ME-C2400 Vuorovaikutustekniikan studio

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "ME-C2400 Vuorovaikutustekniikan studio"

Transkriptio

1 Luent ME-C2400 Vurvaikutustekniikan studi Tilastanalyysiä (liittyen tehtävään 2A): Kuinka tarkkaa n viivan piirtäminen? Tapi Takala

2 Input-menetelmän tutkiminen Kuinka mitata piirrksen tarkkuutta? ja siten input-menetelmän nnistumista tehtävänä li piirtää suria viivja eri suuntiin ei annettu pisteitä, jiden kautta viivjen pitäisi mennä Idea: etsitään syötettyä pistejukka parhaiten kuvaava sura lasketaan pisteiden etäisyydet tästä surasta è pienet etäisyydet = pisteet hyvin suralla suuret etäisyydet = pisteet hajallaan, piirtäminen ei nnistunut 2 HCI studi 2016

3 Tallennettu data Pisteet taulukituna Prcessing: lukka Table è csv-tiedst tarkastele taulukklaskimen avulla Mitä datasta vidaan lukea? minkä suuntaisia suria löydät alla levasta? 3 HCI studi 2016

4 Datan rajaaminen Analysidaan kuvita viiva kerrallaan Scatterplt auttaa rajaamaan samalle suralle tarkitetut pisteet pisteet eivät aina tasavälisiä Mistä vidaan päätellä vatk suralla? Kuinka paljn pikkeavat surasta? x y 4 HCI studi 2016

5 Pistejukka parhaiten kuvaava sura Intuitiivinen menetelmä: aseta sura pistejukn keskipisteeseen (+) kallistele suraa ja minimi pikkeamien ( ) määrä Ratkaistava: Mikä n pistejukn keskipiste? Mihin suuntaan pikkeamat mitataan? Kuinka ptimidaan kaltevuus? 5 HCI studi 2016

6 Mahdllinen lähestymistapa: regressianalyysi (ei susiteltava) Haetaan ptimaaliset arvt suran lausekkeelle y(x) = ax + b siten että virheen neliösumma minimituu e 2 n = min. missä e n yksittäisen pisteen y-pikkeama suralta e n = y n y(x n ) eli y n = ax n + b + e n Käytännössä: laske aineiststa krdinaattien keskiarvt (µ) ja varianssit µ x = x n / N ; var(x) = (x n µ x ) 2 / (N 1) ; µ y = y n / N ; cv(x,y) = (x n µ x ) (y n µ y ) / (N 1) Regressisuran y = ax + b parametrit a = cv(x,y) / var(x) ; b = µ y a µ x parametri a tunnetaan myös krrelaatikertimena keskiarvpiste (µ x, µ y ) n aineistn painpiste 6 HCI studi 2016

7 Mutta Regressimallissa x-arvt kiinnitetty ja minimidaan y-suuntaista virhettä tehtävässä x-arvja ei annettu Timiik kaiken suuntaisille surille? Parempi lisi mitata suraa vasten khtisuraa etäisyyttä è CEREBRAL MASTICATION: PRINCIPAL COMPONENT ANALYSIS (PCA) VS ORDINARY LEAST SQUARES (OLS): A VISUAL EXPLANATION 7 HCI studi 2016

8 Pääkmpnenttianalyysi Principal Cmpnent Analysis (PCA) (spii tähän tehtävään) Haetaan suuntia, jissa tilastllisen aineistn varianssi maksimituu käytetään yleensä tunnistamaan mniultteista havaintaineista parhaiten selittävät muuttujat Ensimmäinen pääkmpnentti kuvaa aineista parhaiten esittävän suran, kun minimidaan khtisurien pikkeamien määrää vastaa regressianalyysiä, js krdinaatista käännetään niin että 1.pääakseli n x-akselina è ratkaistava siis yhtä aikaa krdinaatistn kiertkulma ja suran parametrit Pikkeamien määrä kuvaa sitä, kuinka hyvin pisteet suvat suralle 2D-kuvan tapauksessa aineistn varianssi 2.pääakselin suunnassa kert tämän è spiii piirtämistarkkuuden mittariksi 8 HCI studi 2016

9 PCA laskennallisesti Mudstetaan kvarianssimatriisi var(x) cv(xy) cv(xy) var(y) ks. näiden laskentakaavat sivulta 6 (regressianalyysi) Tämän matriisin minaisvektrit vat aineistn pääakseleita, ja kunkin pääakselin suuntainen varianssi n yhtä kuin vastaava minaisarv 2 x 2 matriisin minaisarvt ja vektrit vidaan laskea helpsti, ks. Ominaisarvista suurempaa vastaava minaisvektri n 1.pääakseli, pienempää vastaa 2.pääakseli (khtisurassa 1. vasten) hum. minaisvektrin pituus ei yksikäsitteinen (siksi esiintyy vaihtehtisia kaavja) è usein nrmeerataan ja skaalataan minaisarvn neliöjuurella, jka vastaa aineistn keskihajntaa k. suunnassa DEMO : Input_PCA.pde! muunnettu Prcessingin esimerkistä Basics/Input/StringInput siten, että lasketaan kullakin hetkellä näytöllä levien pisteiden pääakselit ja piirretään ne näkyviin 9 HCI studi 2016 ks. myös linkki

ME-C2400 Vuorovaikutustekniikan studio

ME-C2400 Vuorovaikutustekniikan studio Luent xx.12.2016 ME-C2400 Vurvaikutustekniikan studi (Empiirisen) Tutkimuksen tekemisestä tutkimuksen vaiheet tieteellinen kirjittaminen esimerkkejä Tapi Takala http://www.cs.hut.fi/~tta/ Tutkimuksen vaiheet

