Approksimatiivinen päättely

Koko: px
Aloita esitys sivulta:

Download "Approksimatiivinen päättely"

Transkriptio

1 218 Approksimatiivinen päättely Koska tarkka päättely on laskennallisesti vaativaa, niin on syytä tarkastella ratkaisujen approksimointia Approksimointi perustuu satunnaiseen otantaan tunnetusta todennäköisyysjakaumasta Esim. painottamaton kolikko voidaan mieltää satunnaismuuttujaksi Lantti, jonka arvoalue on [kruuna, klaava] ja prioritodennäköisyys P(Lantti) = [0.5, 0.5] Otanta tästä jakaumasta vastaa kolikon heittoa, todennäköisyydellä 0.5 tuloksena on kruuna ja todennäköisyydellä 0.5 klaava Jos satunnaislukugeneraattori, jolta saadaan lukuja väliltä [0, 1], niin minkä tahansa yhden muuttujan jakaumasta voidaan helposti tehdä otantaa 219 P(pilveä).50 Pilveä Pilveä P(sataa) True.80 Kastelu Sataa False.20 Pilveä P(kastelu) True.10 False.50 Märkä- Ruoho Kastelu Sataa P(märkäruoho) True True.99 True False.90 False True.90 False False.00

2 220 Bayes-verkosta, johon ei liity havaintoja, otantaa voidaan tehdä muuttuja kerrallaan topologisessa järjestyksessä Kun vanhempien arvot on arvottu, niin tiedetään minkä jakauman perusteella otanta lapsessa on tehtävä Kiinnitetään esimerkkiverkon solmuille topologinen järjestys [Pilveä, Kastelu, Sataa, MärkäRuoho] 1. Vedetään jakaumasta P(Pilveä) = [0.5, 0.5] satunnainen arvo, esim. True 2. Vedetään jakaumasta P(Kastelu pilveä) = [0.1, 0.9] satunnainen arvo, esim. False 3. Vedetään jakaumasta P(Sataa pilveä) = [0.8, 0.2] satunnainen arvo, esim. True 4. Vedetään jakaumasta P(MärkäRuoho kastelu, sataa) = [0.9, 0.1] satunnainen arvo, esim. True 221 Verkon määräämästä prioriyhteisjakaumasta nyt vedetty tapahtuma siis on [True, False, True, True] Merkitään todennäköisyyttä, että prioriotanta vetää tietyn tapahtuman S PO (x 1 ) Otantamenetelmän perusteella se on i=1,,n P(x i vanhemmat(x i )) Toisaalta tämä on tapahtuman todennäköisyys Bayes-verkon esittämässä yhteisjakaumassa, joten S PO (x 1 ) = P(x 1 ) Merk. tapahtuman x 1,, x n frekvenssiä N PO (x 1 ) yhteensä N:n otospisteen joukossa

3 222 Tapahtuman otantafrekvenssi konvergoituu rajalla odotusarvoonsa lim N N PO (x 1 )/N = S PO (x 1 ) = P(x 1 ) Esim. S PO ([True, False, True, True]) = = 0.324, joten kun N on iso, niin odotamme, että 32.4% otospisteistä on tämä tapahtuma Menetelmän antama arvio on konsistentti siinä mielessä, että todennäköisyys on eksakti rajalla Osittain määrätyn tapahtuman x 1,, x m, m n, todennäköisyydelle saadaan myös konsistentti estimaatti P(x 1,, x m ) N PO (x 1,, x m )/N Otoksesta arvioitua todennäköisyyttä merk. P data ( ) 223 Ehdollisen todennäköisyyksien P(X e) arvioimiseksi voitaisiin käyttää seuraavaa otantamenetelmää 1. Vedetään otos verkon määräämästä priorijakaumasta 2. Hylätään kaikki otospisteet, jotka eivät toteuta havaintoja e 3. Arvon P data (X = x e) määräämiseksi lasketaan kuinka suuressa osassa jäljellejääneistä otospisteistä pätee X = x Menetelmän antama jakauma P data (X e) on algoritmin perusteella α N PO (X, e) = N PO (X, e) / N PO (e) Osittain määrätyn tapahtuman todennäköisyyden arviona tämä on konsistentti estimaatti P data (X e) P(X, e) / P(e) = P(X e)

