-metsätieteellisen tiedekunnan valintakoe Ympäristö-ja luonnonvaraekonomia Matematiikan kysymysten oikeat vastaukset

Maatalous-metsätieteellisen tiedekunnan valintakoe Ympäristö-ja luonnonvaraekonomia Matematiikan kysymysten oikeat vastaukset Maatalous-metsätieteellisen tiedekunnan valintakoe 18.5.2015 Ympäristö-ja luonnonvaraekonomia Matematiikan kysymysten oikeat vastaukset 7. a) Matti ja Maija lähtevät kävelemään samasta pisteestä vastakkaisiin

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon 30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten

Lisätiedot

a P en.pdf KOKEET;

a P  en.pdf KOKEET; Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten

Lisätiedot

Aktiiviset piirikomponentit. DEE Piirianalyysi Risto Mikkonen

Aktiiviset piirikomponentit. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Aktiiviset piirikomponentit 1 Aktiiviset piirikomponentit Sähköenergian lähteitä Jännitelähteet; jännite ei merkittävästi riipu lähteen antamasta virrasta (akut, paristot, valokennot)

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

Fysiikka 8. Aine ja säteily

Fysiikka 8. Aine ja säteily Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian

Lisätiedot

Virrankuljettajat liikkuvat magneettikentässä ja sähkökentässä suoraan, kun F = F eli qv B = qe. Nyt levyn reunojen välinen jännite

Virrankuljettajat liikkuvat magneettikentässä ja sähkökentässä suoraan, kun F = F eli qv B = qe. Nyt levyn reunojen välinen jännite TYÖ 4. Magneettikenttämittauksia Johdanto: Hallin ilmiö Ilmiön havaitseminen Yhdysvaltalainen Edwin H. Hall (1855-1938) tutki mm. aineiden sähköjohtavuutta ja löysi menetelmän, jolla hän pystyi mittaamaan

Lisätiedot

MUISTIO No CFD/MECHA pvm 22. kesäkuuta 2011

MUISTIO No CFD/MECHA pvm 22. kesäkuuta 2011 Aalto yliopisto Insinööritieteiden korkeakoulu Virtausmekaniikka / Sovelletun mekaniikan laitos MUISTIO No CFD/MECHA-17-2012 pvm 22. kesäkuuta 2011 OTSIKKO Hilatiheyden määrittäminen ennen simulointia

Lisätiedot

Aaltomittaukset ja aaltomallilaskelmat Helsingin rannikkovesillä

Aaltomittaukset ja aaltomallilaskelmat Helsingin rannikkovesillä Aaltomittaukset ja aaltomallilaskelmat Helsingin rannikkovesillä Tilannekatsaus 18.9.2012/Päivitetty 20.11.2012 Sopimus Aaltomittaukset ja aaltomallilaskelmat Helsingin rannikkovesillä -nimisen tutkimushankkeen

Lisätiedot

Operaatiovahvistimen vahvistus voidaan säätää halutun suuruiseksi käyttämällä takaisinkytkentävastusta.

Operaatiovahvistimen vahvistus voidaan säätää halutun suuruiseksi käyttämällä takaisinkytkentävastusta. TYÖ 11. Operaatiovahvistin Operaatiovahvistin on mikropiiri ( koostuu useista transistoreista, vastuksista ja kondensaattoreista juotettuna pienelle piipalaselle ), jota voidaan käyttää useisiin eri kytkentöihin.

Lisätiedot

1 Kohina. 2 Kohinalähteet. 2.1 Raekohina. 2.2 Terminen kohina

1 Kohina. 2 Kohinalähteet. 2.1 Raekohina. 2.2 Terminen kohina 1 Kohina Kohina on yleinen ongelma integroiduissa piireissä. Kohinaa aiheuttavat pienet virta- ja jänniteheilahtelut, jotka ovat komponenteista johtuvia. Myös ulkopuoliset lähteet voivat aiheuttaa kohinaa.

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

Valitse vain kuusi tehtävää! Tee etusivun yläreunaan pisteytysruudukko! Kaikkiin tehtäviin tarvittavat välivaiheet esille!