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 09: Tasoristikon sauvaelementti, osa 2.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 09: Tasoristikon sauvaelementti, osa 2. 9/ ELEMENTTIMENETELMÄN PERSTEET SESSIO 9: Tasristikn sauvaelementti, sa. ES9E Svelletaan tasristikn sauvaelementin teriaa kuvan (a) kahden pisteviman kurmittamaan ristikkn, jnka elementtiverkssa (b) n

Lisätiedot

pienempää, joten vektoreiden välinen kulma voidaan aina rajoittaa välille o. Erikoisesti on

pienempää, joten vektoreiden välinen kulma voidaan aina rajoittaa välille o. Erikoisesti on 5 Pistetul ja sen svellutuksia Kun kahdella vektrilla, a ja b n hteinen alkupiste, niiden määräämät pulisurat jakavat tasn kahteen saan, kahteen kulmaan, jtka vat tistensa eksplementtikulmia, siis kulmia,

Lisätiedot

ME-C2400 Vuorovaikutustekniikan studio

ME-C2400 Vuorovaikutustekniikan studio Luent 11.10.2016 ME-C2400 Vurvaikutustekniikan studi Teknistä harjittelua: graafiset bjektit graafinen interakti (GUI) Tassu Takala http://www.cs.hut.fi/~tta/ Jatkuva piirtäminen ja animaati Ohjelman rakenne

Lisätiedot

KTJkii-aineistoluovutuksen tietosisältö

KTJkii-aineistoluovutuksen tietosisältö KTJkii-aineistluvutuksen tietsisältö 2008-02-12 Versi 1.05 2009-02-10 Versi 1.06 2010-02-16 Versi 1.07 2011-02-14 Versi 1.08 2012-02-13 Versi 1.09 2013-02-25 Versi 1.10 2014-02-10 Versi 1.11 Yleistä Ominaisuustietjen

Lisätiedot

Pienimmän neliösumman menetelmä (PNS)

Pienimmän neliösumman menetelmä (PNS) neliösumman Perusongelman kuvaus 1 Tarkastellaan neljää pitkää aikasarjaa q 1 = (q 11,q 21,...,q 10,1 ) T, q 2 = (q 12,q 22,...,q 10,2 ) T, q 3 = (q 13,q 23,...,q 10,3 ) T, ja p 1 = (p 11,p 21,...,p 10,1

Lisätiedot

Pienimmän neliösumman menetelmä (PNS)

Pienimmän neliösumman menetelmä (PNS) neliösumman Perusongelman kuvaus 1 Tarkastellaan neljää pitkää aikasarjaa q 1 = (q 11,q 21,...,q 10,1 ) T, q 2 = (q 12,q 22,...,q 10,2 ) T, q 3 = (q 13,q 23,...,q 10,3 ) T, ja p 1 = (p 11,p 21,...,p 10,1

Lisätiedot

Harjoituksia MAA5 - HARJOITUKSIA. 1. Olkoon ABCD mielivaltainen nelikulmio. Merkitse siihen vektorit. mutta molemmat puolet itseisarvojen sisällä????

Harjoituksia MAA5 - HARJOITUKSIA. 1. Olkoon ABCD mielivaltainen nelikulmio. Merkitse siihen vektorit. mutta molemmat puolet itseisarvojen sisällä???? MAA5 - HARJOITUKSIA 1. Olkn ABCD mielivaltainen nelikulmi. Merkitse siihen vektrit a) AB b) CA ja DB. 2. Neljäkäs eli vinneliö n suunnikkaan erikistapaus. Mitkä seuraavista väitteistä vat tsia neljäkkäässä

Lisätiedot

Pienimmän neliösumman menetelmä (PNS)

Pienimmän neliösumman menetelmä (PNS) neliösumman Perusongelman kuvaus 1 Tarkastellaan neljää pitkää aikasarjaa q 1 = (q 11,q 21,...,q 10,1 ) T, q 2 = (q 12,q 22,...,q 10,2 ) T, q 3 = (q 13,q 23,...,q 10,3 ) T, ja p 1 = (p 11,p 21,...,p 10,1

Lisätiedot

Varsinais-Suomen palvelupisteaineisto

Varsinais-Suomen palvelupisteaineisto 1 Varsinais-Sumen palvelupisteaineist - hjeet käyttöön (versi 16.12.2013) Varsinais-Sumen palvelupisteaineist Ohjeet käyttöön Lyhyesti: Varsinais-Sumesta kerätään ja pidetään ajan tasalla palveluihin liittyvää

Lisätiedot

Ongelma 1: Mistä joihinkin tehtäviin liittyvä epädeterminismi syntyy?

Ongelma 1: Mistä joihinkin tehtäviin liittyvä epädeterminismi syntyy? Ongelma : Mistä jihinkin tehtäviin liittyvä epädeterminismi syntyy? 0-0 Lasse Lensu Ongelma : Miten vidaan pelata algritmisesti? 0-0 Lasse Lensu Ongelma : Onk mahdllista pelata ptimaalisesti? 0-0 Lasse

Lisätiedot

MAA5. HARJOITUKSIA. 1. Olkoon ABCD mielivaltainen nelikulmio. Merkitse siihen vektorit a) AB

MAA5. HARJOITUKSIA. 1. Olkoon ABCD mielivaltainen nelikulmio. Merkitse siihen vektorit a) AB MAA5 HARJOITUKSIA 1 Olkn ABCD mielivaltainen nelikulmi Merkitse siihen vektrit a) AB, b) CA ja DB 2 Neljäkäs eli vinneliö n suunnikkaan erikistapaus Mitkä seuraavista väitteistä vat tsia neljäkkäässä ABCD:

Lisätiedot

Ongelma 1: Mistä joihinkin tehtäviin liittyvä epädeterminismi syntyy?

