Evolutiivisesti stabiilin strategian oppiminen
|
|
- Kirsi-Kaisa Niemelä
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Evolutiivisesti stabiilin strategian oppiminen Janne Laitonen Maynard Smith: s
2 Johdanto Käytös voi usein olla opittua perityn sijasta Tyypillistä käytöksen muuttuminen ja riippuvuus aikaisemmista kokemuksista Kehityksellisesti stabiili strategia (DSS) analogiana ESSlle Käytös ei siirry geenien mukana vaan se on opittua DSS on strategia, jossa yksilöt perivät evolutiivisesti stabiilin oppimissäännön
3 Eri pelityypit Pelejä pelattava usein, jotta oppimista voi tapahtua Esim. ruuan tai parittelukumppanin etsintä tai kilpailu arvojärjestyksestä Luokittelu: 1. Frekvenssiriippumaton Strategian palkkio ei riipu sillä pelaamisen frekvenssistä
4 Eri pelityypit 2. Frekvenssiriippuva Yksilölliset pelit; palkkio ei riipu yhteisön muiden jäsenien toimista Yhteisölliset pelit; palkkio riippuu muiden toimista Pelaaja muuttaa käytöstään aiempien kokemusten perusteella Eri peleissä käytös erilaista mutta käyttäytymisen muuttaminen toteutuu samojen sääntöjen avulla (oppimissääntö)
5 Mallin oletukset Peleillä on ESS, jonka voi oppia Pelit pelataan ympäristöä tai satunnaista yksilöä vastaan Kussakin pelissä valittavissa käytös B i (i=1,2,,n; n 2) Palkkiomatriisi voi vaihdella mutta riittävän hitaasti, jotta oppimissäännöt voivat vakinaistaa käytösten taajuudet
6 Mallin oletukset Oppimisen aikaiset palkkiot ovat vähäpätöisiä verrattuna stabiilissa tilassa saatuun palkkioon Palkkiota P i (t) 0, joka saadaan kierroksella t toteuttamalla käytös B i, mitataan elinkelpoisuuden avulla. Jos B i ei toteudu, P i (t) = 0.
7 Mallin oletukset Oppimissääntö määrittelee kullakin kierroksella t pelien käytöksiä B i vastaavat todennäköisyydet f i (t) aikaisempien palkkioiden P i (τ) funktiona (τ <t)
8 ES oppimissäännön ominaisuudet Populaatioon, joka on omaksunut ES oppimissäännön, ei voi tunkeutua toisella mutantti oppimissäännöllä. Vertaa evolutiivisesti stabiili strategia Toteuttaa kirjan ehdot (2.9) ES oppimissääntö saa populaation omaksumaan strategian, joka on ESS (tai vie sen mahdollisimman lähelle, kts seur. kohta)
9 ES oppimissäännön ominaisuudet Sääntö ei salli käytöksen poistamista tai tiettyyn käytökseen kiinnittymistä Muuten käytös tulisi geneettiseksi ominaisuudeksi Tasapainossa pätee (kirjan merkinnöin): f i (t) t t 1 τ =1 n t 1 i=1 τ =1 P i (τ) P i (τ) (1)
10 ES oppimissäännön ominaisuudet Todistus (Kirjaa noudatellen. Huomaa kommentit myöhemmin!): Olkoon t i = käytöksen B i frekvenssi kierrokseen t = t i mennessä ja E[P i (t)] = odotettu palkkio käytöksestä B i kierroksella t. Tasapainossa t:n ollessa tarpeeksi suuri voidaan kirjoittaa f i (t) t i /t E[P i (t)] t 1 P i (τ) /t τ =1 i
11 ES oppimissäännön ominaisuudet ESS: E[P i (t)] =E[P j (t)]=c (vakio) kaikille i,j (Bishop & Cannings), jolloin Edelleen saadaan t 1 P i (τ) t i C τ =1 f i (t) t 1 P i (τ) /Ct τ =1 n n Koska f i (t) =1, pätee Ct = P i=1 i (τ) i=1 τ =1 ja väite on todistettu. t 1
12 ES oppimissäännön ominaisuudet Lähiajan palkkioilla on suurempi painoarvo vanhempiin palkkioihin verrattuna Palkkiot vaihtelevat ajassa, jolloin uudempi tieto antaa paremman estimaatin optimaaliselle strategialle kuin vanha Yhtälö (1) ei määritä oppimissääntöä, sillä se kuvaa käytöstä, kun tasapainotila on jo saavutettu
13 Suhteellinen palkkiosumma, RPS Harley ehdottaa ES oppimissäännön approksimaatioksi suhteellista palkkiosummaa: f i (1) = r i f i (t) = n n r i=1 i r i + i=1 missä 0<m<1 ja t 2. t 1 t τ 1 m τ =1 t 1 τ =1 r i + P i (τ) m t τ 1 P i (τ)
14 Suhteellinen palkkiosumma, RPS RPSn yhtälöissä r i on kytköksissä kunkin käytökseen; esim. jos r i :t ovat yhtä suuria, kaikki käytökset ovat yhtä todennäköisiä ensimmäisellä kerralla. m on muistia kuvaava tekijä. Mitä lähempänä se on ykköstä, sitä suurempi painoarvo aikaisemmilla palkkioilla on.
