Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

Koko: px
Aloita esitys sivulta:

Download "Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria."

Transkriptio

1 /1 MTTTP1, luento KERTAUSTA JA TÄYDENNYSTÄ Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla todennäköisyydellä, nk. luottamustasolla.

2 /2 Olkoon populaatiossa % viallisia. Nyt :n 100(1 - ) %:n luottamusväli on p z / 2 p(100 p) / n kaava (8)

3 /3 Esim. Rahapelin pitäisi antaa voitto 20 %:lle pelatuista peleistä. Pelaat peliä 200 kertaa ja voitat 32 kertaa. Voitko uskoa, että 20 % peleistä voittaa? Muodostetaan 95 %:n luottamusväli prosenttiosuudelle. Nyt = 0,05, z 0,05/2 = z 0,025 = 1,96, n = 200, p = 16, luottamusväli 16 1,96 16(100 16)/ ,1 Koska 20 kuuluu luottamusvälille, päätellään pelin toimivan luvatulla tavalla.

4 /4 Esim Yritys valvoo tuotantoaan. Virheellisten komponenttien osuus ei saisi olla suurempi kuin 4 %. Laaduntarkkailussa tehtiin 500 komponentin otos, jossa 28 komponenttia osoittautui virheellisiksi. Onko tuotanto keskeytettävä? 95 %:n luottamusväli virheellisten komponenttien prosenttiosuudelle 5,6 1,96 5,6(100 5,6)/500 Virheellisten osuuden arvellaan olevan välillä 3,6 % - 7,6 %, joten vaihtelu on sallituissa rajoissa, koska 4 % kuuluu luottamusvälille.

5 /5 Populaation odotusarvon µ 100(1 - ) %:n luottamusväli on Esim. X t / 2; n 1s / n kaava (9) Eräs tehdas valmistaa tiiliä, joiden keskipaino pitkän aikavälin seurannassa on ollut 2,000 kg. Erään päivän tuotannosta valittiin satunnaisesti 16 tiiltä. Näiden keskipainoksi saatiin 1,972 kg ja keskihajonnaksi 0,054 kg. Onko keskipainossa tapahtunut muutosta? Muodostetaan odotusarvon 95 %:n luottamusväli. Nyt t 0,05/2;16 1 =2,131 ja luottamusväli 1,972 2,131 0,054 / 16. Saadaan väliksi 1,972 ± 0,029. Koska 2,000 kuuluu välille, päätellään ettei muutosta.

6 /6 Esim Kirjailijan virkkeiden keskipituus, luottamusväli 35,0 ± 2,045 6,8/ 30. Esim Esimerkissä 7.6.6, syntymäpituuden tarkastelu, otoksessa 65 poikaa Luottamusväli on laskettu 50,95±2 1,972/ 65, (t 0,05/2;65 1 2) 50,95±2 0,245

7 /7 Esim. Lepakoiden tunnistusmatkat, ks. kaavoihin.pdf

8 /8 Esim Esimerkin kovuusindeksien erotukset -5, 1, -2, -5, 2,-7, -1, -7, 1, 0, joista keskiarvo -2,3 ja keskihajonta 3,4. Odotusarvon 95 %:n luottamusväli -2,3±2,262 3,4/ 10-2,3±2,4 Lisäaineilla ei eroja, koska nolla kuuluu luottamusvälille.

9 / Kahden populaation odotusarvon erotuksen luottamusväli Jos halutaan arvioida kahden populaation odotusarvojen yhtäsuuruutta, niin voidaan arvioida odotusarvojen erotusta µ 1 - µ 2. Esim Arvio lähiö- ja keskusta-asuntojen keskineliöhintojen erotukselle on (-989,844, -798,862), muodostettu luottamusväli odotusarvojen erotukselle. Koska nolla ei kuulu luottamusvälille, niin päätellään: odotusarvojen olevan eri suuret (keskihinnat eivät samoja). o.pdf#page=76

10 / Hypoteesien testausta Tutkimusongelmia: Puolueen kannatus? Väite: = 18 % Virheellisten komponenttien osuus tuotannossa? Väite: = 4 % Kynttilöiden keskimääräinen palamisaika? Väite: µ = 20 h

11 /11 Asuntojen keskimääräiset neliöhinnat keskustassa ja lähiössä? Väite: µ 1 = µ 2 Painon ja pituuden välinen lineaarinen riippuvuus? Väite: = 0 Opintosuunnan vaikutus kurssiarviointiin? Väite: ei riippuvuutta

12 /12 Tilastollinen hypoteesi on väite populaatiosta, usein populaation jakauman parametrista. Esim. H0: = 0 H0: µ = µ 0 Hypoteesin testaus on väitteen tutkimista otoksen perusteella. Käytetään sopivaa otossuuretta (testisuuretta), jonka jakauma tunnetaan, kun H0 tosi.

13 /13 Esim. H 0 : µ = µ 0 t X s / n 0 ~ tn 1, kun H 0 tosi H 0 : = 0 Z p ) / n 0 ( 0 likimain ~ N(0,1), kun H 0 tosi

14 Otossuureen (testisuureen) arvon perusteella H 0 hyväksytään tai hylätään /14 Jos testisuureen arvoa pidetään tavanomaisten arvojen joukkoon kuuluvaksi, niin H 0 hyväksytään. Jos arvoa pidetään harvinaisten arvojen joukkoon kuuluvaksi, niin H 0 hylätään. Mikä on harvinaista? Mihin H 0 :n hylkääminen johtaa?

15 /15 Esim. H 0 : = 0 H 1 : > 0 vaihtoehtoinen hypoteesi Z likimain p 0 ~ N(0,1) 100 ) / n 0 ( 0, kun H 0 tosi Nyt harvinaisiksi arvoiksi katsotaan suuret arvot, suuremmat kuin z. Tällöin merkitsevyys- eli riskitaso on. Usein = 0,05, 0,025, 0,01 tai 0,001.

16 Jos H 0 hylätään, niin H 1 hyväksytään /16

17 /17 Miten H 1 asetetaan? Esim. H 0 : = 0 H 1 : > 0 (yksisuuntainen testi) tai H 1 : < 0 (yksisuuntainen testi) tai H 1 : 0 (kaksisuuntainen testi) Kaksisuuntaisessa testissä harvinaisten arvojen joukko on jakauman hännillä.