4 224 Vedetään 100 otospistettä jakauman P(Sataa kastelu) estimoimiseksi Saamistamme tapahtumista 73, joilla pätee Kastelu = False, hylätään Lopuilla tapahtumilla pätee kastelu Näistä 8:ssa tapauksessa Sataa = True ja 19:ssä False Tässä tapauksessa P data (Sataa kastelu) [0.296, 0.704], kun todellinen jakauma on [0.3, 0.7] Suurempi otos tuottaa tarkemman estimaatin Tn. arvioiden virheen hajonta on suhteessa osamäärään 1/ n, missä n on otospisteiden lukumäärä Turhaan vedettyjen otospisteiden suuri määrä on ongelma: havaintojen kanssa konsistenttien otospisteiden lukumäärä putoaa eksponentiaalisesti ehtomuuttujien lkm:n kasvaessa 225 Turhaan hylättävien otospisteiden vetämisen välttämiseksi kiinnitetään havaintomuuttujien E arvot ja tehdään otanta vain muuttujien X ja Y yli Vedetyt tapahtumat eivät kuitenkaan kaikki oli samanarvoisia Tapahtumia painotetaan uskomusarvoilla (likelihood) Kuinka uskottavasti tapahtuma vastaa havaintoja mitattuna havaintomuuttujien ehdollisten todennäköisyyksien tulolla annettuna niiden vanhemmat Intuitiivisesti ajatellen tapahtumille, joissa havaintojen yhdessä esiintyminen vaikuttaa epäuskottavalta, annetaan vähemmän painoarvoa

5 226 Kyselyyn P(Sataa kastelu, märkäruoho) vastaamiseksi painoarvo w alustetaan arvoon 1.0 Vedetään otos jakaumasta P(Pilveä) = [0.5, 0.5], esim. arvo True Koska Kastelu on havaintomuuttuja, jonka arvo on True, niin painoa päivitetään w w P(kastelu pilveä) = 0.1 Vedetään otos jakaumasta P(Sataa pilveä) = [0.8, 0.2], esim. arvo True MärkäRuoho on havaintomuuttuja, jonka arvo on True w w P(märkäruoho kastelu, sataa) = Saatiin siis esimerkki [True, True, True, True] tapauksesta Sataa = True painoltaan Merkitään Z = { X } U Y Otospisteitä painottava otanta arpoo kullekin muuttujista Z arvon annettuna sen vanhempien arvot S W (z, e) = i=1,,l P(z i vanhemmat(z i )) Vanhemmat(Z i ) voi sisältää niin havainto- kuin piilomuuttujiakin Painottava otanta siis ottaa havainnot paremmin huomioon kuin priorijakauma P(z) Toisaalta S W ottaa huomioon vain kunkin muuttujan Z i esi-isiin lukeutuvat havainnot Todellinen posteriorijakauma P(z e) huomioi kaikki havainnot

6 228 Uskottavuuspainot w korjaavat jakaumien eron Olkoon otospiste x muodostunut muuttujien arvoista z ja e, jolloin w(z, e) = i=1,,m P(e i vanhemmat(e i )) Täten otospisteen painotettu todennäköisyys S W (z, e) w(z, e) on i=1,,l P(z i vanhemmat(z i )) i=1,,m P(e i vanhemmat(e i )) = P(z, e), koska tulojen muuttajat kattavat kaikki verkon muuttujat 229 Nyt voidaan osoittaa, että painotusotannan estimaatit ovat konsistentteja P data (x e) = α y N W (x, y, e) w(x, y, e) α' y S W (x, y, e) w(x, y, e) = α' y P(x, y, e) = α'p(x, e) = P(x e) Painotusotanta on tehokas menetelmä, koska kaikki vedetyt otospisteet hyödynnetään Menetelmä kuitenkin kärsii kun havaintomuuttujien lukumäärä kasvaa, koska useimpien otospisteiden paino on hyvin pieni ja harvat pisteet dominoivat estimaattia

7 230 MCMC-algoritmi Markov chain Monte Carlo Monte Carlo -algoritmi on satunnaisalgoritmi, joka voi tuottaa väärän vastauksen pienellä todennäköisyydellä (vs. Las Vegas - algoritmi) Otospisteitä vedetään tekemällä satunnainen muutos edelliseen tapahtumaan Seuraava tila valitaan arpomalla arvo yhdelle eihavaintomuuttujista X i ehdollistettuna sen Markov-peitteeseen kuuluvien muuttujien nykyisillä arvoilla Solmun Markov-peitteeseen kuuluvat sen vanhemmat, lapset ja lapsien vanhemmat MCMC tuottaa satunnaiskulun tila-avaruudessa, jossa havaintomuuttujien arvoja ei muuteta 231 YKSINKERTAISET PÄÄTÖKSET Liitetään tilaan S numeerinen hyötyarvio (utility) U(S), joka kuvaa tilan saavuttamisen haluttavuutta Epädeterministisen toiminnon A mahdollisia tulostiloja ovat Tulos i (A), missä i käy yli eri tulosten Ennen toiminnon A suorittamista sen mahdollisille tuloksille annetaan todennäköisyydet P(Tulos i (A) Suorita(A), E), missä E on agentin havainnot A:n odotettu hyöty (expected utility): EU(A E) = i P(Tulos i (A) Suorita(A), E) U(Tulos i (A))