15 Kritiikkiä Palkkion ilmoittaminen elinkelpoisuutena hankalaa Lisäksi yhtälön (1) todistus väärä! Palkkio P i (t) satunnaisluku, jolloin käsiteltävä stokastista konvergenssia " " Harley tarkoittaa merkinnällä asymptoottista lähestymistä, Maynard Smith esittää sen lim t Myös RPSn konvergenssin käsittely vajaata Korjaukset tehty 1995
16 Kotitehtävä Osoita ES oppimissäännön ominaisuus: ES oppimissääntö saa populaation omaksumaan strategian, joka on ESS (eli ES oppimissäännön on oltava sääntö ESSn oppimiselle). Käytä vastaoletusta: ES oppimissääntö ei vie populaatiota ESSään joka kerta ES oppimissääntöä ei mutantti voi syrjäyttää
17 Lähteet ja sanastoa Maynard Smith (1982). Evolution and the Theory of Games. Cambridge University Press. Harley (1981). Learning the Evolutionarily Stable Strategy. J. theor. Biol. 89, Tracy & Seaman (1995). Properties of Evolutionarily Stable Learning Rules. J. theor. Biol. 177, Anthropomorphic: antropomorfinen; ihmisenkaltainen (inhimillisten ominaisuuksien liittämistä eläimiin, esineisiin jne.) Skinner Box: Eläinten ehdollistamisen tutkimiseen käytetty laite/ laatikko, jossa tietystä toimesta seuraa palkkio (esim. ruokaa) tai rangaistus (esim. sähköisku).
ESS oppiminen ja sen simulointi
ESS oppiminen ja sen simulointi 8.10.2008 Suhteellinen palkkiosumma, RPS = = = = + + = = n i t i t i t i t i i n i i i i P m r P m r t f r r f 1 1 1 1 1 1 1 1 ) ( ) ( ) ( (1) τ τ τ τ τ τ Harleyn (1981)
LisätiedotEvolutiivinen stabiilisuus populaation
Antti Toppila sivu 1/20 Optimointiopin seminaari Syksy 2008 Evolutiivinen stabiilisuus populaation määrittämisessä Antti Toppila 24.9.2008 Antti Toppila sivu 2/20 Optimointiopin seminaari Syksy 2008 Sisältö
LisätiedotNollasummapelit ja bayesilaiset pelit
Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1
LisätiedotYhteistyötä sisältämätön peliteoria jatkuu
Yhteistyötä sisältämätön peliteoria jatkuu Tommi Lehtonen Optimointiopin seminaari - Syksy 2000 / 1 Bayesilainen tasapaino Täysi informaatio Vajaa informaatio Staattinen Nash Bayes Dynaaminen Täydellinen
LisätiedotYhteistyötä sisältämätön peliteoria
Yhteistyötä sisältämätön peliteoria jarkko.murtoaro@hut.fi Optimointiopin seminaari Kevät 2003 / 1 Sisältö Johdanto Käsitteistö Työkalut Nashin tasapaino Täydellinen tasapaino Optimointiopin seminaari
LisätiedotBayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly
Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä
LisätiedotEkvivalenssirelaatio. Määritelmä 2 Joukon A binäärinen relaatio R on ekvivalenssirelaatio, mikäli. Jos R on ekvivalenssirelaatio ja a A, niin joukkoa
Määritelmä 1 Olkoot x ja y joukon A alkioita. Jos R on jokin ominaisuus/ehto, joka määritellään yksikäsitteisesti joukon A kaikkien alkioiden välille siten, että se joko toteutuu tai ei toteudu alkioiden
LisätiedotMarkov-kustannusmallit ja kulkuajat
2B Markov-kustannusmallit ja kulkuajat Tämän harjoituksen tavoitteena on oppia laskemaan Markov-kustannusmallien kustannuskertymiä ja -vauhteja, ketjujen odotettuja kulkuaikoja sekä todennäköisyyksiä osua
LisätiedotLuento 8. June 3, 2014
June 3, 2014 Luokka pelejä, joissa pelaajilla on epätäydellistä informaatiota toistensa preferensseistä ja joissa valinnat tehdään samanaikaisesti. Tämä tarkoittaa, että pelaajat eivät tiedä toistensa
LisätiedotToistetut pelit Elmeri Lähevirta. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly
Toistetut pelit MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Elmeri Lähevirta The document can be stored and made available to the public on the open internet pages of Aalto University.