Ongelma 1: Mistä joihinkin tehtäviin liittyvä epädeterminismi syntyy? Ongelma : Mistä jihinkin tehtäviin liittyvä epädeterminismi syntyy? 0-0 Lasse Lensu Ongelma : Miten vidaan pelata algritmisesti? 0-0 Lasse Lensu Ongelma : Onk mahdllista pelata ptimaalisesti? 0-0 Lasse

Lisätiedot

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa;

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa; VITAPIIIASKUT II Tarkastellaan sinimutista vaihtjännitettä ja vaihtvirtaa; u sin π ft ja i sin π ft sekä vaihtvirtapiiriä, jssa n sarjaan kytkettyinä vastus, käämi ja kndensaattri (-piiri) ulkisen vastuksen

Lisätiedot

ME-C2400 Vuorovaikutustekniikan studio

ME-C2400 Vuorovaikutustekniikan studio Luent 18-24.11.2015 ME-C2400 Vurvaikutustekniikan studi Laitetekniikkaa ryhmätöitä varten sykkeen mittaaminen esineiden ptinen tunnistaminen vima- ja kiihtyvyysanturit LED-valt DEMOJA Tapi Takala http://www.cs.hut.fi/~tta/

Lisätiedot

Pienimmän Neliösumman menetelmä (PNS)

Pienimmän Neliösumman menetelmä (PNS) neliösumman Perusongelman kuvaus 1 Tarkastellaan neljää pitkää aikasarjaa q 1 = (q 11,q 21,...,q 10,1 ) T, q 2 = (q 12,q 22,...,q 10,2 ) T, q 3 = (q 13,q 23,...,q 10,3 ) T, ja p 1 = (p 11,p 21,...,p 10,1

Lisätiedot

Tarkemittausohje

Tarkemittausohje 2.12.2015 1 Yleistä Tämä tarkemittaus ja dkumentintihje n tarkitettu käytettäväksi kaikissa Janakkalan Veden uudisrakennus- ja saneerauskhteissa. Ohjeesta ei saa piketa ilman erillistä Janakkalan Veden

Lisätiedot

Excel 2013:n käyttö kirjallisen raportin, esim. työselostuksen tekemisessä

Excel 2013:n käyttö kirjallisen raportin, esim. työselostuksen tekemisessä Excel 2013:n käyttö kirjallisen raprtin, esim. työselstuksen tekemisessä Sisällysluettel EXCEL-TAULUKKOLASKENTAOHJELMAN PERUSTEET... 2 1. PERUSASIOITA... 2 2. TEKSTIN KIRJOITTAMINEN TAULUKKOON... 3 3.

Lisätiedot

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan

Lisätiedot

3. Kolmiulotteisten kohteiden esitys ja mallintaminen: jatkoa

3. Kolmiulotteisten kohteiden esitys ja mallintaminen: jatkoa . Klmiultteisten khteiden esitys ja mallintaminen: jatka Mnikulmiverkkn nähden ilmeisiä etuja vat: eksakti analyyttinen esitysmut klmiultteinen mudn mukkaaminen mahdllista vähemmän muistitilaa vaativa

Lisätiedot

Ominaisuus- ja toimintokuvaus Idea/Kehityspankki - sovelluksesta

Ominaisuus- ja toimintokuvaus Idea/Kehityspankki - sovelluksesta www.penspace.fi inf@penspace.fi 15.6.2015 1 Ominaisuus- ja timintkuvaus Idea/Kehityspankki - svelluksesta 1. Yleistä Kun jäljempänä puhutaan prjektista, tarkitetaan sillä mitä tahansa kehittämishjelmaa

Lisätiedot

ME-C2400 Vuorovaikutustekniikan studio

ME-C2400 Vuorovaikutustekniikan studio Luent 29.11.2016 ME-C2400 Vurvaikutustekniikan studi Ryhmätöiden aiheet ja ryhmäjak Laitetekniikkaa ryhmätöitä varten esineiden ptinen tunnistaminen vima- ja kiihtyvyysanturit sykkeen mittaaminen LED-valt

Lisätiedot

HENKKARIKLUBI. Mepco HRM uudet ominaisuudet vinkkejä eri osa-alueisiin 1 (16) 28.5.2015. Lomakkeen kansiorakenne

HENKKARIKLUBI. Mepco HRM uudet ominaisuudet vinkkejä eri osa-alueisiin 1 (16) 28.5.2015. Lomakkeen kansiorakenne 1 (16) Mepc HRM uudet minaisuudet vinkkejä eri sa-alueisiin Khta: Kuvaus: Lmakkeen kansirakenne Lmakkeen kansirakenne Lmakkeet vidaan kategrisida tiettyyn lmakekategriaan. Tämä helpttaa käyttäjiä hakemaan

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot

Fy06 Koe 20.5.2014 Kuopion Lyseon lukio (KK) 1/6

Fy06 Koe 20.5.2014 Kuopion Lyseon lukio (KK) 1/6 Fy06 Ke 0.5.04 Kupin Lysen luki (KK) /6 6p/tehtävä.. Kaksi varattua palla rikkuu lankjen varassa lähellä tisiaan. Pallt vetävät tisiaan puleensa 0,66 N vimalla. Pienemmän palln varaus n kaksinkertainen

Lisätiedot

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen

Lisätiedot

LH9-1 Eräässä prosessissa kaasu laajenee tilavuudesta V1 = 3,00 m 3 tilavuuteen V2 = 4,00 m3. Sen paine riippuu tilavuudesta yhtälön.