Valitse vain kuusi tehtävää! Tee etusivun yläreunaan pisteytysruudukko! Kaikkiin tehtäviin tarvittavat välivaiheet esille! 5.4.013 Jussi Tyni 1. Selitä ja piirrä seuraavat lyhyesti: a) Kehäkulma ja keskikulma b) Todista, että kolmion kulmien summa on 180 astetta. Selitä päätelmiesi perustelut.. a) Suorakulmaisen kolmion kateetit

Lisätiedot

Jännite, virran voimakkuus ja teho

Jännite, virran voimakkuus ja teho Jukka Kinkamo, OH2JIN oh2jin@oh3ac.fi +358 44 965 2689 Jännite, virran voimakkuus ja teho Jännite eli potentiaaliero mitataan impedanssin yli esiintyvän jännitehäviön avulla. Koska käytännön radioamatöörin

Lisätiedot

Vanhankaupunginkosken ultraäänikuvaukset Simsonar Oy Pertti Paakkolanvaara

Vanhankaupunginkosken ultraäänikuvaukset Simsonar Oy Pertti Paakkolanvaara Vanhankaupunginkosken ultraäänikuvaukset 15.7. 14.11.2014 Simsonar Oy Pertti Paakkolanvaara Avaintulokset 2500 2000 Ylös vaellus pituusluokittain: 1500 1000 500 0 35-45 cm 45-60 cm 60-70 cm >70 cm 120

Lisätiedot

HAIHDUNTA. Haihdunnan määrällä on suuri merkitys biologisten prosessien lisäksi mm. vesistöjen kunnostustöissä sekä turvetuotannossa

HAIHDUNTA. Haihdunnan määrällä on suuri merkitys biologisten prosessien lisäksi mm. vesistöjen kunnostustöissä sekä turvetuotannossa HAIHDUNTA Haihtuminen on tapahtuma, missä nestemäinen tai kiinteä vesi muuttuu kaasumaiseen olotilaan vesihöyryksi. Haihtumisen määrä ilmaistaan suureen haihdunta (mm/aika) avulla Haihtumista voi luonnossa

Lisätiedot

FYSP105 / K3 RC-SUODATTIMET

FYSP105 / K3 RC-SUODATTIMET FYSP105 / K3 R-SODATTIMET Työn tavoitteita tutustua R-suodattimien toimintaan oppia mitoittamaan tutkittava kytkentä laiterajoitusten mukaisesti kerrata oskilloskoopin käyttöä vaihtosähkömittauksissa Työssä

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento : Moniulotteiset integraalit Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 26 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy

Lisätiedot

Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli

Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli Luento 8 Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli Sähkönjohtavuus Druden malli Klassiset C V -mallit Termodynamiikka kun Ei ennustetta arvosta! Klassinen

Lisätiedot

MAA2.3 Koontitehtävät 2/2, ratkaisut

MAA2.3 Koontitehtävät 2/2, ratkaisut MAA.3 Koontitehtävät /, ratkaisut. (a) 3x 5x 4 = 0 x = ( 5) ± ( 5) 4 3 ( 4) 6 (b) (x 4) = (x 4)(x + 4) (x 4)(x 4) = (x 4)(x + 4) x 8x + 6 = x 6 x 6 8x = 3 : 8 x = 4 = 5 ± 73 6 (c) 4 x + x + = 0 4 x + 4x

Lisätiedot

yleisessä muodossa x y ax by c 0. 6p

yleisessä muodossa x y ax by c 0. 6p MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y

Lisätiedot

Liikenneonnettomuuksien määrä eri talvipäivinä

Liikenneonnettomuuksien määrä eri talvipäivinä Liikenneonnettomuuksien määrä eri talvipäivinä Juha Valtonen 7.11.216 1 Liikenneonnettomuuksien määrä eri talvipäivinä Tämä muistio on liite Liikenneturvan lausuntoon ehdotuksesta muuttaa raskaiden ajoneuvojen

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

Sampomuunnos, kallistuneen lähettimen vaikutuksen poistaminen Matti Oksama

Sampomuunnos, kallistuneen lähettimen vaikutuksen poistaminen Matti Oksama ESY Q16.2/2006/4 28.11.2006 Espoo Sampomuunnos, kallistuneen lähettimen vaikutuksen poistaminen Matti Oksama GEOLOGIAN TUTKIMUSKESKUS KUVAILULEHTI 28.11.2006 Tekijät Matti Oksama Raportin laji Tutkimusraportti

Lisätiedot

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s.