LisätiedotVangin dilemma häiriöisessä ympäristössä Markov-prosessina (valmiin työn esittely) Lasse Lindqvist
Vangin dilemma häiriöisessä ympäristössä Markov-prosessina (valmiin työn esittely) Lasse Lindqvist 21.01.2013 Ohjaaja: Kimmo Berg Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston
Lisätiedoty x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1
1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y
Lisätiedot1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.
Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i
LisätiedotSekastrategia ja Nash-tasapainon määrääminen
May 24, 2016 Sekastrategia Monissa peleissä ei ole Nash-tasapainoa puhtaissa strategioissa H T H 1, 1 1, 1 T 1, 1 1, 1 Ratkaisu ongelmaan löytyy siitä, että laajennetaan strategiat käsittämään todennäköisyysjakaumat
LisätiedotPelin kautta oppiminen
Pelin kautta oppiminen Suunnittele PELI Suunnittele E11-ikäluokalle sopiva peli Valitse pelille AIHE, joka on ikäluokalle tärkeä Mieti ainakin seuraavat asiat Montako maalia ja miten sijoitettu Miten maali
LisätiedotJohdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen
Johdatus diskreettiin matematiikkaan (syksy 009) Harjoitus 3, ratkaisuja Janne Korhonen 1. Väite: Funktio f : [, ) [1, ), missä on bijektio. f(x) = x + 4x + 5, Todistus: Luentomateriaalissa todistettujen
Lisätiedot1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan muun muassa kahden joukon osoittamista samaksi sekä joukon
LisätiedotReaalifunktioista 1 / 17. Reaalifunktioista
säilyy 1 / 17 säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko,
LisätiedotMiten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
Lisätiedotf(x) f(y) x y f f(x) f(y) (x) = lim
Y1 (Matematiikka I) Haastavampia lisätehtäviä Syksy 1 1. Funktio h määritellään seuraavasti. Kuvan astiaan lasketaan vettä tasaisella nopeudella 1 l/min. Astia on muodoltaan katkaistu suora ympyräkartio,
LisätiedotFunktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot
3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,
LisätiedotDerivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2
MS-C50 Osittaisdifferentiaaliyhtälöt Harjoitukset syksy 07. Oletetaan että vektorikenttä E E E E : R R on kaksi kertaa jatkuvasti derivoituva E C R. Näytä että E E. Derivaatat lasketaan komponenteittain
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin
LisätiedotInsinöörimatematiikka A
Insinöörimatematiikka A Demonstraatio 3, 3.9.04 Tehtävissä 4 tulee käyttää Gentzenin järjestelmää kaavojen johtamiseen. Johda kaava φ (φ ) tyhjästä oletusjoukosta. ) φ ) φ φ 3) φ 4) φ (E ) (E ) (I, ) (I,
Lisätiedota) Sievennä lauseke 1+x , kun x 0jax 1. b) Aseta luvut 2, 5 suuruusjärjestykseen ja perustele vastauksesi. 3 3 ja
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 1.10.2018 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
LisätiedotSEKASTRATEGIAT PELITEORIASSA
SEKASTRATEGIAT PELITEORIASSA Matti Estola 8. joulukuuta 2013 Sisältö 1 Johdanto 2 2 Ratkaistaan sukupuolten välinen taistelu sekastrategioiden avulla 5 Teksti on suomennettu kirjasta: Gibbons: A Primer
Lisätiedot11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17)
11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä valintojen seurauksien eli voittojen riippuvan
LisätiedotPelien teoriaa: tasapainokäsitteet