18 /18 Esim. H 0 : = 0 H 1 : 0 (kaksisuuntainen testi) Päättely p-arvon perusteella, p-arvo on pienin riskitaso, jolla H0 voidaan hylätä.

19 /19 Esim. H 0 : = 0 H 1 : > 0 Jos p-arvo on pienempi kuin valittu riskitaso, niin H 0 hylätään.

20 /20 Testisuureita H 0 : = 0 Z p ) / n 0 ( 0 likimain ~ N(0,1), kun H0 tosi

21 /21 Esim Tarkastellaan erään liikkeen asiakkaita. Halutaan tutkia, ovatko asiakkaista yli puolet naisia. Tehdään 200 asiakkaan satunnaisotos jossa naisia on 113. Nyt H 0 : = 50 % ja H 1 : > 50 %. Otoksessa naisia 56,5 %. Aineiston perusteella testisuureen arvoksi saadaan z 56, (100 50)/ 200 1,838 z 0,05 1,6449.

22 /22 H 0 hylätään 5 %:n riskitasolla, mutta ei 2,5 %:n riskillä, joten 0,025 < p-arvo < 0,05. Ks. 5/luentorunko.pdf#page=82 Esim /luentorunko.pdf#page=83

23 /23 - > luento 8.10 H 0 : µ = µ 0 t X s / n 0 ~ tn 1, kun H 0 tosi

24 /24 Esim Kauppias väitti, että kananmunien keskipaino on 50 g. Tehdään 36 alkion satunnaisotos ja saadaan x = 47, s = 6. Onko kauppiaan väittämään uskomista? Nyt H 0 : = 50 g ja H 1 : < 50 g Saadaan t 47 6/ , joka on pienempi kuin t 0,005;35 2,75, joten kauppiaan väitettä ei voida uskoa. Hylätään nollahypoteesi 0,5 %:n riskitasolla.

25 /25 Esim /luentorunko.pdf#page=86 Esim /luentorunko.pdf#page=87

Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu.

Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Ka6710000 TILASTOLLISEN ANALYYSIN PERUSTEET 2. VÄLIKOE 9.5.2007 / Anssi Tarkiainen Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Tehtävä 1. a) Gallupissa

Lisätiedot

Aki Taanila TILASTOLLISEN PÄÄTTELYN ALKEET

Aki Taanila TILASTOLLISEN PÄÄTTELYN ALKEET Aki Taanila TILASTOLLISEN PÄÄTTELYN ALKEET 21.5.2014 SISÄLLYS 0 JOHDANTO... 1 1 TILASTOLLINEN PÄÄTTELY... 2 1.1 Tiekartta... 4 2 YHTÄ MUUTTUJAA KOSKEVA PÄÄTTELY... 5 2.1 Keskiarvon luottamusväli... 5 2.2

Lisätiedot

Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4

Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN...6 1.1 INDUKTIO JA DEDUKTIO...7 1.2 SYYT JA VAIKUTUKSET...9

Lisätiedot

Tavanomaisten otostunnuslukujen, odotusarvon luottamusvälin ja Box ja Whisker -kuvion määritelmät: ks. 1. harjoitukset.

Tavanomaisten otostunnuslukujen, odotusarvon luottamusvälin ja Box ja Whisker -kuvion määritelmät: ks. 1. harjoitukset. Mat-.04 Tilastollisen analyysin perusteet Mat-.04 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahden riippumattoman otoksen t-testit,

Lisätiedot

Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS...

Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS... Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 1.1 INDUKTIO JA DEDUKTIO... 9 1.2 SYYT JA VAIKUTUKSET... 11 TEHTÄVIÄ... 13

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta?

Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Yhden otoksen suhteellisen osuuden testaus Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Hypoteesit H 0 : p = p 0 H 1 : p p 0 tai H 1 : p > p 0 tai H 1 : p < p 0 Suhteellinen osuus

Lisätiedot

Aki Taanila TILASTOLLINEN PÄÄTTELY

Aki Taanila TILASTOLLINEN PÄÄTTELY Aki Taanila TILASTOLLINEN PÄÄTTELY 14.4.2012 SISÄLLYS 0 JOHDANTO... 1 1 TILASTOLLINEN PÄÄTTELY... 2 2 YHTÄ MUUTTUJAA KOSKEVA PÄÄTTELY... 7 2.1 Normaalijakautuneisuuden testaaminen... 7 2.2 Keskiarvon luottamusväli...

Lisätiedot

Lukion. Calculus. Todennäköisyys ja tilastot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Todennäköisyys ja tilastot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion 3 MAA Todennäköisyys ja tilastot Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Todennäköisyys ja tilastot (MAA) Pikatesti ja kertauskokeet

Lisätiedot

SAS-ohjelmiston perusteet 2010

SAS-ohjelmiston perusteet 2010 SAS-ohjelmiston perusteet 2010 Luentorunko/päiväkirja Ari Virtanen 11.1.10 päivitetään luentojen edetessä Ilmoitusasioita Opintojakso suoritustapana on aktiivinen osallistuminen harjoituksiin ja harjoitustehtävien

Lisätiedot

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Tutkimusaineistomme otantoja Hyödyt Ei tarvitse tutkia kaikkia Oikein tehty otanta mahdollistaa yleistämisen

Lisätiedot

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Esimerkki Tarkastelemme ilmiötä I, joka on a) tiettyyn kauppaan tulee asiakkaita

Lisätiedot

KAHDEN RYHMÄN VERTAILU

KAHDEN RYHMÄN VERTAILU 10.3.2015 KAHDEN RYHMÄN VERTAILU Jouko Miettunen Center for Life-Course and Systems Epidemiology jouko.miettunen@oulu.fi Luennon sisältö Luokitellut muuttujat Ristiintaulukko, prosentit Khiin neliötesti

Lisätiedot

SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON?

SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON? SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON?...7 TILASTO...7 TILASTOTIEDE...8 HISTORIAA...9 TILASTOTIETEEN NYKYINEN ASEMA...9 TILASTOLLISTEN MENETELMIEN ROOLIT ERI TYYPPISET AINEISTOT JA ONGELMAT...10

Lisätiedot

TESTINVALINTATEHTÄVIEN VASTAUKSET

TESTINVALINTATEHTÄVIEN VASTAUKSET TESTINVALINTATEHTÄVIEN VASTAUKSET Vastaukset on merkitty keltaisella, muuttujien mittaustasot muuttujan kuvauksen perässä ja muu osa vastauksesta kysymyksen perässä. Tehtävä 1. Talousmatematiikan kurssin

Lisätiedot

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi Mat-2.2104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yhteensopivuuden ja homogeenisuden testaaminen Bowmanin ja Shentonin testi, Hypoteesi, 2 -homogeenisuustesti, 2 -yhteensopivuustesti,

Lisätiedot

Littlen tulos. Littlen lause sanoo. N = λ T. Lause on hyvin käyttökelpoinen yleisyytensä vuoksi

Littlen tulos. Littlen lause sanoo. N = λ T. Lause on hyvin käyttökelpoinen yleisyytensä vuoksi J. Virtamo 38.3143 Jonoteoria / Littlen tulos 1 Littlen tulos Littlen lause Littlen tuloksena tai Littlen lauseena tunnettu tulos on hyvin yksinkertainen relaatio järjestelmään tulevan asiakasvirran, keskimäärin

Lisätiedot

Pientalojen radonpitoisuuksien tilastollinen analyysi

Pientalojen radonpitoisuuksien tilastollinen analyysi Pientalojen radonpitoisuuksien tilastollinen analyysi (Valmiin työn esittely) 11.4.2011 Ohjaaja: DI Jirka Poropudas Valvoja: Prof. Raimo Hämäläinen Sisältö 1. Tausta 2. Tavoitteet 3. Menetelmät 4. Tulokset

Lisätiedot

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka

Lisätiedot

Puheentutkimuksen tilastoanalyysin perusteet. 8. luento. Pertti Palo 20.1.2012

Puheentutkimuksen tilastoanalyysin perusteet. 8. luento. Pertti Palo 20.1.2012 Puheentutkimuksen tilastoanalyysin perusteet 8. luento Pertti Palo 20.1.2012 Käytännön asioita Viimeisen seminaarin siirto: 2.3. 10-12 -> 2.3. 14-16. Miten seminaarin luentokuulustelun voi korvata? Harjoitustöiden

Lisätiedot

TILTP3 29.4.2003 Tiina Karjalainen, Tiina Lehto, Terhi Teiskonlahti Sivu 1/5

TILTP3 29.4.2003 Tiina Karjalainen, Tiina Lehto, Terhi Teiskonlahti Sivu 1/5 Tiina Karjalainen, Tiina Lehto, Terhi Teiskonlahti Sivu 1/5 Aineiston esittely Keräsimme aineiston Tampereella myytävinä olleista asunnoista. Aineisto on kerätty Asuntopörsseistä, sunnuntain Aamulehdistä

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2008 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 5. kesäkuuta 2008 (aamupäivä) KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Europpa-koulun antama taulukkovihkonen Funktiolaskin,

Lisätiedot

Tilastollisten menetelmien perusteet I TILTP2 Luentorunko, lukuvuosi 2011-2012

Tilastollisten menetelmien perusteet I TILTP2 Luentorunko, lukuvuosi 2011-2012 Tilastollisten menetelmien perusteet I TILTP2 Luentorunko, lukuvuosi 2011-2012 Raija Leppälä 17. lokakuuta 2011 Sisältö 1 Johdanto 3 2 Todennäköisyyslaskentaa 5 2.1 Satunnaisilmiö ja tapahtuma 5 2.2 Klassinen

Lisätiedot

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO Aki Taanila YHDEN SELITTÄJÄN REGRESSIO 26.4.2011 SISÄLLYS JOHDANTO... 1 LINEAARINEN MALLI... 1 Selityskerroin... 3 Excelin funktioita... 4 EKSPONENTIAALINEN MALLI... 4 MALLIN KÄYTTÄMINEN ENNUSTAMISEEN...

Lisätiedot

031021P Tilastomatematiikka (5 op) viikot 5 6

031021P Tilastomatematiikka (5 op) viikot 5 6 031021P Tilastomatematiikka (5 op) viikot 5 6 Jukka Kemppainen Mathematics Division Jakauman tunnusluvut Jakauman tärkeimmät tunnusluvut ovat odotusarvo ja varianssi. Odotusarvo ilmoittaa jakauman keskikohdan

Lisätiedot

Kuormat on yhdistettävä rakennesuunnittelussa riippuvasti

Kuormat on yhdistettävä rakennesuunnittelussa riippuvasti 16.5.2012/1(6)/tp Kuormat on yhdistettävä rakennesuunnittelussa riippuvasti Pysyvät kuormat ovat riippumattomia, mutta ne yhdistetään nykyisissä rakennesuunnittelunormeissa aina riippuvasti 1. Pysyvä ja

Lisätiedot

Tilastojen tulkintatehtäviä lukion 2. ja 3. vuosikursseille

Tilastojen tulkintatehtäviä lukion 2. ja 3. vuosikursseille Yhteystiedot: Tilastokeskus tilastokoulu@tilastokeskus.fi Tilastojen tulkintatehtäviä lukion 2. ja 3. vuosikursseille Oppilaan nimi: Vastaa suoraan tähän koepaperiin. Hyödynnä koepaperille jätettyjä vastausviivoja

Lisätiedot

7. laskuharjoituskierros, vko 10, ratkaisut

7. laskuharjoituskierros, vko 10, ratkaisut 7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,

Lisätiedot

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2010 Harjoitus 3

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2010 Harjoitus 3 ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2010 Harjoitus 3 Ratkaisuehdotuksia 1. (a) Päätöspuu on matala, jos mitään sattumasolmua ei välittömästi seuraa sattumasolmu eikä mitään päätössolmua

Lisätiedot

Muuttujien väliset riippuvuudet esimerkkejä

Muuttujien väliset riippuvuudet esimerkkejä Tarja Heikkilä Muuttujien väliset riippuvuudet esimerkkejä Sisältö MUUTTUJIEN VÄLISTEN YHTEYKSIEN TUTKIMINEN TILASTOLLINEN TESTAUS MERKITSEVYYSTASO MUUTTUJIEN VÄLISTEN YHTEYKSIEN TUTKIMINEN SPSS-OHJELMALLA

Lisätiedot

Vuokratietojen imputointi SISU -aineistoon

Vuokratietojen imputointi SISU -aineistoon Vuokratietojen imputointi SISU -aineistoon Sisällys 1 AINEISTON LÄHTÖTILANNE JA IMPUTOINTI.... 3 1.1 Aineiston asuntokunnat ja asumistukirekisteri...3 1.2 Tietojen imputointimenetelmä........................................