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s. 7. KSS: Sähkömagnetismi (FOTON 7: PÄÄKOHDAT). MAGNETSM Magneettiset vuoovaikutukset, Magneettikenttä B = magneettivuon tiheys (yksikkö: T = Vs/m ), MAO s. 67, Fm (magneettikenttää kuvaava vektoisuue; itseisavona

Lisätiedot

Limingan Tupoksen savikivikairaus ja suoritettavat jatkotutkimukset

Limingan Tupoksen savikivikairaus ja suoritettavat jatkotutkimukset M 17/Lka-60/1 Liminka 11.1.1960 Limingan Tupoksen savikivikairaus ja suoritettavat jatkotutkimukset Pyhäkosken voimalaitostutkimuksia suoritettaessa löydetty savikivi on Suomen kallioperässä täysin ympäristöstään

Lisätiedot

Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi

Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi Sivu 1/10 Fysiikan laboratoriotyöt 1 Työ numero 3 Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi Työn suorittaja: Antero Lehto 1724356 Työ tehty: 24.2.2005 Uudet mittaus tulokset: 11.4.2011

Lisätiedot

ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ

ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ FYSP105 /1 ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ 1 Johdanto Työssä tutkitaan elektronin liikettä homogeenisessa magneettikentässä ja määritetään elektronin ominaisvaraus e/m. Tulosten analyysissa tulee kiinnittää

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Epäeuklidista geometriaa

Epäeuklidista geometriaa Epäeuklidista geometriaa 7. toukokuuta 2006 Sisältö 1 Johdanto 1 1.1 Euklidinen geometria....................... 1 1.2 Epäeuklidinen geometria..................... 2 2 Poincarén kiekko 2 3 Epäeuklidiset

Lisätiedot

Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004. Koesuunnitelma: Paineen mittaus venymäliuskojen avulla. Ryhmä C

Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004. Koesuunnitelma: Paineen mittaus venymäliuskojen avulla. Ryhmä C Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004 Koesuunnitelma: Paineen mittaus venymäliuskojen avulla Ryhmä C Aleksi Mäki 350637 Simo Simolin 354691 Mikko Puustinen 354442 1. Tutkimusongelma ja

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot

1) Maan muodon selvittäminen. 2) Leveys- ja pituuspiirit. 3) Mittaaminen

1) Maan muodon selvittäminen. 2) Leveys- ja pituuspiirit. 3) Mittaaminen 1) Maan muodon selvittäminen Nykyään on helppo sanoa, että maa on pallon muotoinen olet todennäköisesti itsekin nähnyt kuvia maasta avaruudesta kuvattuna. Mutta onko maapallomme täydellinen pallo? Tutki

Lisätiedot

Hydrologia. Säteilyn jako aallonpituuden avulla

Hydrologia. Säteilyn jako aallonpituuden avulla Hydrologia L3 Hydrometeorologia Säteilyn jako aallonpituuden avulla Ultravioletti 0.004 0.39 m Näkyvä 0.30 0.70 m Infrapuna 0.70 m. 1000 m Auringon lyhytaaltoinen säteily = ultavioletti+näkyvä+infrapuna

Lisätiedot

Häiriöt kaukokentässä

Häiriöt kaukokentässä Häiriöt kaukokentässä eli kun ollaan kaukana antennista Tavoitteet Tuntee keskeiset periaatteet radioteitse tapahtuvan häiriön kytkeytymiseen ja suojaukseen Tunnistaa kauko- ja lähikentän sähkömagneettisessa

Lisätiedot

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa Teräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808

Lisätiedot

Kuusiselän tuulivoimahanke, Rovaniemi

Kuusiselän tuulivoimahanke, Rovaniemi S U U N N IT T EL U JA T EK N IIK K A TUULIALFA OY Kuusiselän tuulivoimahanke, Rovaniemi Näkymäanalyysi ja valokuvasovitteet FCG SUUNNITTELU JA TEKNIIKKA OY P26900 FCG SUUNNITTELU JA TEKNIIKKA OY Kuusiselän