Pelien teoriaa: tasapainokäsitteet Salanién (2005) ja Gibbonsin (1992) mukaan Mat-2.4142 Optimointiopin seminaari Jukka Luoma 1 Sisältö Staattinen Dynaaminen Staattinen Dynaaminen Pelityyppi Täydellinen
LisätiedotLuento 9. June 2, Luento 9
June 2, 2016 Otetaan lähtökohdaksi, että sopimuksilla ei voida kattaa kaikkia kontingensseja/maailmantiloja. Yksi kiinnostava tapaus on sellainen, että jotkut kontingenssit ovat havaittavissa sopimusosapuolille,
Lisätiedot9. Tila-avaruusmallit
9. Tila-avaruusmallit Aikasarjan stokastinen malli ja aikasarjasta tehdyt havainnot voidaan esittää joustavassa ja monipuolisessa muodossa ns. tila-avaruusmallina. Useat aikasarjat edustavat dynaamisia
LisätiedotPeliteoria Strategiapelit ja Nashin tasapaino. Sebastian Siikavirta sebastian.siikavirta@helsinki.fi
Peliteoria Strategiapelit ja Nashin tasapaino Sebastian Siikavirta sebastian.siikavirta@helsinki.fi Helsinki 11.09.2006 Peliteoria Tomi Pasanen HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Sisältö
LisätiedotLaskelmointia mielen evoluutiosta
VIRPI KAUKO Laskelmointia mielen evoluutiosta ihmisen ja muiden eläinten yhteistyö- ja kilpailustrategioiden, sukulaisaltruismin yms. vuorovaikutusten tarkastelua luonnonvalinnan kannalta [SKEPSIS RY:N
Lisätiedoty = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ
76336A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät 217 1. Koordinaatiston muunnosmatriisi (a) y' P r α φ ' Tarkastellaan, mitä annettu muunnos = cos φ + y sin φ, y = sin φ + y cos φ, (1a) (1b) tekee
LisätiedotOpettaminen ja oppiminen
Opettaminen ja oppiminen MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 19.10.2016 Nina Gunell The document can be stored and made available to the public on the open internet pages of Aalto
Lisätiedot(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon.
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät kuvauksiin. 1. Merkitään X = {1,,, 4}. Ovatko seuraavat säännöt
LisätiedotTodista raja-arvon määritelmään perustuen seuraava lause: Jos lukujonolle a n pätee lima n = a ja lima n = b, niin a = b.
2 Lukujonot 21 Lukujonon määritelmä 16 Fibonacci n luvut määritellään ehdoilla Osoita: 17 a 1 = a 2 = 1; a n+2 = a n+1 + a n, n N a n = 1 [( 1 + ) n ( 2 1 ) n ] 2 Olkoon a 1 = 3, a 2 = 6, a n+1 = 1 n (na
LisätiedotGeneettiset algoritmit
Geneettiset algoritmit Evoluution piirteitä laskennassa Optimoinnin perusteet - Kevät 2002 / 1 Sisältö Geneettisten algoritmien sovelluskenttä Peruskäsitteitä Esimerkkejä funktion ääriarvon etsintä vangin
LisätiedotPohdiskeleva ajattelu ja tasapainotarkennukset
Pohdiskeleva ajattelu ja tasapainotarkennukset Sanna Hanhikoski 24.3.2010 Sisältö Pohdiskeleva ajattelu Nashin tasapainotarkennukset Täydellinen tasapaino Täydellinen bayesiläinen tasapaino Vaiheittainen
LisätiedotJos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan
17.11.2006 1. Kahdesta kohteesta (A ja K) kerättiin maanäytteitä ja näistä mitattiin SiO -pitoisuus. Tulokset (otoskoot ja otosten tunnusluvut): A K 10 16 Ü 64.94 57.06 9.0 7.29 Oletetaan mittaustulosten
LisätiedotMartingaalit ja informaatioprosessit
4A Martingaalit ja informaatioprosessit Tämän harjoituksen tavoitteena on tutustua satunnaisvektorin informaation suhteen lasketun ehdollisen odotusarvon käsitteeseen sekä oppia tunnistamaan, milloin annettu
LisätiedotLuku 4. Derivoituvien funktioiden ominaisuuksia.
