3.5 Todennäköisyyden laskumenetelmiä

Koko: px
Aloita esitys sivulta:

Download "3.5 Todennäköisyyden laskumenetelmiä"

Transkriptio

1 MAB5: Todennäköisyyden lähtökohdat 3.5 Todennäköisyyden laskumenetelmiä Aloitetaan esimerkillä, joka on sitä sarjaa, mihin ei ole mitään muuta yleispätevää ohjetta kuin että on edettävä järjestelmällisesti usein muistiinpanoja tehden. Esimerkki 8 Laatikossa on 50 valkoista ja 50 mustaa sukkaa. Kuinka monta kertaa joudut ottamaan sukan, jotta voit olla varma siitä, että sinulla on ainakin yksi samanvärinen sukkapari? Otat sukat tietenkin umpimähkään. Kun otat ensimmäisen sukan, sinulla on tasan 50 prosentin todennäköisyys saada valkoinen ja 50 prosentin todennäköisyys saada musta sukka. Ainoa seikka, mikä on varmaa, on se, että saat joko mustan tai valkoisen sukan. Sama juttu, kun otat toisen sukan. Kahden sukan jälkeen et voi olla varma, että sinulla on pari. Sait ehkä yhden mustan ja yhden valkoisen sukan. Mutta kun otat kolmannen sukan, saat joko valkoisen tai mustan. Huonoimmassakin tapauksessa sinulla on kahden noston jälkeen sekä valkoinen että musta sukka. Koska kolmas on toinen näistä, saat parin täyteen. Minimi on siis kolme kertaa. Seuraavan esimerkin periaatetta tarvitaan jatkossa. Esimerkki 9 Kuinka monella eri tavalla,,, ja voidaan järjestää jonoon? Jonon ensimmäistä henkilöä päätettäessä valittavana on viisi henkilöä. Kun ensimmäinen on valittu, jäljellä on neljä henkeä, joista valitaan jonossa toisena oleva. Jos siis ensimmäiseksi valittiin, toiseksi voidaan valita joko,, tai. Tai jos ensimmäiseksi valittiin, toiseksi voidaan valita joko,, tai. Muodostetaan asiasta kaavio. Jos niin toka on eka on 1(9)

2 Siis kun on valittu ekaksi, tokaksi voidaan valita neljä muuta ja kun a on valittu ekaksi, niin tokaksi on taas neljä vaihtoehtoa. Kaksi ensimmäistä voidaan siis valita eli viisi kertaa neljällä eri tavalla. Samalla tavalla jatkamalla saadaan tulokseksi, että viisi henkilöä (tai viisi erilaista kirjaa tai kotieläintä tai melkein mitä tahansa muuta) voidaan valita = 10 eri tavalla. Huomaa kaavion käyttö. Se on usein havainnollinen tapa jäsentää tilanne. Yleisesti n erilaista alkiota voidaan valita n ( n 1) ( n ) ( n 3)... 1 eri tavalla. Tällaista tuloa sanotaan n -kertomaksi. Sitä merkitään huutomerkillä ja sen englanninkielinen nimi on factorial. Tällä kurssilla kertoma-funktiota käytetään vain luonnollisten lukujen kanssa. Monissa laskimissa on kertoma-funktio. n-kertoma = ( n 1)( n )( n 3) Määritellään: 1! = 1 Määritellään: 0! = 1 n = n! Esimerkki 10 Herbertillä laittaa hyllyyn matematiikan, fysiikan, äidinkielen, historian, ruotsin, englannin, saksan, uskonnon, yhteiskuntaopin ja musiikin kirja, yhden kappaleen kutakin. Kuinka moneen järjestykseen hän voi kirjansa järjestää? Koska kirjoja on 10 erilaista, on järjestyksiä 10! eli kappaletta. Vastaus: Herbert voi järjestää kirjansa eri järjestykseen. Esimerkki 11 Herbertillä on laitettavana hyllyyn 5 matematiikan, 4 fysiikan, äidinkielen ja 4 historian kirjaa. Hän ei kiinnitä huomiota kirjojen alojen sisäiseen järjestykseen. Kuinka moneen eri järjestykseen omalta kannaltaan erilaiseen hän voi kirjansa järjestää? Ratkaista Koska alojen sisäisellä järjestyksellä ei ole väliä, niin esimerkiksi hänen 5 matematiikan menevät yhtenä nippuna, samoin hänen 4 fysiikan kirjaansa ja niin edelleen. Hän valitsee siis järjestyksen neljän eri aiheen kesken. Niillä on 4! = 4 eri järjestystä. Vastaus: Herbert voi järjestää kirjansa 4 erilaiseen merkitykselliseen järjestykseen. Esimerkki 1 Tällä kertaa Herbert laittaa hyllyyn 5 matematiikan, 4 fysiikan, äidinkielen ja 4 historian kirjaa siten, että hän järjestää kirjansa ensin aakkosjärjestykseen aineen mukaan ja aineen sisällä johonkin muuhun järjestykseen. Kuinka monta eri vaihtoehtoa hänellä on? Mainittujen aineitten aakkosjärjestys on: fysiikka, historia, matematiikka ja äidinkieli. Piirrä itsellesi tähän tilanteeseen sopiva, Esimerkin 9 kaltainen kaavio. (9)

3 Herbert aloittaa järjestämällä fysiikan kirjat. Koska niitä on viisi, niillä on 5! = 10 eri järjestystä. Päättelemällä kuten Esimerkissä 9, saadaan, että erilaisia järjestyksiä on 5!4!! 4! kappaletta. Vastaus: Herbertillä on erilaista vaihtoehtoa järjestää kirjansa. Toisinaan vastaan tulee tilanne, jossa hyvä keino on luetella kaikki vaihtoehdot. Tällöin täytyy tietysti olla järjestelmällinen, jotta ensinnäkin jokainen vaihtoehto tulee mukaan ja toiseksi, että kukin vaihtoehto on mukana vain kerran. Esimerkki 13 Herbertillä on lähiaikoina tulossa kokeet sekä matematiikassa, ruotsissa, englannissa että historiassa. Hän päättää aloittaa tänään, mutta lukea korkeintaan kahta alaa. Arpominen on jälleen hänen keinonsa päättää, mistä kahdesta aiheesta aloittaa. a) Millä todennäköisyydellä hän valitsee päivän aiheiksi historian ja matematiikan? b) Millä todennäköisyydellä valituksi tulee historia tai matematiikka? Aloitetaan laatimalla luettelo kaikista kahden aiheen vaihtoehdoista. Merkitään matematiikkaa kirjaimella M, ruotsia kirjaimella R, englantia kirjaimella E ja historiaa kirjaimella H. Kaikki vaihtoehdot ovat seuraavassa taulukossa. Huomaa taulukon laatimisessa käyttämäni menetelmä. Ensimmäisellä rivillä ovat kaikki matematiikkaa sisältävät vaihtoehdot, jolloin ensimmäisenä kirjaimena on M. Toinen kirjain käy läpi kaikki muut aiheet. Toisella rivillä sama toistuu niin, että ensimmäisenä on ruotsi eli kirjain R. Näin käyn läpi jokaisen vaihtoehdon. Tuloksena on 1 alaparin luettelo. Koska Herbert ei kiinnitä huomiota järjestykseen näin voimme olettaa niin esimerkiksi MR = RM. Tällöin aidosti erilaisia vaihtoehtoja jää kuusi kappaletta, jotka ovat MR, ME, MH, RE, RH ja EH. Täten kaikkien tapausten joukossa on kuusi alkiota. a) Suotuisia tapauksia tämän kohdan mielessä on vain yksi, joten TN(historia ja matematiikka) = 6 1. Vastaus: Historia ja matematiikka tulevat valituiksi todennäköisyydellä 6 1. b) Nyt suotuisia tapauksia ovat MH, MR, ME, HE, HR ja niitä on siis viisi kappaletta. Kysytty todennäköisyys on siis 6 5. Vastaus: Vähintään toinen aineista matematiikka ja ruotsi tulee valituksi todennäköisyydellä 6 5. MR ME MH RM RE RH EM ER EH HM HR HE Tarkastellaan seuraavaksi puudiagrammin eli päätöspuun (decision tree) käyttöä. Esimerkki 14 Wilbert yrittää avata yhdistelmälukkoa. Lukko on siitä erikoinen, että numerokiekkojen sijasta siinä on kiekkoja, joissa on erilaisia kuvioita. Kiekkoja on kolme kappaletta. Wilbert tietää, että hänen on paitsi löydettävä oikea kuvioyhdistelmä, niin lisäksi valittava kiekkojen asennot tietyssä järjestyksessä. Ensimmäisenä on asetettava kiekko, jossa on hedelmien kuvia: banaani, kiivi ja päärynä. Toisessa kiekossa on marjoja: karpalo, lakka, mansikka ja mustikka ja viimein kolmannessa on viljoja:,, ja. Millä todennäköisyydellä Wilbert ratkaisee ongelmansa kerralla, kun oikeaksi ratkaisuksi hyväksytään vain yksi yhdistelmä: päärynä, lakka ja? 3(9)

4 4(9) 1. rengas 3. rengas ka ohr rui ve karpalo lakka mansikka mustikka W karpalo lakka mansikka mustikka kiivi banaani päärynä karpalo lakka mansikka mustikka ka ohr rui ve ka ohr rui ve ka ohr rui ve. rengas

5 Piirretään heti aluksi päätöspuu. On siis aloitettava arvaamalla ensimmäisen kiekon oikea asetus. Vaihtoehtoja on kolme. Toinen kiekko voidaan laittaa neljään eri asentoon ja kolmas samoin neljään. Jokaista ensimmäisen kiekon kolmea vaihtoehtoa kohti toisessa kiekossa on siis neljä vaihtoehtoa, joten tähän mennessä 3 4 = 1 vaihtoehtoa. Kutakin näitä 1 vaihtoehtoa kohti kolmannessa kiekossa on vielä neljä vaihtoehtoa. Vaihtoehtoja on kaikkiaan siis 1 4 = 48 kappaletta. Kuten esimerkin kuvasta ja harjoituksesta näkyy, vaihtoehtojen määrä kasvaa nopeasti, kun kiekkoja määrä kasvaa. Esimerkki 15 Heitetään noppaa kaksi kertaa ja kiinnitetään huomiota siihen, kummasta nopasta mikin silmäluku tuli. Millä todennäköisyydellä silmälukujen summa on vähintään 9? Summa on vähintään 9, kun yhteenlaskettavat ovat 3 ja 6 tai 4 ja 5 tai 5 ja 5 tai 5 ja 6 tai 6 ja 6. Nyt se, että saadaan ensin 5 ja sitten 6, on eri asia kuin että kuutonen tulee ensin. Siksi kaikkien tulosten taulukko on laadittava niin, että se erottaa noppien järjestyksen. Eräs hyvä keino on käyttää järjestettyä paria. Järjestetyt parit voidaan esittää joko taulukkona tai piirtää koordinaatistoon. Järjestetty pari on sinulle ennestään tuttu merkintä koordinaatiston pisteenä. Merkitään esimerkiksi sitä, että ensimmäisestä nopasta tuli ja toisesta 4, kirjoittamalla (;4). Täten suotuisien tapausten joukko on (3;6), (6;3), (4;6), (6;4), (4;5), (5;4), (5;5), (6;5), (5;6) ja (6;6). Laaditaan taulukko kaikkien tapausten joukosta ja koodataan suotuisien tapausten joukko siinä punaisella. (1;1) (;1) (3;1) (4;1) (5;1) (6;1) (1;) (;) (3;) (4;) (5;) (6;) (1;3) (;3) (3;3) (4;3) (5;3) (6;3) (1:4) (;4) (3;4) (4;4) (5;4) (6;4) (1;5) (;5) (3;5) (4;5) (5;5) (6;5) (1;6) (;6) (3;6) (4;6) (5;6) (6;6) Varmistetaan se, että kaikki vaihtoehdot tulevat mukaan tarkalleen kerran, kirjoittamalla ensimmäiseen sarakkeeseen kaikki ne vaihtoehdot, joissa ensimmäisellä nopalla tulee ykkönen, toiseen sarakkeeseen kaikki ne vaihtoehdot, joissa ensimmäisellä nopalla tulee kakkonen ja niin edelleen. Taulukon avulla näemme heti, että suotuisia tapauksia on kymmenen kappaletta ja kaikkia 10 5 vaihtoehtoja 36 kappaletta. Kysytty todennäköisyys on siis = Taulukon sijasta voit tulkita järjestetyt lukuparit siis myös koordinaatiston pisteinä ja suorittaa laskut sen mukaisesti. Vastaus: Kahta noppaa heitettäessä silmälukujen summa on vähintään 9 todennäköisyydellä 0,7. 5(9)

6 Esimerkki 16 Valiokuntaan arvotaan kolme jäsentä kansainvälisen kokouksen osallistujien joukosta. Mainittuun kokoukseen osallistuvat aasialainen lakimies, afrikkalainen insinööri, afrikkalainen poliitikko, australialainen lääkäri ja eurooppalainen tulkki. Laske todennäköisyys, jolla ainakin yksi afrikkalainen henkilö tulee valituksi. Aasia Afrikka Australia Eurooppa Kaikki vaihtoehdot kannattaa jälleen taulukoida. Määritellään sitä varten merkinnät. Insinööri Symbolien avulla esitettyinä käytettävissä olevat henkilöt ovat siis: Lakimies Lääkäri Poliitikko Tulkki Kaikki kolmen henkilön 10 erilaista kombinaatiota eli kolmen alkion osajoukkoa ovat: 6(9)

7 Kuten kuvasta heti näet, suotuisia tapauksia eli kolmen henkilön joukkoja, joissa on ainakin yksi afrikkalainen, on yhdeksän kappaletta. Täten kysytty todennäköisyys on 9/10. Vastaus: TN(valiokunnassa on ainakin yksi afrikkalainen) = 0,9. Esimerkki 17 Kaksi kurkea sanokaamme pariskunta Helmi ja Heikki saapuvat muuttomatkaltaan yhteisen kotisuonsa ainoaan vapaana lainehtivaan kanavaan. Kanava on etriä pitkä ja saman suuntainen kurkiemme lentosuunnan kanssa, ja kurjet laskeutuvat toisistaan riippumatta satunnaiseen kanavan kohtaan. Kanavan leveydellä ei ole väliä. Annetaan ojan alkupenkereelle nimi A ja loppupenkereelle nimi B. a) Millä todennäköisyydellä kurjet laskeutuvat ensimmäiseen 0 metrin alueelle? b) Millä todennäköisyydellä kurjet laskeutuvat vähintään 50 metrin etäisyydelle toisistaan? c) Millä todennäköisyydellä Helmi laskeutuu tarkalleen kanavan keskelle ja Heikki sen 50 viimeiselle metrille? Piirretään asiasta kaavio. Kaaviosta tulee kaksiulotteinen: Helmin kanava eli Helmin akseli, joka olkoon myös pystyakseli ja Heikin kanava eli Heikin akseli, joka olkoon myös vaaka-akseli. a) Piirroksen avulla on helppo uskoa, että kaikkien tapausten joukko on 100m 100m ja suotuisien tapausten joukko on 0m 0m, joten kysytty todennäköisyys on 0m 0m 1 = = 100m 100m 5 0,04. Vastaus: Todennäköisyys sille, että Helmi ja Heikki laskeutuvat kanavan ensimmäisten 0 metrin matkalle on 0,04. 0 m 0 m Helmi 0 m Heikki 7(9)

8 b) Piirretään kaavioon 50 metrin ala erikseen kummankin linnun kannalta. Kyseessä on siis ala, joka merkitsee tapausta, että Helmi laskeutuu ensimmäisten 50 metrin alueelle tai Heikki 1 laskeutuu ensimmäisten 50 metrin alueelle. Kunkin kolmion ala on 50m 50m = 150m 150m ja koko kuvion ala on m. Kysytty todennäköisyys on siis = 0, m Vastaus: Kysytty todennäköisyys on 0,15. Helmi 50 m 0 m 50 m Heikki c) Tämä vaatimus on mahdoton, koska tarkalleen keskellä ei voi osua, ei taitavakaan kurki! Kysymyksen konnektiivi ja liittää mahdollisen tapauksen Heikki laskeutuu kanavan jälkimäiseen 50 metriin mahdottomaan tapaukseen vaatimuksella, että molemmat tapahtuvat. Kysytty todennäköisyys on siis nolla. Geometrisesti tämä tulos saadaan siitäkin, että janan pinta-ala on nolla. Vastaus: Kysytty todennäköisyys on nolla. 0 m Helmi Heikki 8(9)

9 Esimerkki 18 Heitetään kolikkoa kahdeksan kertaa ja pidetään kirjaa jokaisesta heitosta erikseen. Millä todennäköisyydellä jokaisella parillisella heitolla saadaan klaava ja parittomalla kruuna? Havainnollistetaan tilannetta lokerikolla, jossa on kahdeksan lokeroa ja kukin lokero on numeroitu 1 8. Ensimmäisellä heitolla voi tulla joko kruuna tai klaava kuten jokaisella seuraavallakin heitolla. Täten ensimmäisen lokeron sisältö voi olla kolikko kruuna-puoli ylös tai klaava-puoli ylös, siis kaksi mahdollisuutta. Sama toistuu kaikkien kahdeksan kohdalla. Siis ensimmäistä kahta vaihtoehtoa kohti seuraavan lokeron kolikolla on taas kaksi mahdollisuutta, yhteensä tähän 8 mennessä 4 mahdollisuutta. Näin jatketaan loppuun saakka. Tuloksena on vaihtoehto. Koska suotuisia tapauksia on vain yksi eli tulossarja kr, kl, kr, kl, kr, kl, kr, kl, sen todennäköisyys on 1 1 = = 0, Vastaus: Kolikonheitossa TN(jokaisella parillisella heitolla saadaan klaava ja parittomalla kruuna) = 0, (9)

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta Tuloperiaate Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta ja 1. vaiheessa valinta voidaan tehdä n 1 tavalla,. vaiheessa valinta voidaan tehdä n tavalla,

Lisätiedot

Klassisen ja geometrisen todennäköisyyden harjoituksia

Klassisen ja geometrisen todennäköisyyden harjoituksia MAB5: Todennäköisyyden lähtökohdat Harjoitustehtävät Klassisen ja geometrisen todennäköisyyden harjoituksia 3.1 Heität tavallista noppaa. Millä todennäköisyydellä a) saat kuutosen? b) saat ykkösen? c)

Lisätiedot

Klassisen ja geometrisen todennäköisyyden harjoituksia

Klassisen ja geometrisen todennäköisyyden harjoituksia MAB5: Todennäköisyyden lähtökohdat Klassisen ja geometrisen todennäköisyyden harjoituksia 3.1 Heität tavallista noppaa. Millä todennäköisyydellä a) saat kuutosen? b) saat ykkösen? c) saat parittoman pisteluvun?

Lisätiedot

Todennäköisyys (englanniksi probability)

Todennäköisyys (englanniksi probability) Todennäköisyys (englanniksi probability) Todennäköisyyslaskenta sai alkunsa 1600-luvulla uhkapeleistä Ranskassa (Pascal, Fermat). Nykyisin todennäköisyyslaskentaa käytetään hyväksi mm. vakuutustoiminnassa,

Lisätiedot

Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin!

Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! MAA6 Kurssikoe 1.11.14 Jussi Tyni ja Juha Käkilehto Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A-OSIO: Laske kaikki

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden, sisältöjen ja isteitysten luonnehdinta

Lisätiedot

Kenguru 2012 Junior sivu 1 / 8 (lukion 1. vuosi)

Kenguru 2012 Junior sivu 1 / 8 (lukion 1. vuosi) Kenguru 2012 Junior sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Kenguru 2010, Benjamin, ratkaisut sivu 1 / 9

Kenguru 2010, Benjamin, ratkaisut sivu 1 / 9 Kenguru 2010, Benjamin, ratkaisut sivu 1 / 9 3 pistettä 1. Kun tiedetään, että + + 6 = + + +, mikä luku voidaan sijoittaa kolmion paikalle? A) 2 B) 3 C) 4 D) 5 E) 6 Ratkaisu: Kun poistetaan kummaltakin

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

LUKUJONOT. 1) Jatka lukujonoja. 0, 1, 2,,,, 6, 8, 10,,,, 8, 12, 16,,,, 18, 15, 12,,,, 30, 25, 20,,,, 2) Täydennä lukujonoihin puuttuvat luvut.

LUKUJONOT. 1) Jatka lukujonoja. 0, 1, 2,,,, 6, 8, 10,,,, 8, 12, 16,,,, 18, 15, 12,,,, 30, 25, 20,,,, 2) Täydennä lukujonoihin puuttuvat luvut. LUKUJONOT 2 1) Jatka lukujonoja. 0, 1, 2,,,, 6, 8, 10,,,, 8, 12, 16,,,, 18, 15, 12,,,, 30, 25, 20,,,, 2) Täydennä lukujonoihin puuttuvat luvut. 2, 4,, 8,, 12,,, 7,, 3, 1 3) Keksi oma lukujono ja kerro

Lisätiedot

8.2. Permutaatiot. Esim. 1 Kirjaimet K, L ja M asetetaan jonoon. Kuinka monta erilaista järjes-tettyä jonoa näin saadaan?

8.2. Permutaatiot. Esim. 1 Kirjaimet K, L ja M asetetaan jonoon. Kuinka monta erilaista järjes-tettyä jonoa näin saadaan? 8.2. Permutaatiot Esim. 1 irjaimet, ja asetetaan jonoon. uinka monta erilaista järjes-tettyä jonoa näin saadaan? Voidaan kuvitella vaikka niin, että hyllyllä on vierekkäin kolme laatikkoa (tai raiteilla

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden sisältöjen isteitysten luonnehdinta ei

Lisätiedot

Kenguru 2010 Benjamin (6. ja 7. luokka) sivu 1 / 5

Kenguru 2010 Benjamin (6. ja 7. luokka) sivu 1 / 5 Kenguru 2010 Benjamin (6. ja 7. luokka) sivu 1 / 5 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.

Lisätiedot

031021P Tilastomatematiikka (5 op) Kurssi-info ja lukion kertausta

031021P Tilastomatematiikka (5 op) Kurssi-info ja lukion kertausta 031021P Tilastomatematiikka (5 op) Kurssi-info ja lukion kertausta Jukka Kemppainen Mathematics Division Käytännön asioita Luennot (yht. 7 4 h) ke 12-14 ja pe 8-10 (ks. tarkemmin Oodista tai Nopasta) Harjoitukset

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

Kenguru 2014 Junior sivu 1 / 8 (lukion 1. vuosikurssi)

Kenguru 2014 Junior sivu 1 / 8 (lukion 1. vuosikurssi) Kenguru 2014 Junior sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Klassinen todennäköisyys ja kombinatoriikka TKK (c) Ilkka Mellin (2007) 1 Klassinen todennäköisyys ja kombinatoriikka >> Klassinen

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutkintolautakunta S tudentexamensnämnden MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ.9.013 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutkintolautakunnan

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

8.1. Tuloperiaate. Antti (miettien):

8.1. Tuloperiaate. Antti (miettien): 8.1. Tuloperiaate Katseltaessa klassisen todennäköisyyden määritelmää selviää välittömästi, että sen soveltamiseksi on kyettävä määräämään erilaisten joukkojen alkioiden lukumääriä. Jo todettiin, ettei

Lisätiedot

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi) Kenguru 2012 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Tämä luku nojaa vahvasti esimerkkeihin. Aloitetaan palauttamalla mieleen, mitä koordinaatistolla tarkoitetaan.

Tämä luku nojaa vahvasti esimerkkeihin. Aloitetaan palauttamalla mieleen, mitä koordinaatistolla tarkoitetaan. MAB: Koordinaatisto geometrian apuna Aluksi Geometriassa tulee silloin tällöin eteen tilanne, jossa piirroksen tekeminen koordinaatistoon yksinkertaistaa laskuja. Toisinaan taas tilanne on muuten vaan

Lisätiedot

Lukion. Calculus. Todennäköisyys ja tilastot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Todennäköisyys ja tilastot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion 3 MAA Todennäköisyys ja tilastot Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Todennäköisyys ja tilastot (MAA) Pikatesti ja kertauskokeet

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

MAATALOUS-METSÄTIETEELLISEN TIEDEKUNNAN VALINTAKOE 2014

MAATALOUS-METSÄTIETEELLISEN TIEDEKUNNAN VALINTAKOE 2014 MAATALOUS-METSÄTIETEELLISEN TIEDEKUNNAN VALINTAKOE 2014 KOE 2: Ympäristöekonomia KANSANTALOUSTIEDE JA MATEMATIIKKA Sekä A- että B-osasta tulee saada vähintään 10 pistettä. Mikäli A-osan pistemäärä on vähemmän

Lisätiedot

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö Aluksi Matematiikan käsite suora on tarkalleen sama asia kuin arkikielen suoran käsite. Vai oliko se toisinpäin? Matematiikan luonteesta johtuu, että sen soveltaja ei tyydy pelkkään suoran nimeen eikä

Lisätiedot

1 Laske ympyrän kehän pituus, kun

1 Laske ympyrän kehän pituus, kun Ympyrään liittyviä harjoituksia 1 Laske ympyrän kehän pituus, kun a) ympyrän halkaisijan pituus on 17 cm b) ympyrän säteen pituus on 1 33 cm 3 2 Kuinka pitkä on ympyrän säde, jos sen kehä on yhden metrin

Lisätiedot

27. 10. joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja.

27. 10. joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. ÄÙ ÓÒÑ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒÔ ÖÙ Ö Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. 1. Hiiri juoksee tasaisella

Lisätiedot

Kenguru Benjamin (6. ja 7. luokka) ratkaisut sivu 1 / 6

Kenguru Benjamin (6. ja 7. luokka) ratkaisut sivu 1 / 6 Kenguru Benjamin (6. ja 7. luokka) ratkaisut sivu 1 / 6 3 pisteen tehtävät 1) Mikä on pienin? A) 2 + 0 + 0 + 8 B) 200 : 8 C) 2 0 0 8 D) 200 8 E) 8 + 0 + 0 2 2) Millä voidaan korvata, jotta seuraava yhtälö

Lisätiedot

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita Helsingin seitsemäsluokkalaisten matematiikkakilpailu..013 Ratkaisuita 1. Eräs kirjakauppa myy pokkareita yhdeksällä eurolla kappale, ja siellä on meneillään mainoskampanja, jossa seitsemän sellaista ostettuaan

Lisätiedot

Vektorilla on suunta ja suuruus. Suunta kertoo minne päin ja suuruus kuinka paljon. Se on siinä.

Vektorilla on suunta ja suuruus. Suunta kertoo minne päin ja suuruus kuinka paljon. Se on siinä. Koska varsinkin toistensa suhteen liikkuvien kappaleiden liikkeen esittäminen suorastaan houkuttelee käyttämään vektoreita, mutta koska ne eivät kaikille ehkä ole kuitenkaan niin tuttuja kuin ansaitsisivat,

Lisätiedot

Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten

Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten Todennäköisyys Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten tietoliikennejärjestelmien ymmärtämisessä

Lisätiedot

Kenguru Ecolier, ratkaisut (1 / 5) 4. - 5. luokka

Kenguru Ecolier, ratkaisut (1 / 5) 4. - 5. luokka 3 pisteen tehtävät Kenguru Ecolier, ratkaisut (1 / 5) 1. Missä kenguru on? (A) Ympyrässä ja kolmiossa, mutta ei neliössä. (B) Ympyrässä ja neliössä, mutta ei kolmiossa. (C) Kolmiossa ja neliössä, mutta

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

B. Siten A B, jos ja vain jos x A x

B. Siten A B, jos ja vain jos x A x Mat-1.2600 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Johdanto Joukko-opin peruskäsitteet Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma,

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi esiopetus kevät Esitysohjeet opettajalle Arvioinnin yleisiä periaatteita Tutustu ennen tehtävien esittämistä ohjeisiin ja materiaaliin sekä tarkista, että

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

4. Varastossa on 24, 23, 17 ja 16 kg:n säkkejä. Miten voidaan toimittaa täsmälleen 100 kg:n tilaus avaamatta yhtään säkkiä?

4. Varastossa on 24, 23, 17 ja 16 kg:n säkkejä. Miten voidaan toimittaa täsmälleen 100 kg:n tilaus avaamatta yhtään säkkiä? Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 3.2.2012 OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Kaikkiin tehtäviin laskuja, kuvia tai muita perusteluja näkyviin.

Lisätiedot

Kenguru 2014 Cadet (8. ja 9. luokka)

Kenguru 2014 Cadet (8. ja 9. luokka) sivu 1 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

1 Aritmeettiset ja geometriset jonot

1 Aritmeettiset ja geometriset jonot 1 Aritmeettiset ja geometriset jonot Johdatus Johdatteleva esimerkki 1 Kasvutulille talletetaan vuoden jokaisen kuukauden alussa tammikuusta alkaen 100 euroa. Tilin nettokorkokanta on 6%. Korko lisätään

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

1. Matikan kurssin arvosanat jakautuivat seuraavalla tavalla:

1. Matikan kurssin arvosanat jakautuivat seuraavalla tavalla: MAA6.3 Loppukoe 9.11.01 Jussi Tyni Valitse kuusi tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Matikan

Lisätiedot

Opetusmateriaali. Fermat'n periaatteen esittely

Opetusmateriaali. Fermat'n periaatteen esittely Opetusmateriaali Fermat'n periaatteen esittely Hengenpelastajan tehtävässä kuvataan miten hengenpelastaja yrittää hakea nopeinta reittiä vedessä apua tarvitsevan ihmisen luo - olettaen, että hengenpelastaja

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,

Lisätiedot

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2 .3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. Toisen asteen yhtälön a + b + c 0 ratkaisukaavassa neliöjuuren alla olevaa lauseketta b b 4ac + a b b 4ac a D b 4 ac sanotaan yhtälön

Lisätiedot

Kenguru 2014 Benjamin (6. ja 7. luokka) sivu 1 / 7 ja Pakilan ala-aste

Kenguru 2014 Benjamin (6. ja 7. luokka) sivu 1 / 7 ja Pakilan ala-aste (6. ja 7. luokka) sivu 1 / 7 ja Pakilan ala-aste NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä

Lisätiedot

Kenguru 2012 Benjamin sivu 1 / 8 (6. ja 7. luokka) yhteistyössä Pakilan ala-asteen kanssa

Kenguru 2012 Benjamin sivu 1 / 8 (6. ja 7. luokka) yhteistyössä Pakilan ala-asteen kanssa Kenguru 2012 Benjamin sivu 1 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

HÄRMÄN LUKION KIRJALISTA 2015-2016

HÄRMÄN LUKION KIRJALISTA 2015-2016 HÄRMÄN LUKION KIRJALISTA 2015-2016 MAANTIETO - Lukion maantiede Ge 1, Sininen planeetta (Otava) - Lukion maantiede Ge 2, Yhteinen maailma (Otava) - Lukion maantiede 3, Ge 3, Riskien maailma (Otava) - Lukion

Lisätiedot

ESPOONLAHDEN LUKIO OHJEITA SYKSYN 2014 YLIOPPILASKOKELAILLE

ESPOONLAHDEN LUKIO OHJEITA SYKSYN 2014 YLIOPPILASKOKELAILLE ESPOONLAHDEN LUKIO OHJEITA SYKSYN 2014 YLIOPPILASKOKELAILLE Ole ajoissa paikalla, takakansi s.4 Liikenne-este, myöhästyminen s.2 Sairastuminen s.2 816 46560, 046-8771433, 046-8771398 ESPOONLAHDEN LUKIO

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

Tehtävä 1 2 3 4 5 6 7 Vastaus

Tehtävä 1 2 3 4 5 6 7 Vastaus Kenguru Ecolier, vastauslomake Nimi Luokka/Ryhmä Pisteet Kenguruloikka Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi, jos

Lisätiedot

A-Osio. Ei saa käyttää laskinta, maksimissaan tunti aikaa. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat:

A-Osio. Ei saa käyttää laskinta, maksimissaan tunti aikaa. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat: MAA6 Loppukoe 26..203 Jussi Tyni Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! Lue ohjeet huolella! A-Osio. Ei saa

Lisätiedot

Kokeellista matematiikkaa SAGE:lla

Kokeellista matematiikkaa SAGE:lla Kokeellista matematiikkaa SAGE:lla Tutkin GeoGebralla 1 luonnollisen luvun jakamista tekijöihin 2. GeoGebran funktio Alkutekijät jakaa luvun tekijöihin ja tuottaa alkutekijät listana. GeoGebrassa lista

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe 1.6.2010 Nimi: Henkilötunnus: VASTAUSOHJEET: 1. Koeaika on 2 tuntia (klo 12.00 14.00). Kokeesta saa poistua aikaisintaan

Lisätiedot

Kenguru 2013 Ecolier sivu 1 / 8 (4. ja 5. luokka)

Kenguru 2013 Ecolier sivu 1 / 8 (4. ja 5. luokka) Kenguru 2013 Ecolier sivu 1 / 8 3 pistettä 1. Missä kuviossa mustia kenguruita on enemmän kuin valkoisia kenguruita? Kuvassa D on 5 mustaa kengurua ja 4 valkoista. 2. Nelli haluaa rakentaa samanlaisen

Lisätiedot

Peliteoria luento 1. May 25, 2015. Peliteoria luento 1

Peliteoria luento 1. May 25, 2015. Peliteoria luento 1 May 25, 2015 Tavoitteet Valmius muotoilla strategisesti ja yhteiskunnallisesti kiinnostavia tilanteita peleinä. Kyky ratkaista yksinkertaisia pelejä. Luentojen rakenne 1 Joitain pelejä ajanvietematematiikasta.

Lisätiedot

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21 säilyy Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla c b a 1 2 3 5 1 / 21 säilyy Esimerkkirelaatio R = {(1, b), (3, a), (5, a), (5, c)} c b a 1

Lisätiedot

Turun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut

Turun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut (1) Laske 20 12 11 21. Turun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut a) 31 b) 0 c) 9 d) 31 Ratkaisu. Suoralla laskulla 20 12 11 21 = 240 231 = 9. (2) Kahden peräkkäisen

Lisätiedot

Peruskoulun matematiikkakilpailu Loppukilpailu 2010 Ratkaisuja OSA 1

Peruskoulun matematiikkakilpailu Loppukilpailu 2010 Ratkaisuja OSA 1 Peruskoulun matematiikkakilpailu Loppukilpailu 010 Ratkaisuja OSA 1 1. Mikä on suurin kokonaisluku, joka toteuttaa seuraavat ehdot? Se on suurempi kuin 100. Se on pienempi kuin 00. Kun se pyöristetään

Lisätiedot

Kenguru 2014 Cadet (8. ja 9. luokka)

Kenguru 2014 Cadet (8. ja 9. luokka) sivu 1 / 13 3 pistettä 1. Kauppias Koikkalainen on maalannut liikkeensä ikkunaan kukkakuvion. Miltä kukkakuvio näyttää ikkunan toiselta puolelta katsottuna? (A) (B) (C) (D) (E) Vasen ja oikea vaihtuvat

Lisätiedot

A = B. jos ja vain jos. x A x B

A = B. jos ja vain jos. x A x B Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Klassinen todennäköisyys ja kombinatoriikka Kokonaistodennäköisyys ja Bayesin kaava Avainsanat: Bayesin kaava, Binomikaava, Binomikerroin,

Lisätiedot

LUKUKORTIT Lukukorteista on moneksi Toiminnallista matematiikkaa 1.-6. luokille. Riikka Lyytikäinen Liikkuva koulu Helsinki 2016

LUKUKORTIT Lukukorteista on moneksi Toiminnallista matematiikkaa 1.-6. luokille. Riikka Lyytikäinen Liikkuva koulu Helsinki 2016 LUKUKORTIT Lukukorteista on moneksi Toiminnallista matematiikkaa 1.-6. luokille Riikka Lyytikäinen Liikkuva koulu Helsinki 2016 Lukujonot Tarvikkeet: siniset ja vihreät lukukortit Toteutus: yksin, pareittain,

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioppilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitsten luonnehdinta

Lisätiedot

1.9 Harjoituksia. Frekvenssijakaumien harjoituksia. MAB5: Tilastotieteen lähtökohdat. a) Kaikki aakkoset b) Kirjaimet L, E, M, C, B, A ja i.

1.9 Harjoituksia. Frekvenssijakaumien harjoituksia. MAB5: Tilastotieteen lähtökohdat. a) Kaikki aakkoset b) Kirjaimet L, E, M, C, B, A ja i. MAB5: Tilastotieteen lähtökohdat 1.9 Harjoituksia 1.1 Ulkolämpömittari näytti eilen 10 C ja tänään 20 C. Onko tänään kaksi kertaa niin kylmä kuin eilen? Miksi tai miksi ei? 1.2 Minkä luokkien muuttujia

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi ensimmäinen luokka syksy Esitysohjeet opettajalle Arvioinnin yleisiä periaatteita Tutustu ennen tehtävien esittämistä ohjeisiin ja materiaaliin sekä tarkista,

Lisätiedot

PAUNUN KOULU KOELISTA SYKSY 2014 31.8.2014. Ma 8.9. MATEMATIIKKA luokka klo luokkatila tilan vaihto 8A 9-10 MA2 8B 9-10 BG2

PAUNUN KOULU KOELISTA SYKSY 2014 31.8.2014. Ma 8.9. MATEMATIIKKA luokka klo luokkatila tilan vaihto 8A 9-10 MA2 8B 9-10 BG2 VIIKKO 37 Ma 8.9. Pe 12.9. Ma 8.9. MATEMATIIKKA luokka klo luokkatila tilan vaihto 8A 9-10 MA2 8B 9-10 BG2 8C 9-10 MA3 8D 9-10 BG1 8E 9-10 AI1 9B (LEL) AI1 RE1 8F 9-10 AI2 Pe 12.9. MATEMATIIKKA luokka

Lisätiedot

Kenguru Écolier (4. ja 5. luokka) sivu 1/5

Kenguru Écolier (4. ja 5. luokka) sivu 1/5 Kenguru Écolier (4. ja 5. luokka) sivu 1/5 3 pisteen tehtävät 1. Miettisen perhe syö 3 ateriaa päivässä. Kuinka monta ateriaa he syövät viikon aikana? A) 7 B) 18 C) 21 D) 28 E) 37 2. Aikuisten pääsylippu

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA. T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen

4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA. T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen 4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen 1 2 TI-Nspire CX CAS kämmenlaite kevään 2013 pitkän matematiikan kokeessa Tehtävä 1. Käytetään komentoa

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi toinen luokka syksy Esitysohjeet opettajalle Arvioinnin yleisiä periaatteita Tutustu ennen tehtävien esittämistä ohjeisiin ja materiaaliin sekä tarkista,

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

Tehtävä 1 2 3 4 5 6 7 Vastaus

Tehtävä 1 2 3 4 5 6 7 Vastaus Kenguru Benjamin, vastauslomake Nimi Luokka/Ryhmä Pisteet Kenguruloikka Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi,

Lisätiedot

****************************************************************** ****************************************************************** 7 Esim.

****************************************************************** ****************************************************************** 7 Esim. 8.3. Kombiaatiot MÄÄRITELMÄ 6 Merkitä k, joka luetaa yli k:, tarkoittaa lause- ketta k = k! ( k)! 6 3 2 1 6 Esim. 1 3 3! = = = = 3! ( 3)! 3 2 1 3 2 1 3 2 1 Laskimesta löydät äppäime, jolla kertomia voi

Lisätiedot

Otanta ilman takaisinpanoa

Otanta ilman takaisinpanoa Otanta ilman takaisinpanoa Populaatio, jossa N alkiota (palloa, ihmistä tms.), kahdenlaisia ( valkoinen, musta ) Poimitaan umpimähkään (= symmetrisesti) n-osajoukko eli otos Merkitään tapahtuma A k = otoksessa

Lisätiedot

Tilastolliset toiminnot

Tilastolliset toiminnot -59- Tilastolliset toiminnot 6.1 Aineiston esittäminen graafisesti Tilastollisen aineiston tallentamisvälineiksi TI-84 Plus tarjoaa erityiset listamuuttujat L1,, L6, jotka löytyvät 2nd -toimintoina vastaavilta

Lisätiedot

Kenguru 2011 Cadet RATKAISUT (8. ja 9. luokka)

Kenguru 2011 Cadet RATKAISUT (8. ja 9. luokka) sivu / 2 IKET VSTUSVIHTEHDT N LLEVIIVTTU. 3 pistettä. Minkä laskun tulos on suurin? () 20 (B) 20 (C) 20 (D) + 20 (E) : 20 20 20, 20, 20 20 20 202 ( suurin ) ja : 20 0,0005 2. Hamsteri Fridolin suuntaa

Lisätiedot

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 201 Harjoitus 7 Ratkaisut palautettava viimeistään perjantaina 26.6.201 klo 16.00. Huom! Luennot ovat salissa CK112 maanantaista 1.6. lähtien.

Lisätiedot

5.3 Ensimmäisen asteen polynomifunktio

5.3 Ensimmäisen asteen polynomifunktio Yllä olevat polynomit P ( x) = 2 x + 1 ja Q ( x) = 2x 1 ovat esimerkkejä 1. asteen polynomifunktioista: muuttujan korkein potenssi on yksi. Yleisessä 1. asteen polynomifunktioissa on lisäksi vakiotermi;

Lisätiedot

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon KA1-kurssi on ehkä mahdollista läpäistä, vaikkei osaisikaan piirtää suoraa yhtälön perusteella. Mutta muut kansiksen kurssit, no

Lisätiedot

Pisterajat 2006-2015 1. Vuosi 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Pisterajat 2006-2015 1. Vuosi 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Pisterajat 2006-2015 1 Äidinkieli, suomi L Kevät 92 90 88 86 87 87 86 87 87 87 87 Syksy 92 90 88 85 87 87 86 87 86 86. E Kevät 87 77 75 72 73 73 71 73 73 72 72 Syksy 87 77 75 73 73 73 72 71 71 70. M Kevät

Lisätiedot

Pisterajat 2006-2014 1. Vuosi 2006 2007 2008 2009 2010 2011 2012 2013 2014

Pisterajat 2006-2014 1. Vuosi 2006 2007 2008 2009 2010 2011 2012 2013 2014 Pisterajat 2006-2014 1 Äidinkieli, suomi L Kevät 92 90 88 86 87 87 86 87 87 Syksy 92 90 88 85 87 87 86 87 86 E Kevät 87 77 75 72 73 73 71 73 73 Syksy 87 77 75 73 73 73 72 71 71 M Kevät 80 62 60 60 61 62

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot

Kenguru 2014 Ecolier (4. ja 5. luokka)

Kenguru 2014 Ecolier (4. ja 5. luokka) sivu 1 / 11 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Sijoitusmenetelmä. 1.2. Yhtälöpari

Sijoitusmenetelmä. 1.2. Yhtälöpari MAB Yhtälöpari Yhtälöpari Yhtälöparilla tarkoitetaan tilannetta, missä on kaksi htälöä, joiden tät toteutua htä aikaa Tämä on sama asia kuin että kstään, missä pisteessä tai missä pisteissä htälöitä vastaavat

Lisätiedot

OPISKELIJAN NIMI: OPISKELIJANUMERO:

OPISKELIJAN NIMI: OPISKELIJANUMERO: OPISKELIJAN NIMI: OPISKELIJANUMERO: RYHMÄ: SYNTYMÄAIKA: OPETTAJATUUTORI: AIKAISEMPIEN OPINTOJEN TUNNUSTAMISTA HAETAAN SEURAAVASTI (YHTEISET PAKOLLISET OPINNOT) PO110015 ÄIDINKIELI 4 Hakemus hyväksytään

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi esiopetus talvi Esitysohjeet opettajalle Arvioinnin yleisiä periaatteita Tutustu ennen tehtävien esittämistä ohjeisiin ja materiaaliin sekä tarkista, että

Lisätiedot

Kenguru 2016 Mini-Ecolier (2. ja 3. luokka) Ratkaisut

Kenguru 2016 Mini-Ecolier (2. ja 3. luokka) Ratkaisut sivu 1 / 11 TEHTÄVÄ 1 2 3 4 5 6 VASTAUS E B C D D A TEHTÄVÄ 7 8 9 10 11 12 VASTAUS E C D C E C TEHTÄVÄ 13 14 15 16 17 18 VASTAUS A B E E B A sivu 2 / 11 3 pistettä 1. Anni, Bert, Camilla, David ja Eemeli

Lisätiedot

MATEMATIIKKA 3 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009

MATEMATIIKKA 3 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 EB-TUTKINTO 2009 MATEMATIIKKA 3 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 KOKEEN KESTO: 3 tuntia (180 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi esiopetus syksy Esitysohjeet opettajalle Arvioinnin yleisiä periaatteita Tutustu ennen tehtävien esittämistä ohjeisiin ja materiaaliin sekä tarkista, että

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

1.1 Funktion määritelmä

1.1 Funktion määritelmä 1.1 Funktion määritelmä Tämän kappaleen otsikoksi valittu funktio on hyvä esimerkki matemaattisesta käsitteestä, johon usein jopa tietämättämme törmäämme arkielämässä. Tutkiessamme erilaisia Jos joukkojen

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/5

TKK @ Ilkka Mellin (2008) 1/5 Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 3, 6, 7 Pistetehtävät: 2, 4, 5, 9 Ylimääräiset tehtävät: 8, 10, 11 Aiheet: Moniulotteiset jakaumat Avainsanat: Diskreetti jakauma,

Lisätiedot

TILASTOT JA TODENNÄKÖISYYS

TILASTOT JA TODENNÄKÖISYYS TILASTOT JA TODENNÄKÖISYYS Perusopetuksen opetussuunnitelmien perusteissa 2004 on vuosiluokille 6 9 määritelty tietyt tavoitteet koskien tilastoja ja todennäköisyyttä. Seuraavat keskeiset sisällöt tulevat

Lisätiedot

LASKUTOIMITUKSET. Montako ötökkää on kussakin ruudussa? Tulos: Tulos: Tulos: Tulos: Tulos: Tulos: Tulos: Tulos: Tulos:

LASKUTOIMITUKSET. Montako ötökkää on kussakin ruudussa? Tulos: Tulos: Tulos: Tulos: Tulos: Tulos: Tulos: Tulos: Tulos: LASKUTOIMITUKSET Montako ötökkää on kussakin ruudussa? Nimi: 1 Tulos: Tulos: Tulos: Tulos: Tulos: Tulos: Tulos: Tulos: Tulos: Jos laskit ötökät yksitellen, harjoittele ja mieti, miten voit tehdä laskun

Lisätiedot

Tarkastellaan neliötä, jonka sivun pituus on yksi metri. Silloinhan sen pinta-ala on 1m 1m

Tarkastellaan neliötä, jonka sivun pituus on yksi metri. Silloinhan sen pinta-ala on 1m 1m MB: Yhdenmuotoisuus luksi Tämän luvun aiheina ovat yhdenmuotoisuus sekä yhdenmuotoisuussuhde. Kaikkein tavallisimmat yhdenmuotoisuuden sovellukset ovat varmasti kartta ja pohjapiirros. loitamme tutuista

Lisätiedot

1. Jaa blini kolmella suoralla a) neljään, b) viiteen, c) kuuteen ja d) seitsemään osaan. Osien ei tarvitse olla samanlaisia. Piirrä suorat kuviin.

1. Jaa blini kolmella suoralla a) neljään, b) viiteen, c) kuuteen ja d) seitsemään osaan. Osien ei tarvitse olla samanlaisia. Piirrä suorat kuviin. Peruskoulun matematiikkakilpailu 2015 2016 alkukilpailu 29.10.2015. Ratkaisut 1. Jaa blini kolmella suoralla a) neljään, b) viiteen, c) kuuteen ja d) seitsemään osaan. Osien ei tarvitse olla samanlaisia.

Lisätiedot