8 232 Maksimaalisen odotetun hyödyn periaate edellyttää rationaalisen agentin valitsevan sen toiminnon, jonka odotusarvoinen hyöty on suurin Jos ideaa haluttaisiin soveltaa toimintojonojen valintaan, niin kaikki mahdolliset jonot tulisi arvottaa, mikä on käytännössä mahdotonta Jos hyötyfunktio heijastaa käytettyä tuloksellisuusmittaa, niin periaatteen mukaan toimiva agentti saavuttaa parhaan mahdollisen tuloksen yli mahdollisten toimintaympäristöjen Mallinnetaan epädeterminististä toimintoa arvonnalla (lottery) L, jossa mahdollisiin tuloksiin C 1,, C n liittyvät todennäköisyydet p 1,, p n L = [p 1, C 1 ; p 2, C 2 ; ; p n, C n ] 233 A f B Agentti preferoi arvontaa A A ~ B agentille A ja B ovat samanarvoisia A f B agentti preferoi A:ta tai A ja B ovat sille samanarvoisia Deterministinen arvonta [1,A] A Preferenssirelaatiolle asetetaan rationaalisuuden nimissä seuraavat rajoitteet Järjestyvyys: agentin on kyettävä suhtauttamaan mitkä tahansa kaksi tilaa keskenään, valitsemaan niiden väliltä (A f B) (B f A) (A ~ B) Transitiivisuus: (A f B) (B f C) (A f C)

9 234 Jatkuvuus: A f B f C p: [p, A; 1-p, C] ~ B Korvattavuus: A ~ B [p, A; 1-p, C] ~ [p, B; 1-p, C] Monotonisuus: A f B (p q [p, A; 1-p, B] f [q, A; 1-q, B]) Jaettavuus: Sisäkkäiset arvonnat voidaan todennäköisyyslaskennan sääntöjen mukaan purkaa [p, A; 1-p, [q, B; 1-q, C]] ~ [p, A; (1-p)q, B; (1-p)(1-q), C] Huom.: ei mainintaa hyödyistä Hyötyperiaate: Jos agentin preferenssit noudattavat edellä olleita aksioomia, niin on olemassa reaaliarvoinen funktio U s.e. U(A) > U(B) A f B U(A) = U(B) A ~ B 2. Odotetun hyödyn maksimoimisen periaate: Arvonnan hyöty on U([p_1,S_1; ;p_n,s_n]) = i=1,,n p i U(S i ) Täten epädeterministisen toiminnon hyöty on kuten aiemmin esitimme

10 236 Hyötyfunktioita Rahavarat vaikuttaisi suoraviivaiselta hyötymitalta Agentti preferoi monotonisesti rahaa Rahan arvonnoillekin on määrättävä toimintamalli Olemme voittaneet tietokilpailussa miljoonan Tarjolla on kolikonheitto, jossa kruuna tietää kaiken rahan häviämistä ja klaava puolestaan kolmen miljoonan voittoa Onko ainoa rationaalinen valinta odotusarvoltaan puolentoista miljoonan tarjouksen hyväksyminen? Oikeasti kyseessä onkin varallisuuden (ei voiton) maksimointi 237 Hyödyn aksioomat eivät määrää yksikäsitteistä hyötyfunktiota Voimme esim. tehdä funktiolle U(S) lineaarisen muunnoksen U'(S) = k 1 + k 2 U(S) (k 1 on vakio, k 2 on mielivaltainen positiivinen vakio) ilman, että agentin käyttäytyminen muuttuu Deterministisessä maailmassa, jossa ei ole arvontoja, mikä tahansa monotoninen muunnos säilyttää agentin käytöksen Esim. ³ (U(S)) Hyötyfunktio on tällöin ordinaalinen se antaa tiloille järjestyksen, numeerisilla arvoilla ei ole merkitystä

11 238 Hyötyarvojen skaala käy parhaasta mahdollisesta palkinnosta u pahimpaan katastrofiin u Normalisoidulla hyödyllä u = 0 ja u = 1 Ääriarvojen väliin jäävän tilan S arvottamiseksi agentti voi verrata sitä standardiarvontaan [p, u ; 1-p, u ] Todennäköisyyttä p on säädettävä kunnes kunnes agentin mielestä standardiarvonta ja S ovat samanarvoisia Jos käytössä on normalisoidut hyödyt, niin lopullinen p on S:n hyötyarvo Usein hyötyarvo on monen muuttujan (attribuutin) X = X 1,, X n arvojen x = [x 1 ] määräämä 239 Tarkastellaan tilannetta, missä muiden arvojen ollessa samat, attribuutin korkeampi arvo tietää myös korkeampaa hyötyfunktion arvoa Jos attribuuttivektoreille x ja y pätee x i y i i, niin x dominoi (aidosti) y:tä Jos esim. lentokentän mahdollinen sijoituspaikka S 1 on halvempi, tuottaa vähemmän äänisaastetta ja on turvallisempi kuin S 2, niin jälkimmäistä ei enää tarvitse harkita Epävarmuuden vallitessa aidot dominointisuhteet ovat harvinaisempia kuin deterministisessä tapauksessa Stokastinen dominanssi on usein käyttökelpoinen vertailutapa

12 240 Jos lentokentän sijoittamiskustannuksen uskotaan olevan tasaisesti jakautunut välille S 1 : 2.8 ja 4.8 miljardia euroa S 2 : 3.0 ja 5.2 miljardia euroa niin kumulatiivisia jakaumia tarkastelemalla havaitaan S 1 :n dominoivan stokastisesti S 2 :ta (koska kustannukset ovat negatiivisia) 1.0 todennäköisyys.5 S 2 S Negatiivinen kustannus 241 Kumulatiivinen jakauma on alkuperäisen jakauman integraali Olk. tapahtumien A 1 ja A 2 jakaumat attribuutille Xp 1 (x) ja p 2 (x) A 1 dominoi stokastisesti A 2 :ta, jos x: -,,x p 1 (x') dx -,,x p 2 (x') dx' Jos A 1 dominoi stokastisesti A 2 :ta ja U(x) on mv. monotonisesti ei-vähenevä hyötyfunktio, niin A 1 :n odotusarvoinen hyöty on vähintään yhtä korkea kuin A 2 :n Jos jokin toiminto on toisen dominoima kaikkien attribuuttien suhteen, niin se voidaan jättää huomiotta

13 242 Informaation arvo Öljykenttään myydään porausoikeuksia, palstoja on n kappaletta, mutta vain yhdessä niistä on C euron edestä öljyä Yhden palstan hinta on C/n euroa Seismologi tarjoaa yritykselle tutkimustietoa palstasta nro 3, joka paljastaa aukottomasti onko palstalla öljyä vai ei Paljonko yrityksen kannattaa maksaa tiedosta? Todennäköisyydellä 1/n tutkimus kertoo palstalla 3 olevan öljyä, jolloin yritys hankkii sen hintaan C/n ja ansaitsee (n-1)c/n euroa Todennäköisyydellä (n-1)/n tutkimus osoittaa, ettei palsta 3 sisällä öljyä, jolloin yhtiö hankkii jonkin muista palstoista 243 Koska palstan 3 tilanne jo tunnetaan, niin ostetulta pastalta löytyy nyt öljyä tn.:llä 1/(n-1), joten yhtiön odotusarvoinen voitto on C/(n-1) - C/n = C/n(n-1) euroa Odotusarvoinen voitto annettuna tutkimustulos on siis (1/n) ((n-1)c/n) + (n-1/n) (C/n(n-1)) = C/n Seismologille siis kannattaa maksaa aina palstan hintaan asti Lisäinformaatio on arvokasta, koska sen avulla toiminta voidaan sopeuttaa vallitsevaan tilanteeseen Ilman informaatiota on tyydyttävä kaikissa mahdollisissa tilanteissa keskimäärin parhaaseen toimintaan

14 244 Olk. E j on satunnaismuuttuja, jonka arvosta saadaan uusi tarkka havainto Agentin aiempi tietämys on E Ilman lisäinformaatiota parhaan toiminnon α arvo on EU(α E) = max A i U(Tulos i (A)) P(Tulos i (A) Suorita(A), E) Uusi havainto muuttaa parhaan toiminnon ja sen arvon Mutta toistaiseksi E j on satunnaismuuttuja, jonka arvoa ei tunneta, joten voimme vain summata yli sen kaikkien mahdollisten arvojen e jk Havainnon E j arvo on lopulta ( k P(E j = e jk E) EU(α ejk E, E j = e jk )) -EU(α E) 245 Lisäinformaatiolla on arvoa sikäli kun se voi johtaa suunnitelman muutokseen ja uusi suunnitelma on oleellisesti parempi kuin vanha Merk. VPI E (E j ) on havainnon E j arvo, kun nykyhavainnot ovat E Minkä tahansa havainnon arvo on ei-negatiivinen j, E: VPI E (E j ) 0 Arvo riippuu nykyisestä tilasta, joten se voi muuttua tietämyksen myötä Äärimmillään informaation arvo putoaa nollaan, kun tarkastellulle muuttujalle jo tunnetaan arvo Siksi informaation arvo ei ole additiivinen VPI E (E j, E k ) VPI E (E j ) + VPI E (E k )

15 246 Käytännössä tärkeää on, että informaation arvo on järjestysvapaa VPI E (E j, E k ) = VPI E (E j ) + VPI E,Ej (E k ) = VPI E,Ek (E j ) + VPI E (E k ) Tämän perusteella havainnot voidaan erottaa toiminnoista Agentin tulisi hankkia lisäinformaatiota kyselyin järkevässä järjestyksessä, irrelevantteja kysymyksiä välttäen, ottaen huomioon informaation arvon suhteessa sen kustannukseen, vain silloin kun se on järkevää Myopinen agentti tekee toimintapäätöksen heti jos mikään havaintomuuttujista ei näytä riittävän hyödylliseltä ei tutkita muuttujakombinaatioita

Muuttujien eliminointi

Muuttujien eliminointi 228 Muuttujien eliminointi Toistuvat alilauseet voidaan evaluoida kerran ja niiden arvo talletetaan käytettäväksi aina tarvittaessa Tarkastellaan muuttujien eliminointi -algoritmia lausekkeen P(Murto jussikäy,

Lisätiedot

Informaation arvo. Ohjelmistotekniikan laitos OHJ-2550 Tekoäly, kevät

Informaation arvo. Ohjelmistotekniikan laitos OHJ-2550 Tekoäly, kevät 259 Informaation arvo Öljykenttään myydään porausoikeuksia, palstoja on n kappaletta, mutta vain yhdessä niistä on C euron edestä öljyä Yhden palstan hinta on C/n euroa Seismologi tarjoaa yritykselle tutkimustietoa

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Bayesläinen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy

Lisätiedot

Tutkimustiedonhallinnan peruskurssi

Tutkimustiedonhallinnan peruskurssi Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi

Lisätiedot

Johdatus tn-laskentaan perjantai 17.2.2012

Johdatus tn-laskentaan perjantai 17.2.2012 Johdatus tn-laskentaan perjantai 17.2.2012 Kahden diskreetin muuttujan yhteisjakauma On olemassa myös monen muuttujan yhteisjakauma, ja jatkuvien muuttujien yhteisjakauma (jota ei käsitellä tällä kurssilla;

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

P (A)P (B A). P (B) P (A B) = P (A = 0)P (B = 1 A = 0) P (B = 1) P (A = 1)P (B = 1 A = 1) P (B = 1)

P (A)P (B A). P (B) P (A B) = P (A = 0)P (B = 1 A = 0) P (B = 1) P (A = 1)P (B = 1 A = 1) P (B = 1) Harjoitustehtäviä (erä 1) 1 1. Käytetään yksinkertaisesti Bayesin kaavaa: P (A B) = P (A)P (B A). P (B) Tapauksessa B = 1 saadaan P (A = 0 B = 1) = P (A = 1 B = 1) = P (A = 0)P (B = 1 A = 0) P (A = 1)P

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Tilastollisen merkitsevyyden testaus Osa II Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1 Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen

Lisätiedot

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi. Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i

Lisätiedot

Reikä. Säätila. Hammassärky Osuma

Reikä. Säätila. Hammassärky Osuma 190 Nuolen X Y intuitiivinen merkitys on, että X vaikuttaa suoraan Y:hyn Verkon topologia solmut ja nuolet määräävät muuttujien ehdolliset riippumattomuudet Kun topologia on kiinnitetty, pitää vielä määrätä

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 3. marraskuuta 2007 Antti Rasila () TodB 3. marraskuuta 2007 1 / 18 1 Varianssin luottamusväli, jatkoa 2 Bernoulli-jakauman odotusarvon luottamusväli 3

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 27. syyskuuta 2007 Antti Rasila () TodB 27. syyskuuta 2007 1 / 15 1 Diskreetit jakaumat Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen

Lisätiedot

P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu

P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu 1. Tyhjentävä tunnusluku (sucient statistics ) Olkoon (P(X = x θ) : θ Θ) todennäköisyysmalli havainnolle X. Datan funktio T (X ) on Tyhjentävä tunnusluku jos ehdollinen todennäköisyys (ehdollinen tiheysfunktio)

Lisätiedot

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla? 6.10.2006 1. Keppi, jonka pituus on m, taitetaan kahtia täysin satunnaisesti valitusta kohdasta ja muodostetaan kolmio, jonka kateetteina ovat syntyneet palaset. Kolmion pinta-ala on satunnaismuuttuja.

Lisätiedot

6. laskuharjoitusten vastaukset (viikot 10 11)

6. laskuharjoitusten vastaukset (viikot 10 11) 6. laskuharjoitusten vastaukset (viikot 10 11) 1. a) Sivun 102 hypergeometrisen jakauman määritelmästä saadaan µ µ 13 39 13! 13 12 11 10 9 µ 0! 8! 1! 2 2! 2 1 0 49 48! 47!! 14440 120 31187200 120 1287

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia. HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi

Lisätiedot

TILASTOLLINEN OPPIMINEN

TILASTOLLINEN OPPIMINEN 301 TILASTOLLINEN OPPIMINEN Salmiakki- ja hedelmämakeisia on pakattu samanlaisiin käärepapereihin suurissa säkeissä, joissa on seuraavat sekoitussuhteet h 1 : 100% salmiakkia h 2 : 75% salmiakkia + 25%

Lisätiedot

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7, HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä niistä

Lisätiedot

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008 ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008 Harjoitus 5 Ratkaisuehdotuksia Näissä harjoituksissa viljellään paljon sanaa paradoksi. Sana tulee ymmärtää laajassa mielessä. Suppeassa mielessähän

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Otoskoko 107 kpl. a) 27 b) 2654

Otoskoko 107 kpl. a) 27 b) 2654 1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää

Lisätiedot

Pelaisitko seuraavaa peliä?

Pelaisitko seuraavaa peliä? Lisätehtävä 1 seuraavassa on esitetty eräs peli, joka voidaan mallintaa paramterisena tilastollisena mallina tehtävänä on selvittää, kuinka peli toimii ja näyttää mallin takana oleva apulause (Tehtävä

Lisätiedot

Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.

Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8. HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..

Lisätiedot

Estimointi. Vilkkumaa / Kuusinen 1

Estimointi. Vilkkumaa / Kuusinen 1 Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman

Lisätiedot

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1 35 Naiivi Bayes Luokkamuuttua C o Bayes-verko uuri a attribuutit X i ovat se lehtiä Naiivi oletus o, että attribuutit ovat ehdollisesti riippumattomia toisistaa aettua luokka Ku käytössä o Boole muuttuat,

Lisätiedot

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

Tilastollisia peruskäsitteitä ja Monte Carlo

Tilastollisia peruskäsitteitä ja Monte Carlo Tilastollisia peruskäsitteitä ja Monte Carlo Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Tilastollisia peruskäsitteitä ja Monte Carlo 1/13 Kevät 2003 Tilastollisia

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Viikko 2: Ensimmäiset ennustajat Matti Kääriäinen matti.kaariainen@cs.helsinki.fi

Viikko 2: Ensimmäiset ennustajat Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Viikko 2: Ensimmäiset ennustajat Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Exactum C222, 5.-7.11.2008. 1 Tällä viikolla Sisältösuunnitelma: Ennustamisstrategioista Koneoppimismenetelmiä: k-nn (luokittelu

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy

Lisätiedot

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

1 Kertaus. Lineaarinen optimointitehtävä on muotoa: 1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi

Lisätiedot

Parametrin estimointi ja bootstrap-otanta

Parametrin estimointi ja bootstrap-otanta Parametrin estimointi ja bootstrap-otanta Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Parametrin estimointi ja bootstrap-otanta 1/27 Kevät 2003 Käytännön asioista

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Bayesläiset piste- ja väliestimaatit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 20. syyskuuta 2007 Antti Rasila () TodB 20. syyskuuta 2007 1 / 17 1 Kolmogorovin aksioomat σ-algebra Tapahtuman todennäköisyys 2 Satunnaismuuttujat Todennäköisyysjakauma

Lisätiedot

Bayesilainen päätöksenteko / Bayesian decision theory

Bayesilainen päätöksenteko / Bayesian decision theory Bayesilainen päätöksenteko / Bayesian decision theory Todennäköisyysteoria voidaan perustella ilman päätösteoriaa, mutta vasta päätösteorian avulla siitä on oikeasti hyötyä Todennäköisyyteoriassa tavoitteena

Lisätiedot

Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja

Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 1 Luento 23.9.2014 KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 2 Ristiintaulukko Esim. Toyota Avensis farmariautoja, nelikenttä (2x2-taulukko) 3 Esim. 5.2.6. Markkinointisuunnitelma

Lisätiedot

3. laskuharjoituskierros, vko 6, ratkaisut

3. laskuharjoituskierros, vko 6, ratkaisut Mat-.9 Sovellettu todennäköisyyslasku, kevät - eliövaara, Palo, Mellin. laskuharjoituskierros, vko 6, ratkaisut D. Uurnassa A on 4 valkoista ja 6 mustaa kuulaa ja uurnassa B on 6 valkoista ja 4 mustaa

Lisätiedot

2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2

2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2 HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.

Lisätiedot

Luku 10. Bayesläiset estimaattorit Bayesläiset piste-estimaatit. Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017

Luku 10. Bayesläiset estimaattorit Bayesläiset piste-estimaatit. Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017 Luku 1 Bayesläiset estimaattorit Lasse Leskelä Aalto-yliopisto 18. lokakuuta 217 1.1 Bayesläiset piste-estimaatit Tarkastellaan datalähdettä, joka tuottaa tiheysfunktion f(x θ) mukaan jakautuneita riippumattomia

Lisätiedot

Harjoitus 2: Matlab - Statistical Toolbox

Harjoitus 2: Matlab - Statistical Toolbox Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

JYVÄSKYLÄN YLIOPISTO. 3. Luennon sisältö

JYVÄSKYLÄN YLIOPISTO. 3. Luennon sisältö JYVÄSKYLÄN YLIOPISTO 3. Luennon sisältö Lineaarisen optimointitehtävän sallittu alue Optimointitehtävien muunnoksia Lineaarisen yhtälöryhmän perusmuoto ja perusratkaisut Lineaarisen optimointitehtävän

Lisätiedot

1. TILASTOLLINEN HAHMONTUNNISTUS

1. TILASTOLLINEN HAHMONTUNNISTUS 1. TILASTOLLINEN HAHMONTUNNISTUS Tilastollisissa hahmontunnistusmenetelmissä piirteitä tarkastellaan tilastollisina muuttujina Luokittelussa käytetään hyväksi seuraavia tietoja: luokkien a priori tn:iä,

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

Martingaalit ja informaatioprosessit

Martingaalit ja informaatioprosessit 4A Martingaalit ja informaatioprosessit Tämän harjoituksen tavoitteena on tutustua satunnaisvektorin informaation suhteen lasketun ehdollisen odotusarvon käsitteeseen sekä oppia tunnistamaan, milloin annettu

Lisätiedot

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä J. Virtamo 38.3143 Jonoteoria / Todennäköisyyslaskenta 1 TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä Otosavaruus S S on satunnaiskokeen E kaikkien mahdollisten alkeistapahtumien e joukko. Esim. 1. Noppaa

Lisätiedot

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: 8.1 Satunnaismuuttuja Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: Esim. Nopanheitossa (d6) satunnaismuuttuja X kertoo silmäluvun arvon. a) listaa kaikki satunnaismuuttujan arvot b)

Lisätiedot

3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4

3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4 Ü µ ½ ¾Ü¾µ Ü¾Ê 3.11.2006 1. Satunnaismuuttujan tiheysfunktio on ¼ ļ ܽ ܾ ÜÒµ Ä Ü½ ÜÒµ Ò Ä Ü½ ܾ ÜÒµ ܽ µ ܾ µ ÜÒ µ Ò missä tietenkin vaaditaan, että ¼. Muodosta :n ¾Ä ܽ ÜÒµ Ò ½¾ ܾ Ò ½ ¾Ü¾½µ ½ ¾Ü¾Òµ

Lisätiedot

Luottamusvälit. Normaalijakauma johnkin kohtaan

Luottamusvälit. Normaalijakauma johnkin kohtaan Luottamusvälit Normaalijakauma johnkin kohtaan Perusjoukko ja otanta Jos halutaan tutkia esimerkiksi Suomessa elävien naarashirvien painoa, se voidaan (periaatteessa) tehdä kahdella tavalla: 1. tutkimalla

Lisätiedot

Nollasummapelit ja bayesilaiset pelit

Nollasummapelit ja bayesilaiset pelit Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1

Lisätiedot

Preference Programming viitekehys: epätäydellisen preferenssi-informaation elisitointi ja mallintaminen, dominanssi

Preference Programming viitekehys: epätäydellisen preferenssi-informaation elisitointi ja mallintaminen, dominanssi Preference Programming viitekehys: epätäydellisen preferenssi-informaation elisitointi ja mallintaminen, dominanssi Mat-2.4142 Optimointiopin seminaari 9.2.2011 Lähteet: Salo, A. & Hämäläinen, R. P., 2010.

Lisätiedot

Maximum likelihood-estimointi Alkeet

Maximum likelihood-estimointi Alkeet Maximum likelihood-estimointi Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Maximum likelihood-estimointi p.1/20 Maximum Likelihood-estimointi satunnaismuuttujan X

Lisätiedot

Tilastotieteen aihehakemisto

Tilastotieteen aihehakemisto Tilastotieteen aihehakemisto hakusana ARIMA ARMA autokorrelaatio autokovarianssi autoregressiivinen malli Bayes-verkot, alkeet TILS350 Bayes-tilastotiede 2 Bayes-verkot, kausaalitulkinta bootstrap, alkeet

Lisätiedot

Muuttujien riippumattomuus

Muuttujien riippumattomuus 199 Muuttujien riippumattomuus Jos esimerkkiin lisätään muuttuja Säätila, jolla on 4 mahdollista arvoa, on edellä ollut yhteisjakauman taulukko monistettava neljästi Koska hammasongelmat eivät vaikuta

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 4. lokakuuta 2007 Antti Rasila () TodB 4. lokakuuta 2007 1 / 17 1 Moniulotteiset todennäköisyysjakaumat Johdanto Kaksiulotteiset satunnaismuuttujat Kaksiulotteisen

Lisätiedot

Todennäköisyyslaskenta IIa, syyslokakuu 2019 / Hytönen 2. laskuharjoitus, ratkaisuehdotukset

Todennäköisyyslaskenta IIa, syyslokakuu 2019 / Hytönen 2. laskuharjoitus, ratkaisuehdotukset Todennäköisyyslaskenta IIa, syyslokakuu 019 / Hytönen. laskuharjoitus, ratkaisuehdotukset 1. Kurssilla on 0 opiskelijaa, näiden joukossa Jutta, Jyrki, Ilkka ja Alex. Opettaja aikoo valita umpimähkään opiskelijan

Lisätiedot

Tilastollinen päättely. 5. Väliestimointi Johdanto Luottamusvälien konstruointi Luottamusvälien vertailu