1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti
Lisätiedot3. Teoriaharjoitukset
3. Teoriaharjoitukset Demotehtävät 3.1 a Olkoot u ja v satunnaumuuttujia, joilla on seuraavat ominaisuudet: E(u = E(v = 0 Var(u = Var(v = σ 2 Cov(u, v = E(uv = 0 Näytä että deterministinen prosessi. x
LisätiedotYleinen tietämys ja Nashin tasapaino
Yleinen tietämys ja Nashin tasapaino 24.3.2010 Nashin tasapaino Ratkaisumalli kahden tai useamman pelaajan pelille. Yleisesti: Jos jokainen pelaaja on valinnut strategiansa eikä yksikään pelaaja voi hyötyä
LisätiedotToispuoleiset raja-arvot
Toispuoleiset raja-arvot Määritelmä Funktiolla f on oikeanpuoleinen raja-arvo a R pisteessä x 0 mikäli kaikilla ɛ > 0 löytyy sellainen δ > 0 että f (x) a < ɛ aina kun x 0 < x < x 0 + δ; ja vasemmanpuoleinen
LisätiedotKirjoita ohjelma jossa luetaan kokonaislukuja taulukkoon (saat itse päättää taulun koon, kunhan koko on vähintään 10)
Tehtävä 40. Kirjoita ohjelma, jossa luetaan 20 lukua, joiden arvot ovat välillä 10 100. Kun taulukko on täytetty, ohjelma tulostaa vain ne taulukon arvot, jotka esiintyvät taulukossa vain kerran. Tehtävä
LisätiedotTenttiin valmentavia harjoituksia
Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.
LisätiedotDynaaminen hintakilpailu ja sanattomat sopimukset
Dynaaminen hintakilpailu ja sanattomat sopimukset Pasi Virtanen 12.3.2003 Johdanto Hintakilpailu jossa pelaajat kohtaavat toisensa toistuvasti Pelaajien on otettava hintaa valittaessa huomioon hintasodan
Lisätiedot1 Kertaus. Lineaarinen optimointitehtävä on muotoa:
1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n
LisätiedotSekastrategiat ja intensiiviyhteensopivuus
Sekastrategiat ja intensiiviyhteensopivuus Petteri Räty 2010-03-14 God does not play dice with the universe Albert Einstein Agenda Intensiiviyhteensopivuuden käsite Yrittää vastata kysymykseen, mitä sekastrategiat
LisätiedotDiskreetin matematiikan perusteet Malliratkaisut 2 / vko 38
Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Tuntitehtävät 11-12 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 15-16 loppuviikon harjoituksissa. Kotitehtävät 13-14 tarkastetaan loppuviikon
LisätiedotSurjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei.
5.5 Surjektio Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei. Määritelmä 5.5.1. Kuvaus f : X æ Y on surjektio, jos jokaisella
LisätiedotMATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 25.9.2017 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
LisätiedotLuento 5: Peliteoria
Luento 5: Peliteoria Portfolion optimointi Sijoittajan tehtävä Nashin tasapaino Vangin ongelma Nashin neuvotteluratkaisu 1 Portfolion optimointi Varallisuus A sijoitetaan n:ään sijoituskohteeseen (osake,
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 6 Sarjojen suppeneminen Kiinnostuksen kohteena on edelleen sarja a k = a + a 2 + a 3 + a 4 +... k= Tämä summa on mahdollisesti äärellisenä olemassa, jolloin sanotaan
LisätiedotLuento 5: Peliteoriaa
Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan hieman peliteoriaan. Keskeisiä asioita ovat Nash-tasapaino ja sekastrategia. Cournot n duopolimalli vuodelta 1838 toimii oivallisena havainnollistuksena
LisätiedotMATEMATIIKAN JA TILASTOTIETEEN LAITOS
f ( n JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Harjoitusten 8 ratkaisut Topologiset vektoriavaruudet 2010 8.1. Olkoon P n = {f : K K p on enintään asteen n 1 polynomi} varustettuna
LisätiedotInduktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa. väite P(n) on totta kaikille n = 0,1,2,...
Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P(n) on totta kaikille n = 0,1,2,.... Tässä väite P(n) riippuu n:n arvosta. Todistuksessa
LisätiedotValintahetket ja pysäytetyt martingaalit
4B Valintahetket ja pysäytetyt martingaalit Tämän harjoituksen tavoitteena on oppia tunnistamaan, mitkä satunnaishetket ovat valintahetkiä ja oppia laskemaan lukuarvoja ja estimaatteja satunnaisprosessien
LisätiedotWiener-prosessi: Tarkastellaan seuraavanlaista stokastista prosessia
Wiener-prosessi: Tarkastellaan seuraavanlaista stokastista prosessia { z(t k+1 ) = z(t k ) + ɛ(t k ) t t k+1 = t k + t, k = 0,..., N, missä ɛ(t i ), ɛ(t j ), i j ovat toisistaan riippumattomia siten, että
LisätiedotPELITEORIAN TALOUSTIETEELLISIÄ SOVELLUKSIA
PELITEORIAN TALOUSTIETEELLISIÄ SOVELLUKSIA Matti Estola 29 marraskuuta 2013 Sisältö 1 Cournot'in duopolimalli 2 2 Pelin Nash -tasapainon tulkinta 3 3 Cournot'in mallin graanen ratkaisu 4 4 Bertrandin duopolimalli
LisätiedotKaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle.
Kombinatoriikka, kesä 2010 Harjoitus 1 Ratkaisuehdotuksia (RT (5 sivua Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. 1. Osoita, että vuoden
LisätiedotMarkov-ketjuja suurilla tila-avaruuksilla
3B Markov-ketjuja suurilla tila-avaruuksilla Tuntitehtävät 3B1 Sekoaako korttipakka sekoittamalla? Olkoon S kaikkien 52 kortin korttipakan mahdollisten järjestysten joukko. (a) Perustele, miksi joukossa
LisätiedotKarteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21
säilyy Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla c b a 1 2 3 5 1 / 21 säilyy Esimerkkirelaatio R = {(1, b), (3, a), (5, a), (5, c)} c b a 1
LisätiedotV ar(m n ) = V ar(x i ).
Mat-.3 Stokastiset prosessit Syksy 007 Laskuharjoitustehtävät 6 Poropudas/Kokkala. Olkoon M n = X +... + X n martingaali ja M 0 = 0. Osoita, että V ar(m n ) = n V ar(x i ). i= Huomattavaa on, että muuttujia
LisätiedotHaitallinen valikoituminen: yleinen malli ja sen ratkaisu
Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Mat-2.4142 Optimointiopin seminaari Matias Leppisaari 29.1.2008 Esityksen rakenne Yleinen malli Käypyys ja rajoitusehdot Mallin ratkaisu Kotitehtävä
LisätiedotOMINAISUUS- JA SUHDETEHTÄVIEN KERTAUS. Tavoiteltava toiminta: Kognitiivinen taso: Ominaisuudet ja suhteet -kertaus
Harjoite 12: Tavoiteltava toiminta: Materiaalit: OMINAISUUS- JA SUHDETEHTÄVIEN KERTAUS Kognitiivinen taso: Ominaisuudet ja suhteet -kertaus Toiminnan tavoite ja kuvaus: Oppilaat ratkaisevat paperi- ja
Lisätiedot1 sup- ja inf-esimerkkejä
Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R
Lisätiedotk-kantaisen eksponenttifunktion ominaisuuksia
3.1.1. k-kantaisen eksponenttifunktion ominaisuuksia f() = k (k > 0, k 1) Määrittely- ja arvojoukko M f = R, A f = R + Jatkuvuus Funktio f on jatkuva Monotonisuus Funktio f aidosti kasvava, kun k > 1 Funktio
LisätiedotEsitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta:
MATP00 Johdatus matematiikkaan Ylimääräisten tehtävien ratkaisuehdotuksia. Osoita, että 00 002 < 000 000. Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa. Lähdetään sieventämään epäyhtälön
LisätiedotJohdanto peliteoriaan Kirja kpl. 2
Aalto-yliopiston TKK Mat-2.4142 K2010 Esitelmä 1 Ilkka Leppänen 1 Johdanto peliteoriaan Kirja kpl. 2 Ilkka Leppänen 20.1.2010 Aalto-yliopiston TKK Mat-2.4142 K2010 Esitelmä 1 Ilkka Leppänen 2 Aiheet Laajennettu
LisätiedotPolkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon
Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä 4.1.3. Olkoot : [a, b] R m paloittain C 1 -polku välin [a, b] jaon P = {a = t 1 < < t k = b} ja joukko D R m sellainen, että ([a, b])
LisätiedotAnalyysi III. Jari Taskinen. 28. syyskuuta Luku 1
Analyysi III Jari Taskinen 28. syyskuuta 2002 Luku Sisältö Sarjat 2. Lukujonoista........................... 2.2 Rekursiivisesti määritellyt lukujonot.............. 8.3 Sarja ja sen suppenminen....................
Lisätiedot1 sup- ja inf-esimerkkejä
Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat
LisätiedotMatematiikan tukikurssi, kurssikerta 5
Matematiikan tukikurssi, kurssikerta 5 1 Jonoista Matematiikassa jono (x n ) on yksinkertaisesti järjestetty, päättymätön sarja numeroita Esimerkiksi (1,, 3, 4, 5 ) on jono Jonon i:ttä jäsentä merkitään
LisätiedotMartingaalit ja informaatioprosessit
6A Martingaalit ja informaatioprosessit Tämän harjoituksen tavoitteena on oppia tunnistamaan, milloin satunnaisprosessi on martingaali annetun informaatioprosessin suhteen ja milloin satunnaishetki on
LisätiedotMatematiikan peruskurssi 2
Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat
Lisätiedot1. Olkoon f :, Ratkaisu. Funktion f kuvaaja välillä [ 1, 3]. (b) Olkoonε>0. Valitaanδ=ε. Kun x 1 <δ, niin. = x+3 2 = x+1, 1< x<1+δ
Matematiikan tilastotieteen laitos Differentiaalilaskenta, syksy 2015 Lisätehtävät 1 Ratkaisut 1. Olkoon f :, x+1, x 1, f (x)= x+3, x>1 Piirrä funktion kuvaa välillä [ 1, 3]. (a) Tutki ra-arvon (ε, δ)-määritelmän
Lisätiedot1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria
Kvanttimekaniikka I, tentti 6.. 015 4 tehtävää, 4 tuntia 1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria ( { ( ( } E iδ H =, E, δ R, kannassa B = 1 =, =. iδ E 0 1 (a (p.
LisätiedotHintakilpailu lyhyellä aikavälillä
Hintakilpailu lyhyellä aikavälillä Virpi Turkulainen 5.3.2003 Optimointiopin seminaari - Kevät 2003 / 1 Sisältö Johdanto Bertrandin ristiriita ja sen lähestyminen Bertrandin ristiriita Lähestymistavat:
LisätiedotLASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä
LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä. Diffuusio yksiulotteisessa epäjärjestäytyneessä hilassa E J ii, J ii, + 0 E b, i E i i i i+ x Kuva.:
LisätiedotLAAJENNETUN MUODON RATIONALISOITUVUUS. S ysteemianalyysin. Arno Solin Laboratorio. Aalto-yliopiston Teknillinen korkeakoulu
LAAJENNETUN MUODON RATIONALISOITUVUUS 3.3.2010 Pähkinänkuoressa: Laajennetun muodon rationalisoituvuus Laajennetun muodon peli (Extensive Form Game) Laajennetun muodon pelin tasapainokäsitteitä. Tosimaailman
LisätiedotPELITEORIAN PERUSTEITA
PELITEORIAN PERUSTEITA Matti Estola 29. marraskuuta 2013 Sisältö 1 Johdanto 2 2 Peliteoreettisen analyysin vaiheet 2 3 Staattiset pelit täydellisen informaation vallitessa 3 4 Pelin ratkaiseminen 4 4.1
LisätiedotMS-C2105 Optimoinnin perusteet Malliratkaisut 5
MS-C2105 Optimoinnin perusteet Malliratkaisut 5 Ehtamo Demo 1: Arvaa lähimmäksi Jokainen opiskelija arvaa reaaliluvun välillä [0, 100]. Opiskelijat, joka arvaa lähimmäksi yhtä kolmasosaa (1/3) kaikkien
Lisätiedot58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia
58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli
LisätiedotTasapaino epätäydellisen tiedon peleissä
hyväksymispäivä arvosana arvostelija Tasapaino epätäydellisen tiedon peleissä Marja Hassinen Helsinki 9..2006 Peliteoria-seminaarin esitelmä HESINGIN YIOPISTO Tietojenkäsittelytieteen laitos Sisältö Johdanto