LH9-1 Eräässä prosessissa kaasu laajenee tilavuudesta V1 = 3,00 m 3 tilavuuteen V2 = 4,00 m3. Sen paine riippuu tilavuudesta yhtälön. LH9- Eräässä rsessissa kaasu laajenee tilavuudesta = 3, m 3 tilavuuteen = 4, m3. Sen aine riiuu tilavuudesta yhtälön 0 0e mukaan. akiilla n arvt = 6, 0 Pa, α = 0, m -3 ja v =, m 3. Laske kaasun tekemä

Lisätiedot

Kenguru 2011 Student (lukion 2. ja 3. vuosi)

Kenguru 2011 Student (lukion 2. ja 3. vuosi) sivu 1 / 8 NIMI LUOKKA/RYHMÄ Pisteet: Kengurulikan pituus: Irrta tämä vastauslmake tehtävämnisteesta. Merkitse tehtävän numern alle valitsemasi vastausvaihteht. Jätä ruutu tyhjäksi, js et halua vastata

Lisätiedot

ME-C2400 Vuorovaikutustekniikan studio

ME-C2400 Vuorovaikutustekniikan studio Luent 14.10.2015 ME-C2400 Vurvaikutustekniikan studi Ryhmätyön 1B tekniikkaa: äänen käsittely syvyyskamera (Kinect) Tapi Takala http://www.cs.hut.fi/~tta/ Ääni (digitaalisena) signaalina Äänisignaali (ilman

Lisätiedot

CAVERION OYJ:N HALLITUKSEN TYÖJÄRJESTYS. 1. Hallituksen tehtävien ja toiminnan perusta. 2. Hallituksen kokoonpano ja valintamenettely

CAVERION OYJ:N HALLITUKSEN TYÖJÄRJESTYS. 1. Hallituksen tehtävien ja toiminnan perusta. 2. Hallituksen kokoonpano ja valintamenettely CAVERION OYJ:N HALLITUKSEN TYÖJÄRJESTYS 1. Hallituksen tehtävien ja timinnan perusta Hallituksen tehtävät ja timintaperiaatteet perustuvat Sumen lainsäädäntöön, erityisesti sakeyhtiölakiin ja arvpaperimarkkinalakiin

Lisätiedot

Viikon aiheet. Funktion lineaarinen approksimointi

Viikon aiheet. Funktion lineaarinen approksimointi Viikon aiheet Funktion ääriarvot Funktion lineaarinen approksimointi Vektorit, merkintätavat, pituus, yksikkövektori, skalaarilla kertominen, kanta ja kannan vaihto Funktion ääriarvot 6 Väliarvolause Implisiittinen

Lisätiedot

1: nosturit, nostoapuvälineet 2: nostot

1: nosturit, nostoapuvälineet 2: nostot 1: nsturit, nstapuvälineet 2: nstt 2011 Putkistelementti putsi (TOT 19/08) Klme työntekijää työskenteli n. 3,2 tn putkistelementin alla, kun taakan tinen pää luiskahti nstamiseen käytetyn tangn alta ja

Lisätiedot

Fysiikan labra Powerlandissa

Fysiikan labra Powerlandissa Fysiikan labra Pwerlandissa Bumper Cars Bumper Cars n suuri autrata jka spii niin vanhille kuin nurillekin kuljettajille. Autt vat varustetut turvavöin ja autja vi ajaa yksin tai pareittain. Lievemmät

Lisätiedot

nettiluento Lapsen syntymä ja kaksikulttuurisen parisuhteen haasteet, Jaana Anglé Lisätietoa: www.duoduo.fi

nettiluento Lapsen syntymä ja kaksikulttuurisen parisuhteen haasteet, Jaana Anglé Lisätietoa: www.duoduo.fi nettiluent Lapsen syntymä ja kaksikulttuurisen parisuhteen haasteet, Jaana Anglé Lisätieta: www.dudu.fi Du nettiluent: Lapsen syntymä ja kaksikulttuurisen parisuhteen haasteet KT Jaana Anglé Tiistai 28.10.2014

Lisätiedot

5. Trigonometria. 5.1 Asteet ja radiaanit. Radiaanit saadaan lausekkeesta. Kun kulma on v radiaania ja n astetta, tästä seuraa, että 180

5. Trigonometria. 5.1 Asteet ja radiaanit. Radiaanit saadaan lausekkeesta. Kun kulma on v radiaania ja n astetta, tästä seuraa, että 180 5. Trignmetria 5.1 Asteet ja radiaanit Radiaanit saadaan lasekkeesta v b r. Kn klma n v radiaania ja n astetta, tästä seraa, että v n 180. Basic Frmat -tilaksi vimme valita Radian, Degree tai Grad. Käsittelemme

Lisätiedot

Testaustyövälineen kilpailutus tietopyyntö

Testaustyövälineen kilpailutus tietopyyntö T 1 (6) Tietpyyntö Tietpyyntö Testaustyövälineen kilpailutus tietpyyntö Valtin tiet- ja viestintätekniikkakeskus Valtri www.valtri.fi T 2 (6) Tietpyyntö Sisällysluettel 1 Tausta... 3 2 Hankinta, jhn tietpyyntö

Lisätiedot

Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

MoViE- sovelluksen käyttöohjeet

MoViE- sovelluksen käyttöohjeet MViE- svelluksen käyttöhjeet Yleistä tieta: MViE- palvelua vidaan käyttää mbiililaitteilla jk käyttämällä laitteessa levaa selainhjelmaa tai lataamalla laitteeseen ma MViE- svellus Svelluksen kautta vidaan

Lisätiedot

OPISKELIJOI- DEN TULOSTAMI- SESTA

OPISKELIJOI- DEN TULOSTAMI- SESTA OPISKELIJOI- DEN TULOSTAMI- SESTA Mika Siisknen Tiethallint tulstus_piskelijat.dcx 1 / 4 Sisällys 1. Yleistä tulstamisesta... 2 2. Vanha tulstusjärjestelmä (lasertulstimet ym.)... 3 3. Uusi tulstusjärjestelmä

Lisätiedot

CMU 119 CMU 128 CMU 119 +N CMU 155 CMU 128 +N. Asennusohje Ohjelmoitavat terrestiaalipäävahvistimet. SSTL n:o 75 631 58