Lisätiedot

SELVITTÄJÄN KOMPETENSSISTA

SELVITTÄJÄN KOMPETENSSISTA OTM, KTM, Mikko Hakola, Vaasan yliopisto, Laskentatoimen ja rahoituksen laitos Helsinki 20.11.200, Helsingin kauppakorkeakoulu Projekti: Yrityksen maksukyky ja strateginen johtaminen SELVITTÄJÄN KOMPETENSSISTA

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

Aloitamme yksinkertaisella leluesimerkillä. Tarkastelemme yhtä osaketta S. Oletamme että tänään, hetkellä t = 0, osakkeen hinta on S 0 = 100=C.

Aloitamme yksinkertaisella leluesimerkillä. Tarkastelemme yhtä osaketta S. Oletamme että tänään, hetkellä t = 0, osakkeen hinta on S 0 = 100=C. Luku 1 Johdatteleva esimerkki Herra K. tarjoaa osto-option Aloitamme yksinkertaisella leluesimerkillä. Tarkastelemme yhtä osaketta S. Oletamme että tänään, hetkellä t = 0, osakkeen hinta on S 0 = 100=C.

Lisätiedot

Pelitehtäviä. Helpot tehtävät. Tuomas Korppi

Pelitehtäviä. Helpot tehtävät. Tuomas Korppi Solmu 1/2012 1 Pelitehtäviä Tuomas Korppi Tämänkertaisissa tehtävissä analysoimme yksinkertaisia pelejä. Tehtävät 1 6 ovat helppoja, ja soveltuvat arvioni mukaan yläasteelle 1. Tehtävät 7 11 ovat vaikeampia,

Lisätiedot

Luento 5: Peliteoriaa

Luento 5: Peliteoriaa Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan lyhyesti peliteoriaan. Peliteorian ratkaisukäsite on Nashin tasapaino, jonka jo Augustin Cournot esitti duopolimallinsa ratkaisuna v. 1838. Cournot n

Lisätiedot

1.1 Tilastomenetelmät luotettavan tutkimuksen perustana 1 1.1.1 Otos vs. näyte 1 1.1.2 Tilastollinen päättely ja tieteellisyyden kriteerit 2

1.1 Tilastomenetelmät luotettavan tutkimuksen perustana 1 1.1.1 Otos vs. näyte 1 1.1.2 Tilastollinen päättely ja tieteellisyyden kriteerit 2 Sisältö 1 JOHDANTO 1 1.1 Tilastomenetelmät luotettavan tutkimuksen perustana 1 1.1.1 Otos vs. näyte 1 1.1. Tilastollinen päättely ja tieteellisyyden kriteerit TEOREETTINEN JAKAUMA 3.1 Satunnaismuuttuja

Lisätiedot

Tilastomatematiikka 1, KESÄ2010/TIMO&AIMO 2010. Tehtäväkokoelma

Tilastomatematiikka 1, KESÄ2010/TIMO&AIMO 2010. Tehtäväkokoelma Tilastomatematiikka 1, KESÄ2010/TIMO&AIMO 2010 Tehtäväkokoelma 1. Komponentit k 1,...,k n muodostavat rinnan kytketyn systeemin, jos systeemi toimii aina, kun yksikin komponentti toimii. Komponentit muodostavat

Lisätiedot

Todennäköisyyslaskenta sivuaineopiskelijoille

Todennäköisyyslaskenta sivuaineopiskelijoille Todennäköisyyslaskenta sivuaineopiskelijoille Tentit: 4.11.2013 ja 2.12.2013. Loput kaksi tenttiä (vuonna 2014) ilmoitetaan myöhemmin. Tentissä on 4 tehtävää á 8 pistettä, aikaa 4 tuntia. Arvostelu 0 5.

Lisätiedot

Empiirinen projekti. Olli-Matti Laine Kauppatieteet

Empiirinen projekti. Olli-Matti Laine Kauppatieteet Empiirinen projekti Olli-Matti Laine Kauppatieteet 1 Contents 1. Johdanto... 3 2. Kuvaileva osa... 4 3. Analyysiosa... 17 4. Yhteenveto... 35 2 1. Johdanto Tutkin projektissa tilastollisin menetelmin kansantaloudellisia

Lisätiedot

eli ruee a ELI KEINOELÄMÄN TUTt(J USLAITOS THE RESEARCH INSTITUTE OF THE FINNISH ECONOMY ~j (t) r SOSIAALITURVAMAKSUJEN ENNUS'l'AHISESTA

eli ruee a ELI KEINOELÄMÄN TUTt(J USLAITOS THE RESEARCH INSTITUTE OF THE FINNISH ECONOMY ~j (t) r SOSIAALITURVAMAKSUJEN ENNUS'l'AHISESTA EL KENOELÄMÄN TUTt(J USLATOS THE RESEARCH NSTTUTE OF THE FNNSH ECONOMY Lönnrotinkatu 4 B, 00120 Helsinki 12. Finland, tel. 601322 ( ~' eli ruee a ~j (t) r Christian Edgren SOSAALTURVAMAKSUJEN ENNUS'l'AHSESTA

Lisätiedot

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008 Korko riippuu usein laina-ajan pituudesta ja pitkille talletuksille maksetaan korkeampaa korkoa. Spot-korko s t on se korko, joka kertyy lainatulle pääomalle hetkeen t (=kokonaisluku) mennessä. Spot-korot

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,

Lisätiedot

Voidaan laskea siis ensin keskimääräiset kiinteät kustannukset AFC: 100 000 /10000=10

Voidaan laskea siis ensin keskimääräiset kiinteät kustannukset AFC: 100 000 /10000=10 Harjoitukset 3 Taloustieteen perusteet Ratkaisuehdotukset Kesäyliopisto 2014 1. a) Autonrenkaita valmistavalla yhtiöllä on 100 000 :n kiinteät kustannukset vuodessa. Kun yritys tuottaa 10 000 rengasta,

Lisätiedot

Projektin arvon määritys

Projektin arvon määritys Projektin arvon määritys Luku 6, s. 175-186 Optimointiopin seminaari - Syksy 2000 / 1 Tehtävä Johdetaan menetelmä projektiin oikeuttavan option määrittämiseksi kohde-etuuden hinnan P perusteella projektin

Lisätiedot

YLE Uutiset. Haastattelut tehtiin 23.3-15.4.2015 Kannatusarvio kuvaa tilannetta eduskuntavaalien puoluekannatuksessa.