LisätiedotVastaoletuksen muodostaminen
Vastaoletuksen muodostaminen Vastaoletus (Antiteesi) on väitteen negaatio. Sitä muodostettaessa on mietittävä, mitä tarkoittaa, että väite ei ole totta. Väite ja vastaoletus yhdessä sisältävät kaikki mahdolliset
LisätiedotKombinatorinen optimointi
Kombinatorinen optimointi Sallittujen pisteiden lukumäärä on äärellinen Periaatteessa ratkaisu löydetään käymällä läpi kaikki pisteet Käytännössä lukumäärä on niin suuri, että tämä on mahdotonta Usein
LisätiedotLuento 7. June 3, 2014
June 3, 2014 Peli, jossa on kaksi Nash-tasapainoa. Yksi tasapaino on (1; 2) ja toinen (2; 1); P1:n valinta on ilmoitettu ensin. Ensimmäinen tasapaino ei vaikuta hyvältä; se perustuu epäuskottavaan uhkaukseen.
Lisätiedot5.6 Yhdistetty kuvaus
5.6 Yhdistetty kuvaus Määritelmä 5.6.1. Oletetaan, että f : æ Y ja g : Y æ Z ovat kuvauksia. Yhdistetty kuvaus g f : æ Z määritellään asettamalla kaikilla x œ. (g f)(x) =g(f(x)) Huomaa, että yhdistetty
LisätiedotPerustehtävät. Kompleksitehtävät, 10/9/2005, sivu 1 / 10. Tehtävä 1. Sievennä 1.
Kompleksitehtävät, 10/9/2005, sivu 1 / 10 Perustehtävät Tehtävä 1. Sievennä 1. 2 5i 1+2i 2. ( 2 i 2) 150 Tehtävä 2. Olkoon P mielivaltainen reaalikertoiminen polynomi. Osoita, että jos luku z C toteuttaa
LisätiedotTehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..
LisätiedotLineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
LisätiedotVEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4
VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4 Jokaisen tehtävän jälkeen on pieni kommentti tehtävään liittyen Nämä eivät sisällä mitään kovin kriittistä tietoa tehtävään liittyen, joten niistä ei tarvitse välittää
LisätiedotToiminnan järjestäminen JyPK:n juniorijoukkueissa. 5v5 joukkueet (6-9v)
Toiminnan järjestäminen JyPK:n juniorijoukkueissa 5v5 joukkueet (6-9v) Lähtökohdat toiminnan järjestämiselle Lasten valmennus JyPK:ssa on pitkäjänteistä kja suunnitelmallista toimintaa perusasioiden kautta
LisätiedotLuento 5: Peliteoriaa
Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan lyhyesti peliteoriaan. Peliteorian ratkaisukäsite on Nashin tasapaino, jonka jo Augustin Cournot esitti duopolimallinsa ratkaisuna v. 1838. Cournot n
Lisätiedotmin x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4
LisätiedotTällä kerralla ohjelmassa. Kognitiivinen mallintaminen Neuraalimallinnus Kertausta: Perseptronin oppimissääntö
Tällä kerralla ohjelmassa Kognitiivinen mallintaminen Neuraalimallinnus 19.2. Nelli Salminen nelli.salminen@helsinki.fi D433 vielä perseptronista ja backpropagationista kilpaileva oppiminen, Kohosen verkko
LisätiedotS Laskennallinen systeemibiologia
S-114.2510 Laskennallinen systeemibiologia 3. Harjoitus 1. Koska tilanne on Hardy-Weinbergin tasapainossa luonnonvalintaa lukuunottamatta, saadaan alleeleista muodostuvien eri tsygoottien genotyyppifrekvenssit
Lisätiedot