CMU 119 CMU 128 CMU 119 +N CMU 155 CMU 128 +N. Asennusohje Ohjelmoitavat terrestiaalipäävahvistimet. SSTL n:o 75 631 58 Asennushje Ohjelmitavat terrestiaalipäävahvistimet CU 119 SSTL n: 75 631 58 CU 128 CU 119 N SSTL n: 75 631 60 SSTL n: 75 631 59 CU 155 CU 128 N SSTL n: 75 631 62 SSTL n: 75 631 61 13 14 4 5 3 2 6 7 295

Lisätiedot

Taulukkolaskenta ja analytiikka (A30A01000) Excel-harjoitus 9 1/8 Avoin yliopisto Huhtikuu 2016

Taulukkolaskenta ja analytiikka (A30A01000) Excel-harjoitus 9 1/8 Avoin yliopisto Huhtikuu 2016 Taulukklaskenta ja analytiikka (A30A01000) Excel-harjitus 9 1/8 Avin ylipist Huhtikuu 2016 Oppimistavitteet: - Krk- ja kannattavuuslaskelmia Excelillä, NPV- ja IRR-funktit - Datan siistiminen pistamalla

Lisätiedot

ValueFrame-NetBaron laskutus liittymä

ValueFrame-NetBaron laskutus liittymä ValueFrame-NetBarn laskutus liittymä Päiväys: 25.6.2015 Laatinut: Janne Fredman Tarkastanut: Versi: 1.0 ValueFrame-NetBarn laskutus liittymä Sisällysluettel 1 Liittymän yleiskuvaus... 3 1.1 NetBarn...

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2007

MAOL-Pisteitysohjeet Fysiikka kevät 2007 MAOL-Pisteityshjeet Fysiikka kevät 007 Tyypillisten virheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe -/3 p - laskuvirhe, epäielekäs tuls, vähintään - - vastauksessa yksi erkitsevä

Lisätiedot

ME-C2400 Vuorovaikutustekniikan studio

ME-C2400 Vuorovaikutustekniikan studio Luent 3.11.2016 ME-C2400 Vurvaikutustekniikan studi Ryhmätyön 1B tekniikkaa: äänen käsittely eleiden tunnistus karttaphjat Tapi Takala http://www.cs.hut.fi/~tta/ Ääni (digitaalisena) signaalina Äänisignaali

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus 2 7.2.2013 1. Matematiikan lukiokurssissa on esitetty, että ylöspäin aukeavan paraabelin f(x) = ax 2 +bx+c,a > 0,minimikohtasaadaan,kunf

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Hävitä kaikki käyttämättömät säiliöt, joita tämä markkinoilta poistaminen koskee.

Hävitä kaikki käyttämättömät säiliöt, joita tämä markkinoilta poistaminen koskee. 5.7.2013 Medtrnic-viite: FA586 Hyvä Paradigm-insuliinipumpun käyttäjä Tällä kirjeellä ilmitamme, että Medtrnic MiniMed pistaa vapaaehtisesti markkinilta Paradigminsuliinipumpuissamme käytettävien MMT-326A-mallin

Lisätiedot

Soundings Editor Julkaisutiedot Vianova Systems Finland Oy Soundings Editor versio 3.1.0 (Novapoint 18) 26.9.2014

Soundings Editor Julkaisutiedot Vianova Systems Finland Oy Soundings Editor versio 3.1.0 (Novapoint 18) 26.9.2014 Sundings Editr Julkaisutiedt Vianva Systems Finland Oy Sundings Editr versi 3.1.0 (Nvapint 18) 26.9.2014 2(7) Nvapint Sundings Editr, versi 3.1 Yleiskuvaus Asennus Nvapint Sundings Editr hjelma n hjelma

Lisätiedot

Taulukkolaskennan edistyneempiä piirteitä, Kuvakäsittelystä

Taulukkolaskennan edistyneempiä piirteitä, Kuvakäsittelystä Taulukklaskennan edistyneempiä piirteitä, Kuvakäsittelystä Taulukklaskennasta käsitellään edistyneempiä piirteitä harjituksen H7 phjalta Kuvankäsittelystä pikselit, väriresluuti ja kuvan kk resluuti, kuvafrmaatit

Lisätiedot

Tapa II: Piirretään voiman F vaikutussuora ja lasketaan momentti sen avulla. Kuva 3. d r. voiman F vaikutussuora

Tapa II: Piirretään voiman F vaikutussuora ja lasketaan momentti sen avulla. Kuva 3. d r. voiman F vaikutussuora VOIMAN MOMENTTI Takastellaan jäykkää kappaletta, joka pääsee kietymään akselin O ympäi. VOIMAN MOMENTTI on voiman kietovaikutusta kuvaava suue. Voiman momentti määitellään voiman F ja voiman vaen tulona:

Lisätiedot

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa. 4 Suora ja taso Ennakkotehtävät 1. a) Kappale kulkee yhdessä sekunnissa vektorin s, joten kahdessa sekunnissa kappale kulkee vektorin 2 s. Pisteestä A = ( 3, 5) päästään pisteeseen P, jossa kappale sijaitsee,

Lisätiedot

HAKUOHJE LIIKUNNALLISEN ILTAPÄIVÄTOIMINNAN KEHITTÄMISAVUSTUKSIA VARTEN LUKUVUODELLE 2007-2008

HAKUOHJE LIIKUNNALLISEN ILTAPÄIVÄTOIMINNAN KEHITTÄMISAVUSTUKSIA VARTEN LUKUVUODELLE 2007-2008 1(5) HAKUOHJE LIIKUNNALLISEN ILTAPÄIVÄTOIMINNAN KEHITTÄMISAVUSTUKSIA VARTEN LUKUVUODELLE 2007-2008 YLEISTÄ Liikunnallisen iltapäivätiminnan kehittämishankkeiden tukemiseen liittyviä valtinavustuksia jaettaessa

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

Korkeakouluhakujen uudistus 2014 - infotilaisuus korkeakoulujen vieraskielisen koulutuksen virkailijoille. Verkkopäätoimittaja Satu Meriluoto, OPH

Korkeakouluhakujen uudistus 2014 - infotilaisuus korkeakoulujen vieraskielisen koulutuksen virkailijoille. Verkkopäätoimittaja Satu Meriluoto, OPH Krkeakuluhakujen uudistus 2014 - inftilaisuus krkeakulujen vieraskielisen kulutuksen virkailijille Verkkpäätimittaja Satu Merilut, OPH Osaamisen ja sivistyksen parhaaksi Opintplku Oppijan verkkpalvelu

Lisätiedot

Paretoratkaisujen visualisointi

Paretoratkaisujen visualisointi Paretoratkaisujen visualisointi Optimointiopin seminaari - Kevät 2000 / 1 Esityksen sisältö Vaihtoehtoisten kohdevektorien visualisointi Arvopolut Palkkikaaviot Tähtikoordinaatit Hämähäkinverkkokaavio

Lisätiedot

FC HONKA AKATEMIAN ARVOT

FC HONKA AKATEMIAN ARVOT FC HONKA AKATEMIAN ARVOT JOHDANTO... 3 FC HONKA AKATEMIAN ARVOT... 4 YHTEISÖLLISYYS & YKSILÖ... 5 MEIDÄN SEURA, TOIMIMME YHDESSÄ, VOITAMME YHDESSÄ... 5 YKSILÖN KEHITYS JA YKSILÖN ONNISTUMISET PARANTAVAT

Lisätiedot

MAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5

Lisätiedot

ILMAN SISÄÄNOTTO- JA ULOSPUHALLUSLAITTEET

ILMAN SISÄÄNOTTO- JA ULOSPUHALLUSLAITTEET IVKT 2016 / SuLVI 1(7) Ohje 13 IV-kunttutkimus ILMAN SISÄÄNOTTO- JA ULOSPUHALLUSLAITTEET Tämä IV-kunttutkimushje kskee ulkilman sisäänttlaitteita ja jäteilman ulspuhalluslaitteita sekä niihin liittyviä

Lisätiedot

PITKÄAIKAISSÄILYTYKSEN AINEISTOJEN PAKETOINNIN PILOTIN SUUNNITELMA

PITKÄAIKAISSÄILYTYKSEN AINEISTOJEN PAKETOINNIN PILOTIN SUUNNITELMA PITKÄAIKAISSÄILYTYKSEN AINEISTOJEN PAKETOINNIN PILOTIN SUUNNITELMA V0.1 Tämä määrittely n sa petusministeriön Kansallinen digitaalinen kirjast hanketta (hankenumer OPM039:00/2008) SISÄLTÖ 1 Jhdant... 3

Lisätiedot

Suorista ja tasoista LaMa 1 syksyllä 2009

Suorista ja tasoista LaMa 1 syksyllä 2009 Viidennen viikon luennot Suorista ja tasoista LaMa 1 syksyllä 2009 Perustuu kirjan Poole: Linear Algebra lukuihin I.3 - I.4 Esko Turunen esko.turunen@tut.fi Aluksi hiukan 2 ja 3 ulotteisen reaaliavaruuden

Lisätiedot

Flash ActionScript osa 2

Flash ActionScript osa 2 Liiketalus syksy 2012 Flash ActinScript sa 2 Scripti-kieli Skriptikieli n tarkitettu skriptien eli kmentsarjjen tekemiseen. lyhyitä hjeita, siitä kuinka svelluksen tulisi timia Skripteillä autmatisidaan

Lisätiedot

ENERGIAN- HALLINNAN MITTAUKSET

ENERGIAN- HALLINNAN MITTAUKSET ENERGIAN- HALLINNAN MITTAUKSET VERSIO 30.6.2014 TAMPEREEN ALUEEN PALVELURAKENNUKSET ENERGIATEHOKKAIKSI Tampereen kaupunki -hje 12 30.6.2014 2 (8) -TUOTE: ENERGIANHALLINNAN MITTAUKSET Kuka tekee Kenelle

Lisätiedot

Likimääräisratkaisut ja regularisaatio

Likimääräisratkaisut ja regularisaatio Luku 3 Likimääräisratkaisut ja regularisaatio Käytännön inversio-ongelmissa annettu data y ei aina ole tarkkaa, vaan sisältää häiriöitä. Tuntemattomasta x on annettu häiriöinen data y F (x + }{{}}{{} ε.

Lisätiedot

RFID-tunnistus rengastuotannossa pilotin kokemuksia

RFID-tunnistus rengastuotannossa pilotin kokemuksia Sivu 1/5 Vastaanttajat EGLO-raprtit, LVM Versit Nr Pvm Muuts Laatija 1.0 23.5.2006 Julkinen versi Antti Virkkunen Raprtti RFID-tunnistus rengastutannssa piltin kkemuksia Yhteyshenkilöt: Antti Virkkunen

Lisätiedot

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (005) 1 Moniulotteisia todennäköisyysjakaumia Multinomijakauma Kaksiulotteinen normaalijakauma TKK (c) Ilkka

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

s = 11 7 t = = 2 7 Sijoittamalla keskimmäiseen yhtälöön saadaan: k ( 2) = 0 2k = 8 k = 4

s = 11 7 t = = 2 7 Sijoittamalla keskimmäiseen yhtälöön saadaan: k ( 2) = 0 2k = 8 k = 4 BM0A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 5, Syksy 05. (a) i. Jotta vektori c sijaitsisi a:n ja b:n virittämällä tasolla, c on voitava esittää a:n ja b:n lineaarikombinaationa. c ta + sb

Lisätiedot

DNA OY:N LAUSUNTO KUSTANNUSSUUNTAUTUNEEN HINNAN MÄÄRITTELYYN SOVELLETTAVASTA MENETELMÄSTÄ SUOMEN TELEVISIOLÄHETYSPALVELUIDEN MARKKINALLA

DNA OY:N LAUSUNTO KUSTANNUSSUUNTAUTUNEEN HINNAN MÄÄRITTELYYN SOVELLETTAVASTA MENETELMÄSTÄ SUOMEN TELEVISIOLÄHETYSPALVELUIDEN MARKKINALLA 1 (6) Vivi 1110/230/2013 DNA OY:N LAUSUNTO KUSTANNUSSUUNTAUTUNEEN HINNAN MÄÄRITTELYYN SOVELLETTAVASTA MENETELMÄSTÄ SUOMEN TELEVISIOLÄHETYSPALVELUIDEN MARKKINALLA [Liikesalaisuudet merkitty hakasulkein]

Lisätiedot

VIHI-Forssan seudun yritysten vihreän kilpailukyvyn ja innovaatioiden kehittäminen (2012-2013) Poistotekstiilit 2012, Workshop -ryhmät 1-4

VIHI-Forssan seudun yritysten vihreän kilpailukyvyn ja innovaatioiden kehittäminen (2012-2013) Poistotekstiilit 2012, Workshop -ryhmät 1-4 VIHI-Frssan seudun yritysten vihreän kilpailukyvyn ja innvaatiiden kehittäminen (2012-2013) Pisttekstiilit 2012, Wrkshp -ryhmät 1-4 HAMK Frssa 24.5.2012 1. Suljetun tekstiilimateriaalin kierrn kehittäminen

Lisätiedot

Mikroskooppi yksinkertaisimmillaan muodostuu kahdesta positiivisesta linssistä. Lähellä tutkittavaa esinettä eli objektia sijaitsee

Mikroskooppi yksinkertaisimmillaan muodostuu kahdesta positiivisesta linssistä. Lähellä tutkittavaa esinettä eli objektia sijaitsee 201 8.6 MIKROSKOOPPI Mikrskppi yksinkertaisimmillaan mudstuu kahdesta psitiivisesta linssistä. Lähellä tutkittavaa esinettä eli bjektia sijaitsee hyvin lyhytplttvälinen bjektiivilinssi ja lähellä silmää

Lisätiedot

INSPIREn määrittelyjen mukaisen tietotuotteen muodostaminen: <TEEMAN NIMI>

INSPIREn määrittelyjen mukaisen tietotuotteen muodostaminen: <TEEMAN NIMI> INSPIREn määrittelyjen mukaisen tiettutteen mudstaminen: Suunnitelma Otsikk INSPIREn määrittelyjen mukaisen tiettutteen mudstaminen: Päivämäärä Aihe/alue Tiettutteet

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Biologian yhteisvalinta 2014 / Mallivastaus Kysymys 1

Biologian yhteisvalinta 2014 / Mallivastaus Kysymys 1 Bilgian yhteisvalinta 2014 / Mallivastaus Kysymys 1 Mitkä tekijät vaikuttavat kasviplanktnin määrään Sumen järvissä? A) Aiheen käsittelyn vaatimat määritelmät: 6 p Kasviplanktnin määritelmä: levät ja sinibakteerit,

Lisätiedot

n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa.

n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. MAA 12 kertaus Funktion kuvaaja n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. Funktion nollakohta on piste, jossa f () = 0, eli kuvaaja leikkaa -akselin. Kuvaajan avulla

Lisätiedot

1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X Y Bin(Y, θ) Y Poi(λ) λ y. f X (x) (λθ)x

1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X Y Bin(Y, θ) Y Poi(λ) λ y. f X (x) (λθ)x HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 017 Harjoitus 5 Ratkaisuehdotuksia Tehtäväsarja I 1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X

Lisätiedot

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 1. (a) Tunnemme vektorit a = [ 5 1 1 ] ja b = [ 2 0 1 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien

Lisätiedot

Yrityksen maksut -palvelu. Palvelukuvaus

Yrityksen maksut -palvelu. Palvelukuvaus Yrityksen maksut -palvelu Palvelukuvaus Sisällys 1 Sanmakuvaukset... 3 1.1 Maksutimeksiant asiakkaalta pankkiin... 3 1.2 Palaute pankista asiakkaalle... 3 1.3 Maksun peruutuspyyntö... 4 2 Edellytykset...

Lisätiedot

Tutustumme Kokoomukseen

Tutustumme Kokoomukseen Tutustumme Kkmukseen Opiskelevan pienryhmän aineist Kansallisen Sivistysliitn Opintkeskus KANSIO www.kkmus.fi/kansi/aineistt/tutustumme_kkmukseen Tutustumme Kkmukseen Kkmuksen paikallisyhdistyksiin liittyy

Lisätiedot

Juuri 5 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

Juuri 5 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa. Suora Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 9..07 Ennakkotehtävät. a) Kumpaankin hintaan sisältyy perusmaksu ja minuuttikohtainen maksu. Hintojen erotus on kokonaan minuuttikohtaista

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

Muuttujaosajoukon valinta ja pienentämismenetelmät

Muuttujaosajoukon valinta ja pienentämismenetelmät Esitelmä 5 Antti Tppila sivu 1/20 Optimintipin seminaari Syksy 2010 Muuttujasajukn valinta ja pienentämismenetelmät Antti Tppila 22.9.2010 labratri Aaltylipistn teknillinen krkeakulu Esitelmä 5 Antti Tppila

Lisätiedot

3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4

3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4 Ü µ ½ ¾Ü¾µ Ü¾Ê 3.11.2006 1. Satunnaismuuttujan tiheysfunktio on ¼ ļ ܽ ܾ ÜÒµ Ä Ü½ ÜÒµ Ò Ä Ü½ ܾ ÜÒµ ܽ µ ܾ µ ÜÒ µ Ò missä tietenkin vaaditaan, että ¼. Muodosta :n ¾Ä ܽ ÜÒµ Ò ½¾ ܾ Ò ½ ¾Ü¾½µ ½ ¾Ü¾Òµ

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt QR-hajotelma ja pienimmän neliösumman menetelmä Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto PNS-ongelma PNS-ongelma

Lisätiedot

Maahantuojat: omavalvontasuunnitelman ja sen toteutumisen tarkastuslomakkeen käyttöohje

Maahantuojat: omavalvontasuunnitelman ja sen toteutumisen tarkastuslomakkeen käyttöohje Esittelijä Nurttila Annika Sivu/sivut 1 / 6 Maahantujat: mavalvntasuunnitelman ja sen tteutumisen tarkastuslmakkeen käyttöhje Tarkastuksen tavitteena n selvittää, nk maahantujalla mavalvntasuunnitelmassaan

Lisätiedot

Osoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2

Osoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2 8. Geometriset kuvaukset 8.1. Euklidiset kuvaukset 344. Esitä muodossa x = Ax + b se avaruuden E 3 peilauskuvaus, jonka symmetriatasona on x 1 3x + x 3 = 6. A = 1 3 6 6 3, b = 1 1 18. 3 6 6 345. Tason

Lisätiedot

Aloite toimitusvelvollisen myyjän taseselvitystavan muuttamisesta

Aloite toimitusvelvollisen myyjän taseselvitystavan muuttamisesta SÄHKÖKAUPPA ALOITE 1(5) Heinimäki, Leht 19.6.2014 Työ- ja elinkeinministeriö Art Rajala Alite timitusvelvllisen myyjän taseselvitystavan muuttamisesta Energiatellisuus ry ehdttaa muutsta timitusvelvllisen

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma

Lisätiedot

Kuva 1: Kojeen rakenne

Kuva 1: Kojeen rakenne 1-10 V -kiertptentimetri Tilausnr. : 2891 10 1-10 V -painikekiertptentimetri, 1s ksketin Tilausnr. : 2896 10 1-10 V -kiertptentimetri peitelevyllä Tilausnr. : 9 2891.. Käyttö- ja asennushje 1 Turvallisuushjeet

Lisätiedot

YHTEENVETO 30.9.2013 VETOLAITTEIDEN OSALTA HUOMIOITAVAT ASIAT MITTA- JA MASSAMUUTOKSEN YHTEYDESSÄ

YHTEENVETO 30.9.2013 VETOLAITTEIDEN OSALTA HUOMIOITAVAT ASIAT MITTA- JA MASSAMUUTOKSEN YHTEYDESSÄ YHTEENVETO 30.9.2013 VETOLAITTEIDEN OSALTA HUOMIOITAVAT ASIAT MITTA- JA MASSAMUUTOKSEN YHTEYDESSÄ 1. LASKENTA BPW Kraatz Oy n timinut vetlaitteiden parissa j useamman vusikymmenen ajan ja edustamamme tutemerkit

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta: LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen

Lisätiedot

M U U TO S TA L A A D U N E H D O I L L A W W W. A R T E R. F I

M U U TO S TA L A A D U N E H D O I L L A W W W. A R T E R. F I M U U TO S TA L A A D U N E H D O I L L A Auditintien painpisteitä Jussi Misi, Qualitas Fennica / Arter Oy 01/2018 09/2015 Auditinnin missi selväksi: Tutkitaan jhtamisjärjestelmän riittävyyttä ja spivuutta

Lisätiedot

1 Rajoittamaton optimointi

1 Rajoittamaton optimointi Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y

Lisätiedot

Domperidonin hyväksytyt käyttöaiheet, jotka on lueteltu alkuperäisvalmisteen CDS-asiakirjassa, ovat seuraavat:

Domperidonin hyväksytyt käyttöaiheet, jotka on lueteltu alkuperäisvalmisteen CDS-asiakirjassa, ovat seuraavat: Liite II Tieteelliset jhtpäätökset ja perusteet myyntilupien peruuttamiselle tai myyntilupien ehtjen muuttamiselle sveltuvin sin sekä yksityiskhtainen selvitys lääketurvallisuuden riskinarviintikmitean

Lisätiedot

Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt

Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa Matlab-esittelyä 1 / 20 Luennon sisältö Digress: vakio-

Lisätiedot

Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus.

Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhearviointi Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhelajit A. Tilastolliset virheet= satunnaisvirheet, joita voi arvioida tilastollisin menetelmin B. Systemaattiset virheet = virheet, joita

Lisätiedot

Hoitotieteen laitos. VALINTAKOE , Kysymykset ja arviointikriteerit

Hoitotieteen laitos. VALINTAKOE , Kysymykset ja arviointikriteerit Hittieteen laits VALINTAKOE 15.5.2013, Kysymykset ja arviintikriteerit Kysymys 1. Nimeä tieteellisen tiedn kriteerit ja määrittele niiden sisältö (5 pistettä) (sivut 24-29) Erikssn K, Isla A, Kyngäs H,

Lisätiedot

Mapu 1. Laskuharjoitus 3, Tehtävä 1

Mapu 1. Laskuharjoitus 3, Tehtävä 1 Mapu. Laskuharjoitus 3, Tehtävä Lineaarisessa approksimaatiossa funktion arvoa lähtöpisteen x 0 ympäristössä arvioidaan liikkumalla lähtöpisteeseen sovitetun tangentin kulmakertoimen mukaisesti: f(x 0

Lisätiedot

Automaatiojärjestelmät 18.3.2010 Timo Heikkinen

Automaatiojärjestelmät 18.3.2010 Timo Heikkinen Autmaatijärjestelmät 18.3.2010 Tim Heikkinen AUT8SN Malliratkaisu 1 Kerr muutamalla lauseella termin tarkittamasta asiasta! (2 p / khta, yhteensä 6 p) 1.1 Hajautus (mitä tarkittaa, edut, haitat) Hajautuksella

Lisätiedot