YLE Uutiset. Haastattelut tehtiin 23.3-15.4.2015 Kannatusarvio kuvaa tilannetta eduskuntavaalien puoluekannatuksessa. PUOLUEIDEN KANNATUSARVIOT, huhtikuu 2015 (23.3.-15.4.2015) Toteutus Tämän haastattelututkimukseen perustuvan laskennallisen arvion puolueiden eduskuntavaalikannatuksesta on laatinut Taloustutkimus Oy YLE

Lisätiedot

Ensimmäisen asteen polynomifunktio

Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()

Lisätiedot

Kuinka haastavaa uusien työntekijöiden rekrytointi on ollut teidän organisaationne kohdalla viimeisen kahden vuoden aikana? /

Kuinka haastavaa uusien työntekijöiden rekrytointi on ollut teidän organisaationne kohdalla viimeisen kahden vuoden aikana? / Profiilittaiset erot arviointikysymyksissä Tarkasteltaessa aineistoa profiileittain jaoteltuna tilastollisesti merkittäviä eroja ryhmien välillä ei esiinny. Henkilöstömäärän mukaan jaoteltuna aineistosta

Lisätiedot

7. Tutkimuksen teko. Kevät 2005 Empiirinen ohjelmistotutkimus / Taina. Kevät 2005 Empiirinen ohjelmistotutkimus / Taina

7. Tutkimuksen teko. Kevät 2005 Empiirinen ohjelmistotutkimus / Taina. Kevät 2005 Empiirinen ohjelmistotutkimus / Taina 7. 7.1. Johdanto Tämä luku perustuu kirjaan C. Wohlin et al., Experimentation in Software Engineering, An Introduction, Kluwer Academic Publishers, 2000. ISBN 0-7923-8682-5. Tähän asti olemme käsitelleet

Lisätiedot

Pokeri ja emootiot. Jussi Palomäki Kognitiotieteen jatko-opiskelija (HY) Nettipokerinpelaaja jussi.palomaki@helsinki.fi

Pokeri ja emootiot. Jussi Palomäki Kognitiotieteen jatko-opiskelija (HY) Nettipokerinpelaaja jussi.palomaki@helsinki.fi Pokeri ja emootiot Jussi Palomäki Kognitiotieteen jatko-opiskelija (HY) Nettipokerinpelaaja jussi.palomaki@helsinki.fi Internetin villit pelikuviot -seminaari Tiistai 11.12.12 Esityksen sisältö Pokeripelin

Lisätiedot

Vankien poistumislupakäytännöt ja niiden yhteneväisyys

Vankien poistumislupakäytännöt ja niiden yhteneväisyys Miten tutkimuskysymyksiin on etsitty vastausta? Kolme esimerkkiä kriminologisista tutkimuksista Vankien poistumislupakäytännöt ja niiden yhteneväisyys Tutkimuksen tavoite 1: Selvittää empiirisesti vankien

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/5

TKK @ Ilkka Mellin (2008) 1/5 Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 3, 6, 7 Pistetehtävät: 2, 4, 5, 9 Ylimääräiset tehtävät: 8, 10, 11 Aiheet: Moniulotteiset jakaumat Avainsanat: Diskreetti jakauma,

Lisätiedot

8.1.2013 RAPORTTI LIIKUNNAN VAPAAEHTOISTOIMIJOIDEN ITE-ARVIOINNISTA 2012

8.1.2013 RAPORTTI LIIKUNNAN VAPAAEHTOISTOIMIJOIDEN ITE-ARVIOINNISTA 2012 RAPORTTI LIIKUNNAN VAPAAEHTOISTOIMIJOIDEN ITE-ARVIOINNISTA 2012 Tämä on raportti Suomen Parkinson-liiton Liikunnan vapaaehtoistoimijoiden (yhdistysten liikuntavastaavat/kerhon liikuttajat) arvio liikuntatoiminnasta

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 24.1.2011 T-106.1208 Ohjelmoinnin perusteet Y 24.1.2011 1 / 36 Luentopalaute kännykällä alkaa tänään! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti Vast

Lisätiedot

Johdatus Ammattikorkeakoulun matematiikkaan ja fysiikkaan

Johdatus Ammattikorkeakoulun matematiikkaan ja fysiikkaan Johdatus Ammattikorkeakoulun matematiikkaan ja fysiikkaan ammattiopiston viimeisenä keväänä vahvistaa AMK:uun pyrkivien taitoja pääsykoetta varten saada jo etukäteen 5 op:n suoritus valinnaisiin Tulos:

Lisätiedot

TALOUSTUTKIMUS OY TYÖNTEKIJÖIDEN N=1010

TALOUSTUTKIMUS OY TYÖNTEKIJÖIDEN N=1010 TALOUSTUTKIMUS OY 8. 1.10.01 10 01 TYÖNTEKIJÖIDEN OIKEUS KOULUTUKSEEN N=1010 Tiedättekö, että raamisopimuksessa sovittiin työntekijöiden oikeudesta kolmeen koulutuspäivään vuodessa? (%) Kaikki 5 En Kyllä

Lisätiedot

Järvitesti Ympäristöteknologia T571SA 7.5.2013

Järvitesti Ympäristöteknologia T571SA 7.5.2013 Hans Laihia Mika Tuukkanen 1 LASKENNALLISET JA TILASTOLLISET MENETELMÄT Järvitesti Ympäristöteknologia T571SA 7.5.2013 Sarkola Eino JÄRVITESTI Johdanto Järvien kuntoa tutkitaan monenlaisilla eri menetelmillä.

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA7 Derivaatta Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Derivaatta (MAA7) Pikatesti ja kertauskokeet Tehtävien ratkaisut Pikatesti

Lisätiedot

YLE Uutiset. Haastattelut tehtiin 3. 27.1.2011. Kannatusarvio kuvaa tilannetta eduskuntavaalien puoluekannatuksessa.

YLE Uutiset. Haastattelut tehtiin 3. 27.1.2011. Kannatusarvio kuvaa tilannetta eduskuntavaalien puoluekannatuksessa. PUOLUEIDEN KANNATUSARVIOT, tammikuu 2011 (3. 27.1.2011) Toteutus Tämän haastattelututkimukseen perustuvan laskennallisen arvion puolueiden eduskuntavaalikannatuksesta on laatinut Taloustutkimus Oy YLE

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Luento 5: Peliteoria

Luento 5: Peliteoria Luento 5: Peliteoria Portfolion optimointi Sijoittajan tehtävä Nashin tasapaino Vangin ongelma Nashin neuvotteluratkaisu 1 Portfolion optimointi Varallisuus A sijoitetaan n:ään sijoituskohteeseen (osake,

Lisätiedot

Orava Asuinkiinteistörahasto Oyj Yhtiöesittely

Orava Asuinkiinteistörahasto Oyj Yhtiöesittely 11/20/2013 1 Orava Asuinkiinteistörahasto Oyj Yhtiöesittely 11/20/2013 2 Tärkeitä tietoja lukijalle Orava Asuinkiinteistörahasto Oyj ( Yhtiö ) on laatinut tämän luottamuksellisen esityksen Yhtiöstä vain

Lisätiedot

Funktion derivoituvuus pisteessä

Funktion derivoituvuus pisteessä Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Mielikuva: Funktio f on derivoituva x = a, jos sen kuvaaja (xy-tasossa) pisteen (a, f(a))

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

TILASTOLLISTEN MENETELMIEN KIRJO JA KÄYTTÖ LÄÄKETIETEEN TUTKIMUSJULKAISUISSA. Pentti Nieminen 03.11.2014

TILASTOLLISTEN MENETELMIEN KIRJO JA KÄYTTÖ LÄÄKETIETEEN TUTKIMUSJULKAISUISSA. Pentti Nieminen 03.11.2014 TILASTOLLISTEN MENETELMIEN KIRJO JA KÄYTTÖ LÄÄKETIETEEN TUTKIMUSJULKAISUISSA LUKIJAN NÄKÖKULMA 2 TAUSTAKYSYMYKSIÄ 3 Mitä tutkimusmenetelmiä ja taitoja opiskelijoille tulisi opettaa koulutuksen eri vaiheissa?

Lisätiedot

14 Jatkuva jakauma. Käsitellään kuitenkin ennen täsmällisiä määritelmiä johdatteleva

14 Jatkuva jakauma. Käsitellään kuitenkin ennen täsmällisiä määritelmiä johdatteleva 4 Jatkuva jakauma Edellä määriteltiin diskreetiksi satunnaismuuttujaksi sellainen, joka voi saada vain (hyppäyksittäin) erillisiä arvoja. Jatkuva satunnaismuuttuja voi saada mitä hyvänsä arvoja yleensä

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Kasvuyrityksen tuotekehitysportfolion optimointi (valmiin työn esittely)

Kasvuyrityksen tuotekehitysportfolion optimointi (valmiin työn esittely) Kasvuyrityksen tuotekehitysportfolion optimointi (valmiin työn esittely) Santtu Saijets 16.6.2014 Ohjaaja: Juuso Liesiö Valvoja: Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.

Lisätiedot

10 y 2 3 x D 100; D 30 29 59 6 D 10 5. 100 10 2 3 a: Vastaavasti sadalla kilometrillä kulutettavan polttoaineen E10 energiasisältö on 90 100 x a C 10

10 y 2 3 x D 100; D 30 29 59 6 D 10 5. 100 10 2 3 a: Vastaavasti sadalla kilometrillä kulutettavan polttoaineen E10 energiasisältö on 90 100 x a C 10 Helsingin ylioisto, Itä-Suomen ylioisto, Jyväskylän ylioisto, Oulun ylioisto, Tamereen ylioisto ja Turun ylioisto Matematiikan valintakokeen 3.6.0 ratkaisut. Oletetaan, että litralla (uhdasta) bensiiniä

Lisätiedot

LIITE. Liite 6. KOMISSION DELEGOITU ASETUS (EU) N:o.../...,

LIITE. Liite 6. KOMISSION DELEGOITU ASETUS (EU) N:o.../..., EUROOPAN KOMISSIO Bryssel 3.5.2013 C(2013) 2458 final LIITE Liite 6 KOMISSION DELEGOITU ASETUS (EU) N:o.../..., Euroopan parlamentin ja neuvoston direktiivin 2010/30/EY täydentämisestä pölynimurien energiamerkinnän

Lisätiedot

Pikavoittoja tarjolla?

Pikavoittoja tarjolla? Pikavoittoja tarjolla? Epänormaali tuotto osavuosikatsauksen aikaan Aleksi Korpinen, 20. marraskuuta 2009 Valkeakosken Tietotien lukio, Päivölän kansanopiston matematiikkalinja Taloustiede, Rahoitus Tiivistelmä

Lisätiedot

Pääsykoe 2001/Ratkaisut Hallinto

Pääsykoe 2001/Ratkaisut Hallinto Pääsykoe 2001/Ratkaisut Hallinto 1. Osio 3/Tosi; Organisaatiokenttää ei mainita (s.35). 2. Osiot 1 ja 2/Epätosia; Puppua. Osio 3/Lähellä oikeata kuvion 2.1 mukaan (s.30). Osio 4/Tosi (sivun 30 tekstin

Lisätiedot

Aki Taanila LINEAARISET REGRESSIOMALLIT

Aki Taanila LINEAARISET REGRESSIOMALLIT Aki Taanila LINEAARISET REGRESSIOMALLIT 17.6.2010 SISÄLLYSLUETTELO 0 Johdanto... 1 1 Keskiarvo ennustemallina... 2 2 Yhden selittävän muuttujan malli... 3 3 Useamman selittävän muuttujan malli... 6 4 Excel

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 8 Optioiden hinnoittelusta

Rahoitusriskit ja johdannaiset Matti Estola. luento 8 Optioiden hinnoittelusta Rahoitusriskit ja johdannaiset Matti Estola luento 8 Optioiden hinnoittelusta 1. Optioiden erilaiset kohde-etuudet 1.1. Osakeoptiot Yksi optio antaa yleensä oikeuden ostaa/myydä 1 kpl kohdeetuutena olevia