Lisätiedot

fissio (fuusio) Q turbiinin mekaaninen energia generaattori sähkö

fissio (fuusio) Q turbiinin mekaaninen energia generaattori sähkö YDINVOIMA YDINVOIMALAITOS = suurikokoinen vedenkeitin, lämpövoimakone, joka synnyttämällä vesihöyryllä pyöritetään turbiinia ja turbiinin pyörimisenergia muutetaan generaattorissa sähköksi (sähkömagneettinen

Lisätiedot

4. SÄHKÖMAGNEETTINEN INDUKTIO

4. SÄHKÖMAGNEETTINEN INDUKTIO 4. SÄHKÖMAGNEETTINEN INDUKTIO Magneettivuo Magneettivuo Φ määritellään vastaavalla tavalla kuin sähkövuo Ψ Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alan A pistetulo Φ= B A= BAcosθ

Lisätiedot

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Antti Haarto.05.013 Magneettivuo Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alavektorin A pistetulo Φ B A BAcosθ missä θ on

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

80m antenneista kotimaan työskentelyssä

80m antenneista kotimaan työskentelyssä 80m antenneista kotimaan työskentelyssä Pekka Ketonen, OH1TV 16.11.2016 OH1TV 1 Vertailua 80m kotimaan antenneista 1. Yleistä 2. λ luuppi 3. Magneettinen luuppi 4x4m 4. λ/2 dipoli 5. Yhteenvweto ja johtopäätökset

Lisätiedot

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi

Lisätiedot

Kahden laboratorion mittaustulosten vertailu

Kahden laboratorion mittaustulosten vertailu TUTKIMUSSELOSTUS NRO RTE9 (8) LIITE Kahden laboratorion mittaustulosten vertailu Sisältö Sisältö... Johdanto... Tulokset.... Lämpökynttilät..... Tuote A..... Tuote B..... Päätelmiä.... Ulkotulet.... Hautalyhdyt,

Lisätiedot

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä:

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä: Mekaaninen energia Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa Suppea energian määritelmä: Energia on kyky tehdä työtä => mekaaninen energia Ei

Lisätiedot

Johdatus matematiikkaan - tarinaosasto Tero Kilpeläinen

Johdatus matematiikkaan - tarinaosasto Tero Kilpeläinen Tero Kilpeläinen Syksy 2011 Mitä todistettavaa? Seuraavassa esimerkkejä lauseista, joiden todistukset eivät ole ilmeisiä. Aritmetiikan peruslause Jokainen luonnollinen luku voidaan esittää yksikäsitteisellä

Lisätiedot

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Oppilaiden ennakkokäsityksiä avaruuteen liittyen Aurinko kiertää Maata Vuodenaikojen vaihtelu johtuu siitä,

Lisätiedot

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys PERMITTIIVISYYS 1 Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä Siirretään varausta levystä toiseen, jolloin levyissä on varaukset ja ja levyjen välillä

Lisätiedot

Ilmastonmuutos ja ilmastomallit

Ilmastonmuutos ja ilmastomallit Ilmastonmuutos ja ilmastomallit Jouni Räisänen, Helsingin yliopiston Fysikaalisten tieteiden laitos FORS-iltapäiväseminaari 2.6.2005 Esityksen sisältö Peruskäsitteitä: luonnollinen kasvihuoneilmiö kasvihuoneilmiön

Lisätiedot

DEE Aurinkosähkön perusteet

DEE Aurinkosähkön perusteet DEE-53010 Aurinkosähkön perusteet Neljännen luennon aihepiirit Aurinkokennon virta-jännite-käyrän muodostuminen Edellisellä luennolla tarkasteltiin aurinkokennon toimintaperiaatetta kennon sisäisten tapahtumisen

Lisätiedot

Pyramidi 10 Integraalilaskenta harjoituskokeiden ratkaisut sivu 298 Päivitetty

Pyramidi 10 Integraalilaskenta harjoituskokeiden ratkaisut sivu 298 Päivitetty Pyramidi Integraalilaskenta harjoituskokeiden ratkaisut sivu 98 Päivitetty.5. Pyramidi Harjoituskokeet 6.5.7 Ensimmäinen julkaistu versio..7.7 Korjattu ulkoasua ja painovirheitä..8.7 Täydennetty ratkaisuja

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot