Moraalinen uhkapeli: perusmalli ja optimaalinen sopimus
|
|
- Raimo Johannes Korpela
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Moraalinen uhkapeli: perusmalli a optimaalinen sopimus Mat Optimointiopin seminaari Mauno Taaamaa
2 Esityksen rakenne Johdanto moraalisen uhkapelin käsite) Yksinkertaistettu tapaus a sen ratkaisu Yleinen malli a optimaalisen ratkaisun/sopimuksen ohto Optimaalisen ratkaisun/sopimuksen tulkinta Yhteenveto a kysymykset Kotitehtävä
3 Johdanto: Moraalinen uhkapeli Moraalisen uhkapelin edellytykset Agentti tekee päätöksen toiminta ), oka vaikuttaa hänen a Päämiehen saamaan hyötyyn Päämies pystyy vain tarkkailemaan tulosta, epätäydellistä signaalia toiminnasta Toiminta, onka Agentti suorittaa, ei ole Pareto-optimaalinen
4 Johdanto: Moraalinen uhkapeli Päämies ei voi pakottaa Agenttia toimimaan Paretooptimaalisesti, sillä hän ei tiedä mitä Agentti tekee Normaalisti Agentti on riskiä karttava a Päämies riskineutraali Päämies pyrkii vaikuttamaan Agentin saamaan hyötyyn lopputuloksen kautta: kannustimet a riskinkanto näiden välillä kompromissi) Mikäli Agentti riskineutraali, mitään kompromissia ei tarvita, vaan Agentti haluaa kantaa kaiken riskin
5 Yksinkertaistettu tapaus Kaksi toimintaa a), kaksi tulosta x) Agentti valitsee työskentelyn a=1) a työskentelemättä olemisen a = 0) välillä Kun a = 1, niin onnistumisen todennäköisyys on P, vastaavasti a = 0 niin todennäköisyys on p < P Päämies pystyy seuraamaan vain onnistuuko vai epäonnistuuko agentti Toiminnan hinta Agentille on normalisoitu siten, että agentin saama hyöty riippuen palkkiosta w) on uw) a, missä u on konkaavi Päämiehen saama hyöty onnistumisesta on x S a epäonnistumisesta on x F < x S
6 Yksinkertaistettu tapaus Päämies pyrkii saamaan Agentin valitsemaan a = 1, oten hän antaa palkkion w S onnistumisesta a w F epäonnistumisesta Täten Agentin saama hyöty Puw S ) + 1 P)uw F ) 1 puw S ) + 1 p)uw F ) P p)uw S ) uw F )) 1 Koska w S w F niin palkkoen erotus nousee kun P p olloin on vaikeampaa päätellä Agentin valintaa). Tällöin sanotaan, että kannustimen ollakseen toimiva on oltava korkea-asteisempi IC)
7 Yksinkertaistettu tapaus Myös yksilöllinen osallistumisraoite rationaalisuusehto) on pitää ottaa huomioon ulkopuolisen valinnan antama hyöty = U): Puw S ) + 1 P)uw F ) 1 U IR) Nyt IR-epäyhtälö)ehto redusoituu yhtälöksi, sillä muuten Päämies voi vähentää uw S ):sta a uw F ):sta pienen muutoksen, ε, oka ei muuta IC-ehtoa, mutta lisää Päämiehen hyötyä: Px S w S ) + 1 P)x F w F )
8 Yksinkertaistettu tapaus Lisäksi IC-ehto myös muodostuu yhtälöksi Sillä os se olisi tiukka epäyhtälö siitä voisi vähentää w S :stä termin 1 P)ε/u w S ) a lisätä w F :ään termin Pε/u w F ) Tällöin vielä IC-ehto olisi voimassa pienelle ε Nyt uw S ) vähenisi 1 P)ε verran a uw F ) kasvaisi Pε verran siten, että IR ehto pysyisi voimassa Kuitenkin Päämiehen kulut Pw S + 1 P) w F vähentyisi P1 P) ε1/u w S ) 1/uw F )) verran, oka on positiivinen sillä w S >w F a u on konkaavi
9 Yksinkertaistettu tapaus Nyt IC- a IR- ehdoista syntyy seuraavat ehdot: uw F ) = U p/p p) uw S ) = U 1 p)/p p) Josta ratkeaa Päämiehen odotettu hyöty: W 1 =Px S w S ) + 1 P)x F w F ) Mikäli Päämies katsoo, että Agentin kannustintoimet ovat liian kalliita, hän taroaa palkkioita w S = w F = w siten, että uw) = U a Päämies saa odotetun hyödyn: W 0 =px S + 1 p)x F w
10 Yksinkertaistettu tapaus Nyt W 1 W 0 on: W 1 W 0 = P p)x S x F )+w P w S 1 P)w F Koska palkkiot eivät riipu x S, x F :stä, oten os onnistuminen on Päämiehelle selvästi kiinnostavampi kuin epäonnistuminen x S x F on iso), niin hän valitsee kannustinpalkkion Tällöin on x S w S > x F w F optimitilassa, olloin voitto on aettu Agentin a Päämiehen kesken