Lisätiedot

ARTTU-Kuntalaiskysely 2011

ARTTU-Kuntalaiskysely 2011 Kuntalaisten mielipiteet kuntaliitoksista ARTTU-tutkimuskunnissa loka-joulukuussa 11 ARTTU-Kuntalaiskysely 11 Otos 28 100, vastanneita 11 268 (40%) Tutkimuspäällikkö Marianne Pekola-Sjöblom marianne.pekola-sjoblom(at)kuntaliitto.fi

Lisätiedot

Tutkimuksen tavoitteet

Tutkimuksen tavoitteet 1 Tutkimuksen tavoitteet 1. Selvittää nuorten kiinnostusta johto- ja esimiestehtäviin sekä heidän kokemuksiaan ja näkemyksiään esimiestyöskentelystä. 2. Selvittää nuorten näkemyksiä osaamisen kehittämiseen

Lisätiedot

KuntaVaaliPeli. Tuomo Pekkanen / 2012

KuntaVaaliPeli. Tuomo Pekkanen / 2012 KuntaVaaliPeli Tuomo Pekkanen / 2012 Mistä oikein on kyse? Kuntavaalipelissä koitetaan selvittää mikä neljästä puolueesta onkaan seuraavien vaalien jälkeen se suuri puolue. Jokainen puolue kamppailee kolmesta

Lisätiedot

Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin!

Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! MAA6 Kurssikoe 1.11.14 Jussi Tyni ja Juha Käkilehto Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A-OSIO: Laske kaikki

Lisätiedot

811312A Tietorakenteet ja algoritmit, 2014-2015, Harjoitus 7, ratkaisu

811312A Tietorakenteet ja algoritmit, 2014-2015, Harjoitus 7, ratkaisu 832A Tietorakenteet ja algoritmit, 204-205, Harjoitus 7, ratkaisu Hajota ja hallitse-menetelmä: Tehtävä 7.. Muodosta hajota ja hallitse-menetelmää käyttäen algoritmi TULOSTA_PUU_LASKEVA, joka tulostaa

Lisätiedot

Markkinakommentti. Julkaisuvapaa 7.10.2009 ARVOASUNTOJEN KAUPPA KIIHTYY PERHEASUNTOJEN RINNALLA

Markkinakommentti. Julkaisuvapaa 7.10.2009 ARVOASUNTOJEN KAUPPA KIIHTYY PERHEASUNTOJEN RINNALLA Markkinakommentti Julkaisuvapaa 7.10.2009 ARVOASUNTOJEN KAUPPA KIIHTYY PERHEASUNTOJEN RINNALLA Jos perheasuntojen kauppalukumäärät ovat loppukesän ja alkusyksyn aikana kasvaneet voimakkaasti verrattuna

Lisätiedot

PSYKOLOGIA - KOGNITIOTIEDE TILASTOMATEMATIIKAN LISÄMATERIAALI VALINTAKOE 2015 HELSINGIN YLIOPISTO

PSYKOLOGIA - KOGNITIOTIEDE TILASTOMATEMATIIKAN LISÄMATERIAALI VALINTAKOE 2015 HELSINGIN YLIOPISTO PSYKOLOGIA - KOGNITIOTIEDE TILASTOMATEMATIIKAN LISÄMATERIAALI VALINTAKOE 05 HELSINGIN YLIOPISTO PSYKOLOGIAN JA KOGNITIOTIETEEN VALINTAKOE 05 Tilastomatematiikan lisämateriaali Copyright Helsingin yliopisto,

Lisätiedot

Härpäkkeestä hyödykkeeksi.

Härpäkkeestä hyödykkeeksi. Härpäkkeestä hyödykkeeksi. Aalto Ventures Program offers academic education on high-growth entrepreneurship for all Aalto students Håkan Mitts Sähköinsinööri vuosimallia X Tietotekniikan osastolla Service

Lisätiedot

Laskennallinen älykkyys. Computational Intelligence

Laskennallinen älykkyys. Computational Intelligence Laskennallinen älykkyys Computational Intelligence LASKENNALLISEN ÄLYKKYYDEN TUTKIMUS TUTKIMUSKOHTEITAMME Työvoiman hallinnan optimointi Reitti- ja logistiikkaoptimointi Ammattilaisliigojen sarjaohjelmien

Lisätiedot

Rahapelaaminen huvia, haaveita vai hankaluuksia? Palveluja ongelmapelaamiseen, aluepilotti Päijät-Häme

Rahapelaaminen huvia, haaveita vai hankaluuksia? Palveluja ongelmapelaamiseen, aluepilotti Päijät-Häme Rahapelaaminen huvia, haaveita vai hankaluuksia? Palveluja ongelmapelaamiseen, aluepilotti Päijät-Häme Rahapelit (1) Rahapeli pelin voitto tai tappio on rahaa tai rahan arvoinen, perustuu pääosin sattumaan.

Lisätiedot

Laskennallinen älykkyys. Computational Intelligence

Laskennallinen älykkyys. Computational Intelligence Laskennallinen älykkyys Computational Intelligence MITEN PIDÄN TEIDÄT HEREILLÄ? SAMK ja laskennallisen älykkyyden tutkimus Lyhyesti muutamasta ongelmasta Miten jääkiekon SM liigan sarjaohjelma laaditaan?

Lisätiedot

MATEMATIIKAN TASOTESTI / EKAMK / 9.9.2003

MATEMATIIKAN TASOTESTI / EKAMK / 9.9.2003 MATEMATIIKAN TASOTESTI / EKAMK / 9.9.2003 Etelä-Karjalan ammattikorkeakoulun johdon toimeksiannosta järjestettiin aloittaville opiskelijoille matematiikan tasotesti. Mukana olivat kaikki koulutusalat,

Lisätiedot

Insinöörimatematiikka A

Insinöörimatematiikka A Insinöörimatematiikka A Demonstraatio 3, 3.9.04 Tehtävissä 4 tulee käyttää Gentzenin järjestelmää kaavojen johtamiseen. Johda kaava φ (φ ) tyhjästä oletusjoukosta. ) φ ) φ φ 3) φ 4) φ (E ) (E ) (I, ) (I,

Lisätiedot

TILASTOTIETEEN PERUSTEET, kl 2011

TILASTOTIETEEN PERUSTEET, kl 2011 TILASTOTIETEEN PERUSTEET, kl 2011 Luku 3: TILASTOLLINEN KUVAILU Tässä luvussa esittelemme menetelmiä, joilla havaintomatriisin yhden sarakkeen eli yhden muuttujan havaintojen sisältämä informaatio kuvaillaan

Lisätiedot

SmartPhone Solutions. Kysely älypuhelinten tietoturvasta 09 / 2011

SmartPhone Solutions. Kysely älypuhelinten tietoturvasta 09 / 2011 SmartPhone Solutions Kysely älypuhelinten tietoturvasta 09 / 011 smartphonesolutions.fi Johdanto Tutkimuksen tarkoitus Menetelmä Kohderyhmä IT-johdon näkemykset älypuhelinten käytöstä ja tietoturvasta

Lisätiedot

Sekajätteen koostumustutkimusten

Sekajätteen koostumustutkimusten Sekajätteen koostumustutkimusten Exceltyökalun pikakäyttöopas Olli Sahimaa 2014 2 Sisällysluettelo Sisällysluettelo... 2 1 Johdanto... 3 2 Tutkimuksen tietojen syöttäminen... 4 2.1 Tutkimuksen taustatietojen

Lisätiedot

KESÄTYÖNTEKIJÄT JA LOMAT PK-YRITYKSISSÄ 2008 1

KESÄTYÖNTEKIJÄT JA LOMAT PK-YRITYKSISSÄ 2008 1 KESÄTYÖNTEKIJÄT JA LOMAT PK-YRITYKSISSÄ 2008 KESÄTYÖNTEKIJÄT JA LOMAT PK-YRITYKSISSÄ 2008 1 Tiivistelmä Yrittäjien lomat Suomen Yrittäjien huhtikuussa 2008 tekemässä jäsenkyselyssä tiedusteltiin yrittäjiltä

Lisätiedot

Tilastolliset toiminnot

Tilastolliset toiminnot -59- Tilastolliset toiminnot 6.1 Aineiston esittäminen graafisesti Tilastollisen aineiston tallentamisvälineiksi TI-84 Plus tarjoaa erityiset listamuuttujat L1,, L6, jotka löytyvät 2nd -toimintoina vastaavilta

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE 4.6.2015 MALLIVASTAUKSET

KANSANTALOUSTIETEEN PÄÄSYKOE 4.6.2015 MALLIVASTAUKSET KANSANTALOUSTIETEEN ÄÄSYKOE 4.6.05 MALLIVASTAUKSET Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti ohjola, Taloustieteen oppikirja,. painos, 04] sivuihin. () (a) Bretton Woods -järjestelmä:

Lisätiedot

Uudistamistuloksen vaihtelun vaikutus uudistamisen kustannustehokkuuteen metsänviljelyssä. Esitelmän sisältö. Taustaa. Tutkimuksen päätavoitteet

Uudistamistuloksen vaihtelun vaikutus uudistamisen kustannustehokkuuteen metsänviljelyssä. Esitelmän sisältö. Taustaa. Tutkimuksen päätavoitteet Uudistamistuloksen vaihtelun vaikutus uudistamisen kustannustehokkuuteen metsänviljelyssä Metsänuudistaminen pohjoisen erityisolosuhteissatutkimushankkeen loppuseminaari 15.3.2012 Rovaniemi Esitelmän sisältö

Lisätiedot

b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa.

b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa. 2.9. Epävarmuus ja odotetun hyödyn teoria Testi. Kumman valitset a) 10 euroa varmasti. b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa. Odotettu arvo 0,5* 15 + 0,5*5

Lisätiedot

Aki Taanila TOIMITUSKETJUN HALLINNAN TYÖKALUJA

Aki Taanila TOIMITUSKETJUN HALLINNAN TYÖKALUJA Aki Taanila TOIMITUSKETJUN HALLINNAN TYÖKALUJA 10.9.2015 SISÄLLYS JOHDANTO... 1 1 TILASTOLLINEN LAADUNVALVONTA... 2 1.1 Prosessin kyvykkyys... 2 1.2 Prosessin valvonta... 4 1.2.1 Kontrollikaavio keskiarvolle...

Lisätiedot

Ohje tutkimustiedon tulkintaan

Ohje tutkimustiedon tulkintaan Ohje tutkimustiedon tulkintaan Tilastotyöryhmä 27.3.2003 Sisällysluettelo 1 Johdanto 1 2 Tutkimustiedon tulkinta 1 3 Tutkimuksen tuoteseloste 3 4 Keskeisiä tilastokäsitteitä 4 1. JOHDANTO 2. TUTKIMUSTIEDON

Lisätiedot

Rahoitustarkastuksen standardi 4.3i Operatiivisen riskin vakavaraisuusvaatimus LIITE 2

Rahoitustarkastuksen standardi 4.3i Operatiivisen riskin vakavaraisuusvaatimus LIITE 2 Rahoitustarkastuksen standardi 4.3i Operatiivisen riskin vakavaraisuusvaatimus LIITE 2 Perus- ja standardimenetelmän sekä vaihtoehtoisen standardimenetelmän mukaisen vakavaraisuusvaatimuksen laskentaesimerkit

Lisätiedot

Verkkoavusteinen päihdekuntoutusohjelma - Pilotin arviointia Päihdetiedotusseminaari 6.6.2015 Sanna Ranta & Jouni Tourunen 8.6.

Verkkoavusteinen päihdekuntoutusohjelma - Pilotin arviointia Päihdetiedotusseminaari 6.6.2015 Sanna Ranta & Jouni Tourunen 8.6. Verkkoavusteinen päihdekuntoutusohjelma - Pilotin arviointia Päihdetiedotusseminaari 6.6.2015 Sanna Ranta & Jouni Tourunen 8.6.2015 1 Verkkopalvelut/-auttaminen Perusteluja/taustaa Tietotekniikan kehittyminen

Lisätiedot

Hitas on Helsingin kaupungin omistamille tonteille rakennettujen asuntojen hinta- ja laatutason sääntelyjärjestelmä.

Hitas on Helsingin kaupungin omistamille tonteille rakennettujen asuntojen hinta- ja laatutason sääntelyjärjestelmä. MIKÄ HITAS ON? Hitas on Helsingin kaupungin omistamille tonteille rakennettujen asuntojen hinta- ja laatutason sääntelyjärjestelmä. Hitasin tarkoituksena on tarjota asunnon ostajille kohtuuhintaisia omistusasuntoja

Lisätiedot