11 Yleinen malli - pohustus Agentti voi valita n vaihtoehdoista toiminnan: a 1,a 2,,a n Vastaavasti tulee m kpl tuloksia: x 1,,x m Tulos on siis a priori signaali Agentin toiminnasta voitto/yliäämä Päämies- Agentti suhteesta Toiminnan vaihtoehdon a tuloksen välistä suhdetta kutsutaan toimintarakenteeksi : a i x tn:llä p i >0
12 Yleinen malli - lähtökohta Perusaatuksena on, että sopimusten tulee perustua palkkioihin, otka riippuvat tuloksesta: Päämies huomaa tuloksen x, hän maksaa palkkion w a pitää x w itsellään Agentin hyöty on separoituva palkkion a toiminnan suhteen, lisäksi toiminta on renormalisoitu siten, että marginaalikulut ovat vakiot Agentin hyöty on täten uw) a, missä u on kasvava a konkaavi Päämies on riskineutraali, olloin hänen hyötynsä on x w
13 Yleinen malli Agentin ohelma Agentti valitsee toimintansa Päämiehen taroaman palkkion w perusteella seuraavan ongelman pohalta max p i uw ) a i ) Kun Agentti valitsee a i, niin on n 1) kpl kannustinehtoa a rationaalisuusehto p i uw ) a i p k uw ) a k, IC k ) oka on voimassa k = 1,..,n a k n. p i uw ) a i U IR)
14 Yleinen malli Päämiehen ohelma Päämies voi valita sopimuksen w 1,,w n, oka maksimoi hänen odotettua hyötyään max p i x w ) Kun a i on optimaalinen ratkaisu, niin IR- a IC raoitteesiin liittyvät kertoimet λ 0 a µ 0 λ k p i uw ) a p k uw ) + a k ) 0 IC k ) µ p i uw ) a U ) 0 IR)
15 Yleinen malli Optimiratkaisu Ratkaisu tapahtuu Lagrangian yhtälön kautta Lw, λ, µ) = p i x w ) + λ p i uw ) a p k uw ) + a k ) + µ p i uw ) a U) Siitä saadaan ratkaistua 1 u' w ) = µ + n k = 1, k i λ 1 k p p k i ) Tämä redusoituu ykkösparhaaksi 1/ u w ) = µ 0, oka on samalla tehoikkain riskiako µ 0 toteuttaa aktiivisen IR:n) Termillä p k /p i on tärkeä rooli analyysissa, se voidaan ymmärtää tilastollisessa mielessä sitä kutsutaankin todennäköisyyssuhteeksi likelihood ratio) a pätee: p k /p i 1 kaikilla k, kun a i on estimaattori suhteelle annetulla x *)
16 Yleinen malli Optimiratkaisu Optimiratkaisu a i kiinnitetty Koska kaikki kertoimet λ k ovat ei-negatiivisia a funktio 1/u on kasvava, niin palkkio w liittyen tulokseen on suurempi kun on isompi määrä todennäköisyyssuhteita p k /p i <1 Päädytään ohtopäätökseen, että Päämies antaa parempaa palkkaa, kun hän tulkitsee tuloksesta, että Agentin suorittama toiminta olisi optimaalista
17 Yleinen malli Optimiratkaisun tulkinta Tutkitaan kuinka palkkio w riippuu tuloksesta Tiedetään, että kun Agentin toiminta on näkyvä a Päämies riskineutraali, niin optimaalinen palkka on vakio Jos Päämies on riskiä karttava a hänellä on konkaavi von Neumann-Morgenstern hyötyfunktio v, niin silloin marginaalihyötyen suhde on v x w ))/u w ) Tämä on itsenäinen tuloksesta, a optimiratkaisu w, on kasvava funktio :stä Vastaavanlainen tulos olisi hyvä saada myös tilanteessa, ossa Agentin toiminta ei ole havaittavissa Luonnollista olisi, että palkkion tulisi olla isompi, mitä enemmän hyödyn yliäämää on aettavissa
18 Yleinen malli Optimiratkaisun tulkinta Yleisesti pätee vain seuraavaa: 1. w ei voi olla tasaisesti vähenevä :ssä 2. Kuten ei myöskään x w ) 3. On olemassa,l) w > w l a x w x l w l
19 Yleinen malli Optimiratkaisun tulkinta Jos tuloksia on kahta vaihtoehtoa: onnistuminen a epäonnistuminen, niin optimaalinen palkkio-ohelma w: w 1 = w w 2 = w + sx 2 -x 1 ) Agentti saa siis peruspalkkion w, a bonuksen yliäämän perusteella mikäli hyväksyy sopimuksen 3. ehdon perusteella bonuskerroin: 0 < s 1
20 Yleinen malli Optimiratkaisun tulkinta Mikäli tuloksia enemmän kuin kaksi vaihtoehtoa, ei tarkempaa analyysia voi tehdä tekemättä lisäoletuksia toimintarakenteesta eli todennäköisyyksistä p i ) Tuloksella on siis kaksoisrooli: 1) kertoo aettavan hyödyn yliäämän 2) signaloi Päämiehelle minkälaisen toiminnan Agentti on mahdollisesti) tehnyt Ratkaisun rakenne täten määräytyy signaalin ominaisuuksista, kuten edellä nähtiin todennäköisyyssuhteesta
21 Yleinen malli Optimiratkaisun tulkinta Optimiratkaisu oli siis 1/ u w ) = µ + λ k 1 p k / p i ) *) Oletetaan, että korkeampi toiminta lisää todennäköisyyttä saada hyvä tulos vähintään yhtä palon kuin se lisää todennäköisyyttä saada huonompi tulos: kaikilla k < i, l <, pi pk p p il kl Tätä kutsutaan monotoniseksi todennäköisyyssuhde-ehdoksi MLRC: monotone likelihood ratio condition)
22 Yleinen malli Optimiratkaisun tulkinta MLRC kertoo siis että todennäköisyyssuhde kasvaa tuloksen kasvaessa Lisäksi siitä seuraa ensimmäisen asteen stokastinen dominanssi todistus kiran haroitus 5.6) Koska *):n kertoimet λ k ovat ei-negatiivisia, niin MLRC sanoo, että termit λ k 1 p k / p i ) ovat kasvavia, mikäli k < i a väheneviä muulloin Mielekäs ratkaisu saadaan kun ehdoksi tulee, että kertoimet λ k ovat nollia kun k > i, olloin ainoat aktiiviset kannustinraoitteet ovat ne, otka estävät Agenttia valitsemasta toimintaa, oka on vähemmän kallista kuin optimaalinen ratkaisu
23 Yleinen malli Optimiratkaisun tulkinta Mikäli tuloksia on vain kahdenlaisia, riittää MLRC takaa, että palkkio nousee tuloksen perusteella Yleisessä tapauksessa käytetään Jakaumafunktion konveksisuusehtoa CDFC - convexity of the distribution function condition) Kumulatiivinen akaumafunktio tuloksesta pitää olla konveksi a:ssa {a 1,, a n } Tarkemmin, kun i < < k a λ kuuluu [0,1] siten, että a = λa i + 1 λ)a k, niin CDFC P l λp il + 1 λ)p kl kaikilla l = 1,,m Yksi tulkinta CDFC:lle on, että se kuvaa toiminnasta tulevien tuloen vähenemistä, mutta Salinié kritisoi tulkintaa
24 Yleinen malli Optimiratkaisun tulkinta Olkoon a i optimaalinen toiminta Tällöin on l < i, olloin λ l on positiivinen Jos kaikki λ k = 0, k < i, niin optimaalinen palkkio sama, os mahdolliset toiminnat olisivat raoitettu A = {a i,,a n } Mutta tällöin optimaalinen palkkio olisi vakio, sillä a i on pienimmän kustannuksen toiminta oukossa A Nyt vakio palkkio voi implementoida toiminnan a 1, eikä a i oka on siis globaali optimi) ei päästä eteenpäin
25 Yleinen malli Optimiratkaisun tulkinta Tarkastellaan tilannetta, ossa Agentti on raoitettu toimintaan A = {a 1,,a i } a optimipalkkio w Tällöin a i on kallein toiminta a MLRC kertoo, että w kasvaa :ssä Tavoitteena todistaa, että w pysyy optimaalisena os Agentin annetaan valita toiminta raoittamattomasta oukosta A = {a 1,,a n }
26 Yleinen malli Optimiratkaisun tulkinta Vastatodistus: oletetaan, että on olemassa k > i siten, että Agentti haluaa valita a k :n: p k uw ) a k > p i uw ) a i Nyt l on indeksi toiminnalle, oka on vähemmän kallis kuin a i a onka kerroin λ k 0, p l uw ) a l = p i uw ) a i On olemassa λ kuuluu [0,1] siten, että a i = λa k + 1 λ)a l CDFC P i λp k + 1 λ)p l kaikilla = 1,,m
27 Yleinen malli Optimiratkaisun tulkinta Sioitetaan a käytetään CDFC:ää + = = = = = + = + + = = m l l m k k m l m l m k m k i m m m i i i a w u p a w u p a w u w u w u P a w u w u w u P a w u w u w u P a w u p ) ) 1 ) ) )) ) ) 1 ) )) ) ) )) ) ) λ λ λ λ
28 Yleinen malli Optimiratkaisun tulkinta Tulos on ristiriidassa a k :n a a l :n määritelmien kanssa Täten palkkio w on kasvava a optimaalinen ratkaisu yleiseen ongelmaan Pitää huomioida myös, että välttämättä aina intuitiiviset tulokset eivät päde, esim. Päämiehen odotettu tuotto ei nousekaan Agentin tullessa tuottoisammaksi stokastisen dominanssin mielessä, eli todennäköisyydet kasvavat) valitsi Agentti mitä tahansa kotitehtävä)
29 Yhteenveto Moraalinen uhkapeli erittäin yleinen elävässä elämässä Ratkaisu ongelmaan on sitoa Agentin palkkio tulokseen, käyttäen hyväksi kannustimia a tarvittaessa riskinakoa Johdettu optimaalinen sopimusehto a siitä saatu palkkio-ohelma 1/ u w ) = µ + λ k 1 p k / p i ) w kasvava tai kahden tuloksen tapauksessa w 1 = w w 2 = w + sx 2 -x 1 ) Kysymyksiä?
30 Kotitehtävä Kiran haroitus 5.3.1) Yksinkertaistettu tapaus kaksi toimintaa, kaksi tulosta) Lähde liikkeelle Päämiehen odotetusta hyödystä W 1 >W 0. Kiroita W 1 a osoita, että W p P1 P) 1 = 2 ) P p u' w 1 ) u' ) 1 < S w F 0
Moraalinen uhkapeli: laajennuksia ja sovelluksia
Moraalinen uhkapeli: laajennuksia ja sovelluksia Sisältö Kysymysten asettelu Monen tehtävän malli Sovellusesimerkki: Vakuutus Sovellusesimerkki: Palkkion määrääminen Johtajan palkitseminen Moraalisen uhkapelin
Haitallinen valikoituminen: Kahden tyypin malli
Haitallinen valikoituminen: Kahden tyypin malli Mat-2.4142 Optimointiopin seminaari Mikko Hyvärinen 29.1.2008 Haitallinen valikoituminen kahden tyypin malli Haitallinen valikoituminen tarkoittaa että päämies
Signalointi: autonromujen markkinat
Signalointi: autonromujen markkinat Mat-.414 Optimointiopin seminaari Klaus Mattila 1.0.008 1 Esityksen rakenne Johdanto Autonromujen markkinat: Akerlofin malli Kustannuksellinen signalointi: Spencen malli
Haitallinen valikoituminen: yleinen malli ja sen ratkaisu
Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Mat-2.4142 Optimointiopin seminaari Matias Leppisaari 29.1.2008 Esityksen rakenne Yleinen malli Käypyys ja rajoitusehdot Mallin ratkaisu Kotitehtävä
Haitallinen valikoituminen
Haitallinen valikoituminen Regulointi Verotus Vakuuttajamonopoli Kertausta Hyötyfunktiot Päämies: W(q,t) Agentti: U(q,t,ө) - q hyödykkeen määrä - t hinta (kassavirta, tms) - ө agentin tyyppi Päämies ei
Harjoitus 7: vastausvihjeet
Taloustieteen matemaattiset menetelmät 31C01100 Kevät 2017 Topi Hokkanen topi.hokkanen@aalto.fi Harjoitus 7: vastausvihjeet 1. (Epäyhtälörajoitteet) Olkoon f (x, y) = 6x + 4y ja g (x, y) = x 2 + y 2 2.
Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.
Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista x + αd, α 0, on pisteestä x R n alkava puolisuora, joka on vektorin d suuntainen. Samoin
min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4
Nollasummapelit ja bayesilaiset pelit
Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 10 1 Lokaalit ääriarvot Yhden muuttujan funktion f (x) lokaali maksimi on piste x 0, jossa f (x) on suurempi kuin muualle pisteen x 0 ympäristössä, eli kun f (x 0 )
Diskreettiaikainen dynaaminen optimointi
Diskreettiaikainen dynaaminen optimointi Usean kauden tapaus 2 kauden yleistys Ääretön loppuaika Optimaalinen pysäytys Optimointiopin seminaari - Syksy 2000 / Ongelma t 0 x 0 t- t T x t- + x t + x T u
Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:
8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden
Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.
Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista. + αd, α 0, on pisteessä R n alkava puolisuora, joka on vektorin d suuntainen. Samoin 2
Luento 9. June 2, Luento 9
June 2, 2016 Otetaan lähtökohdaksi, että sopimuksilla ei voida kattaa kaikkia kontingensseja/maailmantiloja. Yksi kiinnostava tapaus on sellainen, että jotkut kontingenssit ovat havaittavissa sopimusosapuolille,
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2017 Harjoitus 1 Ratkaisuehdotuksia
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan
Yhteistyötä sisältämätön peliteoria jatkuu
Yhteistyötä sisältämätön peliteoria jatkuu Tommi Lehtonen Optimointiopin seminaari - Syksy 2000 / 1 Bayesilainen tasapaino Täysi informaatio Vajaa informaatio Staattinen Nash Bayes Dynaaminen Täydellinen
Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly
Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä
Moraalinen uhkapeli: laajennuksia
Morlinen uhkeli: ljennuksi Mt-2.4142 Otimointioin seminri Juho Kokkl 4.3.2008 steeminlsin Lbortorio Teknillinen korkekoulu Esitelmä 12 Juho Kokkl Otimointioin seminri - Kevät 2008 Esitksen rkenne Informtiivisuus
b 1. b m ) + ( 2b Ax) + (b b)
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-9 Optimointioppi Kimmo Berg 5 harjoitus - ratkaisut min Ax b (vertaa PNS-tehtävät) a x + + a n x n a) Ax b = a m x + + a mn x n = x a a m }{{}
1. TILASTOLLINEN HAHMONTUNNISTUS
1. TILASTOLLINEN HAHMONTUNNISTUS Tilastollisissa hahmontunnistusmenetelmissä piirteitä tarkastellaan tilastollisina muuttujina Luokittelussa käytetään hyväksi seuraavia tietoja: luokkien a priori tn:iä,
ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008
ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008 Harjoitus 4 Ratkaisuehdotuksia 1. Olkoon herra K.:n hyötyfunktio u(x) = ln x. (a) Onko herra K. riskinkaihtaja, riskinrakastaja vai riskineutraali?
Sekastrategia ja Nash-tasapainon määrääminen
May 24, 2016 Sekastrategia Monissa peleissä ei ole Nash-tasapainoa puhtaissa strategioissa H T H 1, 1 1, 1 T 1, 1 1, 1 Ratkaisu ongelmaan löytyy siitä, että laajennetaan strategiat käsittämään todennäköisyysjakaumat
2 Osittaisderivaattojen sovelluksia
2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä
Sopimusteoria: Salanie luku 3.2
Sopimusteoria: Salanie luku 3.2 Antti Pirjetä Taloustieteiden kvantitatiiviset menetelmät Helsingin kauppakorkeakoulu 12.2.2008 1 Kilpaillut markkinat, yksi tai useampi päämies Agenttien 1 ja 2 tuottamat
k S P[ X µ kσ] 1 k 2.
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 28 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan
Luento 5: Peliteoria
Luento 5: Peliteoria Portfolion optimointi Sijoittajan tehtävä Nashin tasapaino Vangin ongelma Nashin neuvotteluratkaisu 1 Portfolion optimointi Varallisuus A sijoitetaan n:ään sijoituskohteeseen (osake,
Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot
3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,
b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa.
2.9. Epävarmuus ja odotetun hyödyn teoria Testi. Kumman valitset a) 10 euroa varmasti. b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa. Odotettu arvo 0,5* 15 + 0,5*5
Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Päätöksentekijä on riskipakoinen, jos hyötyfunktio on konkaavi. a(x) = U (x) U (x)
Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Hyöty (engl. utility) = arvo, jonka koemme riskitilanteessa eli, kun teemme päätöksiä epävarmuuden (todennäköisyyksien) vallitessa. Vrt.
IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
1. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 20x 2 +10xy +5y 2 (b.) f(x,y) = 4x 2 2y 2 xy +x+2y +100
HARJOITUS, RATKAISUEHDOTUKSET, YLE 07.. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 0x +0xy +5y (b.) f(x,y) = 4x y xy +x+y +00 (a.) Funktion kriittiset pisteet ratkaisevat
Viime kerralta Epävarmuus ja riski Optimaalinen kulutus-säästämispäätös: Tulo- ja substituutiovaikutus analyyttinen tarkastelu Epävarmuus Epävarmuus
Viie kerralta Epävaruus ja riski Luento 5 4..010 Tulo- ja substituutiovaikutus hinnan uutoksessa Substituutiovaikutus budjettisuora kiertyi alkuperäisen valinnan ypärillä Tulovaikutus uusi budjettisuora
T Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti , 8:30-10:00 Kollokaatiot, Versio 1.1
T-61.281 Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti 10.2.2004, 8:30-10:00 Kollokaatiot, Versio 1.1 1. Lasketaan ensin tulokset sanaparille valkoinen, talo käsin: Frekvenssimenetelmä:
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta
Konvergenssilauseita
LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n
Tenttiin valmentavia harjoituksia
Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.
Lineaarinen optimointi. Harjoitus 6-7, Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän. c T x = min!
Lineaarinen optimointi Harjoitus 6-7, 016. 1. Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän c T x = min! (T) Ax b x 0 duaalitehtävän duaali on tehtävä (T). Ratkaisu. (P) c T x = min! Ax b x
ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008
ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008 Harjoitus 5 Ratkaisuehdotuksia Näissä harjoituksissa viljellään paljon sanaa paradoksi. Sana tulee ymmärtää laajassa mielessä. Suppeassa mielessähän
Epäyhtälöt ovat yksi matemaatikon voimakkaimmista
6 Epäyhtälöitä Epäyhtälöt ovat yksi matemaatikon voimakkaimmista työvälineistä. Yhtälö a = b kertoo sen, että kaksi ehkä näennäisesti erilaista asiaa ovat samoja. Epäyhtälö a b saattaa antaa keinon analysoida
Projektin arvon aleneminen
Projektin arvon aleneminen sivut 99-07 Optimointiopin seminaari - Syksy 000 / Arvon aleneminen Jatketaan projektin arvon tutkimista. Nyt huomioidaan arvon aleneminen. Syitä esimerkiksi: kaluston vanheneminen
Inversio-ongelmien laskennallinen peruskurssi Luento 2
Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +
Lineaarinen optimointitehtävä
Lineaarinen optimointitehtävä Minimointitehtävä yhtälörajoittein: min kun n j=1 n j=1 c j x j a ij x j = b i x j 0 j = 1,..., n i = 1,..., m Merkitään: z = alkuperäisen objektifunktion arvo käsiteltävänä
Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5
Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 1. Kotitehtävä. 2. Lasketaan aluksi korkoa korolle. Jos korkoprosentti on r, ja korko maksetaan n kertaa vuodessa t vuoden ajan, niin kokonaisvuosikorko
Derivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2
MS-C50 Osittaisdifferentiaaliyhtälöt Harjoitukset syksy 07. Oletetaan että vektorikenttä E E E E : R R on kaksi kertaa jatkuvasti derivoituva E C R. Näytä että E E. Derivaatat lasketaan komponenteittain
3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4
Ü µ ½ ¾Ü¾µ Ü¾Ê 3.11.2006 1. Satunnaismuuttujan tiheysfunktio on ¼ ļ ܽ ܾ ÜÒµ Ä Ü½ ÜÒµ Ò Ä Ü½ ܾ ÜÒµ ܽ µ ܾ µ ÜÒ µ Ò missä tietenkin vaaditaan, että ¼. Muodosta :n ¾Ä ܽ ÜÒµ Ò ½¾ ܾ Ò ½ ¾Ü¾½µ ½ ¾Ü¾Òµ
Toispuoleiset raja-arvot
Toispuoleiset raja-arvot Määritelmä Funktiolla f on oikeanpuoleinen raja-arvo a R pisteessä x 0 mikäli kaikilla ɛ > 0 löytyy sellainen δ > 0 että f (x) a < ɛ aina kun x 0 < x < x 0 + δ; ja vasemmanpuoleinen
3. Teoriaharjoitukset
3. Teoriaharjoitukset Demotehtävät 3.1 a Olkoot u ja v satunnaumuuttujia, joilla on seuraavat ominaisuudet: E(u = E(v = 0 Var(u = Var(v = σ 2 Cov(u, v = E(uv = 0 Näytä että deterministinen prosessi. x
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 6 1 Korkolaskentaa Oletetaan, että korkoaste on r Jos esimerkiksi r = 0, 02, niin korko on 2 prosenttia Tätä korkoastetta käytettään diskonttaamaan tulevia tuloja ja
2. Teoriaharjoitukset
2. Teoriaharjoitukset Demotehtävät 2.1 Todista Gauss-Markovin lause. Ratkaisu. Oletetaan että luentokalvojen standardioletukset (i)-(v) ovat voimassa. Huomaa että Gauss-Markovin lause ei vaadi virhetermien
saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 208 4 Funktion raja-arvo 4 Määritelmä Funktion raja-arvon määritelmän ehdosta ε > 0: δ > 0: fx) A < ε aina, kun 0 < x a < δ, saadaan kvanttorien järjestystä vaihtamalla
Luento 6: Monitavoiteoptimointi
Luento 6: Monitavoiteoptimointi Monitavoiteoptimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f 1,, f m Esimerkiksi opiskelija haluaa oppia mahdollisimman hyvin ja paljon mahdollisimman
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti
Hintadiskriminaatio 2/2
Hintadiskriminaatio 2/2 Matti Hellvist 12.2.2003 Toisen asteen hintadiskrimiaatio eli tuotteiden kohdennus Toisen asteen hintadiskriminaatio toimii tilanteessa, jossa kuluttajat ovat keskenään erilaisia
Pelien teoriaa: tasapainokäsitteet
Pelien teoriaa: tasapainokäsitteet Salanién (2005) ja Gibbonsin (1992) mukaan Mat-2.4142 Optimointiopin seminaari Jukka Luoma 1 Sisältö Staattinen Dynaaminen Staattinen Dynaaminen Pelityyppi Täydellinen
Duaalisuus kokonaislukuoptimoinnissa. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki
Duaalisuus kokonaislukuoptimoinnissa Mat-2.4191, Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Sisältö Duaalisuus binäärisissä optimointitehtävissä Lagrangen duaalisuus Lagrangen
Seurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa
Seurauksia Seuraus Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa P(x) = a n (x x 1 )(x x 2 )... (x x n ). Seuraus Astetta n olevalla polynomilla voi olla enintään
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016
w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.
Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)
Varian luku 12. Lähde: muistiinpanot on muokattu Varianin (2006, instructor s materials) muistiinpanoista
Epävaruus Varian luku 12 Lähde: uistiinpanot on uokattu Varianin (2006, instructor s aterials) uistiinpanoista Epävaruus Tähän asti ollaan tarkasteltu kuluttajan optiaalista valintaa sivuuttaen kokonaan
Matematiikan tukikurssi, kurssikerta 2
Matematiikan tukikurssi kurssikerta 1 Relaatioista Oletetaan kaksi alkiota a ja b. Näistä kumpikin kuuluu johonkin tiettyyn joukkoon mahdollisesti ne kuuluvat eri joukkoihin; merkitään a A ja b B. Voidaan
4 Matemaattinen induktio
4 Matemaattinen induktio Joidenkin väitteiden todistamiseksi pitää näyttää, että kaikilla luonnollisilla luvuilla on jokin ominaisuus P. Esimerkkejä tällaisista väitteistä ovat vaikkapa seuraavat: kaikilla
Sopimusteoria: Salanie luku 3.2
Sopimusteoria: Salanie luku 3.2 Antti Pirjetä Antti.Pirjeta@hse. Helsingin kauppakorkeakoulu 12.2.2008 Kilpaillut markkinat, yksi tai useampi päämies Agenttien 1 ja 2 tuottamat voitot Oletetaan luvun 2.2
Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.
Väitelause Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta. Tässä P:tä kutsutaan oletukseksi ja Q:ta väitteeksi. Jos yllä oleva väitelause on totta, sanotaan, että P:stä
Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1
Tehtävä : Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: a) a) x b) e x + Integraali voisi ratketa muuttujanvaihdolla. Integroitava on muotoa (a x ) n joten sopiva muuttujanvaihto voisi olla
T Luonnollisten kielten tilastollinen käsittely
T-61.281 Luonnollisten kielten tilastollinen käsittely Vastaukset 3, ti 11.2.2003, 16:15-18:00 Kollokaatiot, Versio 1.1 1. Lasketaan ensin tulokset sanaparille valkoinen, talo käsin: Frekvenssimenetelmä:
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi
Investointimahdollisuudet ja niiden ajoitus
Investointimahdollisuudet ja niiden ajoitus Ratkaisu optiohinnoitteluteorian avulla Esitelmä - Eeva Nyberg Optimointiopin seminaari - Syksy 000 / Tähän asti opittua NP:n rajoitteet vaikka NP negatiivinen
KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n.
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.139 Optimointioppi Kimmo Berg 7. harjoitus - ratkaisut 1. Oletetaan aluksi, että epäyhtälöt eivät ole aktiivisia p i > 0. Tässä tapauksess KKTehdot
Luento 8. June 3, 2014
June 3, 2014 Luokka pelejä, joissa pelaajilla on epätäydellistä informaatiota toistensa preferensseistä ja joissa valinnat tehdään samanaikaisesti. Tämä tarkoittaa, että pelaajat eivät tiedä toistensa
Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset
Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset 1. Olkoon X satunnaismuuttuja, ja olkoot a R \ {0}, b R ja Y = ax + b. (a) Olkoon X diskreetti ja f sen pistetodennäköisyysfunktio.
Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /
MS-A008 Differentiaali- ja integraalilaskenta, V/207 Differentiaali- ja integraalilaskenta Ratkaisut 2. viikolle / 8. 2.4. Jatkuvuus ja raja-arvo Tehtävä : Määritä raja-arvot a) 3 + x, x Vihje: c)-kohdassa
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 5A Vastaukset alkuviikolla
1 Rajoittamaton optimointi
Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y
Numeeriset menetelmät TIEA381. Luento 7. Kirsi Valjus. Jyväskylän yliopisto. Luento 7 () Numeeriset menetelmät / 43
Numeeriset menetelmät TIEA381 Luento 7 Kirsi Valjus Jyväskylän yliopisto Luento 7 () Numeeriset menetelmät 10.4.2013 1 / 43 Luennon 7 sisältö Interpolointi ja approksimointi Interpolaatiovirheestä Paloittainen
Avaruuden R n aliavaruus
Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla
3.7 Todennäköisyysjakaumia
MAB5: Todennäköisyyden lähtökohdat 4 Luvussa 3 Tunnusluvut perehdyimme jo jakauman käsitteeseen yleensä ja normaalijakaumaan vähän tarkemmin. Lähdetään nyt tutustumaan binomijakaumaan ja otetaan sen jälkeen
Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )
Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä
Matematiikan tukikurssi, kurssikerta 3
Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus
Generoivat funktiot, Poisson- ja eksponenttijakaumat
4A Generoivat funktiot, Poisson- ja eksponenttijakaumat Tämän harjoituksen tavoitteena on edelleen tutustua generoivien funktioiden sovelluksiin ja lisäksi harjoitella ratkaisemaan Poisson- ja eksponenttijakaumiin
U missä U A := {U R n : U avoin ja U A}; intuitiivisesti suurin avoin joukko, joka sisältyy A:han. Määritellään A:n sulkeuma A := F F A
Mitta a integraali Kesä 2 4. tehtävät Malliratkaisut (LS). Olkoon a i R i =, 2,... ono. Sanotaan, että i a i = os kaikille M R on olemassa i, olle kaikille i i pätee a i M. Sanotaan, että i a i = os i
Todennäköisyyslaskenta IIa, syyslokakuu 2019 / Hytönen 2. laskuharjoitus, ratkaisuehdotukset
Todennäköisyyslaskenta IIa, syyslokakuu 019 / Hytönen. laskuharjoitus, ratkaisuehdotukset 1. Kurssilla on 0 opiskelijaa, näiden joukossa Jutta, Jyrki, Ilkka ja Alex. Opettaja aikoo valita umpimähkään opiskelijan
Mikäli funktio on koko ajan kasvava/vähenevä jollain välillä, on se tällä välillä monotoninen.
4.1 Polynomifunktion kulun tutkiminen s. 100 digijohdanto Funktio f on kasvava jollain välillä, jos ehdosta a < b seuraa ehto f(a) < f(b). Funktio f on vähenevä jollain välillä, jos ehdosta a < b seuraa
MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset
MS-C350 Osittaisdifferentiaaliyhtälöt Haroitukset 5, syksy 207. Oletetaan, että a > 0 a funktio u on yhtälön u a u = 0 ratkaisu. a Osoita, että funktio vx, t = u x, t toteuttaa yhtälön a v = 0. b Osoita,
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 6 Sarjojen suppeneminen Kiinnostuksen kohteena on edelleen sarja a k = a + a 2 + a 3 + a 4 +... k= Tämä summa on mahdollisesti äärellisenä olemassa, jolloin sanotaan
Pystysuuntainen hallinta 2/2
Pystysuuntainen hallinta 2/2 Noora Veijalainen 19.2.2003 Yleistä Tarkastellaan tilannetta jossa: - Ylävirran tuottajalla on yhä monopoliasema - Alavirran sektorissa vallitsee kilpailu - Tuottaja voi rajoitteillaan
Johdantoa INTEGRAALILASKENTA, MAA9
Lyhyehkö johdanto integraalilaskentaan. Johdantoa INTEGRAALILASKENTA, MAA9 Integraalilaskennan lähtökohta 1: Laskutoimitukset + ja ovat keskenään käänteisiä, samoin ja ovat käänteisiä, kunhan ei jaeta
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 7 (vko 44/003) (Aihe: odotusarvon ja varianssin ominaisuuksia, satunnaismuuttujien lineaarikombinaatioita,
MS-A0004/A0006 Matriisilaskenta
4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin
Lyhyen aikavälin hintakilpailu 2/2
Lyhyen aikavälin hintakilpailu 2/2 Ilkka Männistö Esitelmä 10 - Ilkka Männistö Optimointiopin seminaari - Kevät 2003 / 1 Kilpailun aste Markkinahinta ei kerro mitään kilpailun asteesta jos kustannusrakennetta
Matemaattisen analyysin tukikurssi
Matemaattisen analyysin tukikurssi 5. Kurssikerta Petrus Mikkola 10.10.2016 Tämän kerran asiat Raja-arvo ja toispuolinen raja-arvo Funktion suurin ja pienin arvo Lukujono Lukujonon suppeneminen Kasvava
Konsensusongelma hajautetuissa järjestelmissä. Niko Välimäki Hajautetut algoritmit -seminaari
Konsensusongelma hajautetuissa järjestelmissä Niko Välimäki 30.11.2007 Hajautetut algoritmit -seminaari Konsensusongelma Päätöksen muodostaminen hajautetussa järjestelmässä Prosessien välinen viestintä
saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 209 4 Funktion raja-arvo 4. Määritelmä. Funktion raja-arvon määritelmän ehdosta ε > 0: δ > 0: f) A < ε aina, kun 0 < a < δ, saadaan kvanttorien järjestystä vaihtamalla
Matematiikan tukikurssi
Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14
Jokaisen parittoman kokonaisluvun toinen potenssi on pariton.
3 Todistustekniikkaa 3.1 Väitteen kumoaminen vastaesimerkillä Monissa tilanteissa kohdataan väitteitä, jotka koskevat esimerkiksi kaikkia kokonaislukuja, kaikkia reaalilukuja tai kaikkia joukkoja. Esimerkkejä
1 Kertaus. Lineaarinen optimointitehtävä on muotoa:
1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n
Investointimahdollisuudet ja investoinnin ajoittaminen
Investointimahdollisuudet ja investoinnin ajoittaminen Ajoituksen ratkaisu dynaamisella optimoinnilla Optimointiopin seminaari - Syksy 000 / Esitelmän sisältö Investoinnin ajoitusongelman esittely Ongelman
4.0.2 Kuinka hyvä ennuste on?
Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki
Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1
Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että