Tilastollinen päättely. 5. Väliestimointi Johdanto Luottamusvälien konstruointi Luottamusvälien vertailu ilastollinen päättely 5.. Johdanto Estimointi, Joukkoestimointi, Kriittinen alue, uottamusjoukko, uottamustaso, uottamusväli, Otos, Parametri, Peittotodennäköisyys, Piste-estimointi, Väliestimaatti, Väliestimaattori,

Lisätiedot

Diskreettiaikainen dynaaminen optimointi

Diskreettiaikainen dynaaminen optimointi Diskreettiaikainen dynaaminen optimointi Usean kauden tapaus 2 kauden yleistys Ääretön loppuaika Optimaalinen pysäytys Optimointiopin seminaari - Syksy 2000 / Ongelma t 0 x 0 t- t T x t- + x t + x T u

Lisätiedot

Erilaisia Markov-ketjuja

Erilaisia Markov-ketjuja MS-C2 Stokastiset prosessit Syksy 207 3A Erilaisia Markov-ketjuja Tuntitehtävät 3A Lepakoiden rengastaja (tai kuponkien keräilijä) Lepakkoluolassa on lepakkoa, joista jokainen lentää luolasta ulos joka

Lisätiedot

Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Juuri 0 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 9..08 Kertaus K. a) Alapaineiden pienin arvo on ja suurin arvo 74, joten vaihteluväli on [, 74]. b) Alapaineiden keskiarvo on 6676870774

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita

Lisätiedot

4.2.2 Uskottavuusfunktio f Y (y 0 X = x)

4.2.2 Uskottavuusfunktio f Y (y 0 X = x) Kuva 4.6: Elektroniikassa esiintyvän lämpökohinan periaate. Lämpökohinaa ε mallinnetaan additiivisella häiriöllä y = Mx + ε. 4.2.2 Uskottavuusfunktio f Y (y 0 X = x) Tarkastellaan tilastollista inversio-ongelmaa,

Lisätiedot

Todennäköisyyslaskenta - tehtävät

Todennäköisyyslaskenta - tehtävät Todennäköisyyslaskenta - tehtävät Todennäköisyyslaskentaa käsitellään Pitkän matematiikan kertauskirjan sivuilla 253 276. Klassinen todennäköisyys Kombinatoriikka Binomitodennäköisyys Satunnaismuuttuja,

Lisätiedot

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu LIS AYKSI A kirjaan Reaalimuuttujan analyysi 1.6. Numeerinen integrointi: Gaussin kaavat Edella kasitellyt numeerisen integroinnin kaavat eli kvadratuurikaavat Riemannin summa, puolisuunnikassaanto ja

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Konvergenssilauseita

Konvergenssilauseita LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n

Lisätiedot

Satunnaismuuttujan odotusarvo ja laskusäännöt

Satunnaismuuttujan odotusarvo ja laskusäännöt Luku 3 Satunnaismuuttujan odotusarvo ja laskusäännöt Lasse Leskelä Aalto-yliopisto 16. syyskuuta 2017 3.1 Odotusarvon käsite ja suurten lukujen laki Lukuarvoisen satunnaismuuttujan X odotusarvo määritellään

Lisätiedot

Luento 5: Peliteoriaa

Luento 5: Peliteoriaa Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan hieman peliteoriaan. Keskeisiä asioita ovat Nash-tasapaino ja sekastrategia. Cournot n duopolimalli vuodelta 1838 toimii oivallisena havainnollistuksena

Lisätiedot

H0: otos peräisin normaalijakaumasta H0: otos peräisin tasajakaumasta

H0: otos peräisin normaalijakaumasta H0: otos peräisin tasajakaumasta 22.1.2019/1 MTTTA1 Tilastomenetelmien perusteet Luento 22.1.2019 Luku 3 2 -yhteensopivuus- ja riippumattomuustestit 3.1 2 -yhteensopivuustesti H0: otos peräisin tietystä jakaumasta H1: otos ei peräisin

Lisätiedot

Poisson-prosessien ominaisuuksia ja esimerkkilaskuja

Poisson-prosessien ominaisuuksia ja esimerkkilaskuja 4B Poisson-prosessien ominaisuuksia ja esimerkkilaskuja Tuntitehtävät 4B1 Eksponentiaalisten odotusaikojen toistuva odottaminen. Satunnaisluvun X sanotaan noudattavan Gamma-jakaumaa parametrein k ja λ,

Lisätiedot

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat: Mat-.9 Sovellettu todennäköisyyslasku A Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Moniulotteiset jakaumat Diskreetti jakauma, Ehdollinen jakauma, Ehdollinen odotusarvo, Jatkuva

Lisätiedot

11 Raja-arvolauseita ja approksimaatioita

11 Raja-arvolauseita ja approksimaatioita 11 Raja-arvolauseita ja approksimaatioita Tässä luvussa esitellään sellaisia kuuluisia todennäköisyysteorian raja-arvolauseita, joita sovelletaan usein tilastollisessa päättelyssä. Näiden raja-arvolauseiden

Lisätiedot

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan 17.11.2006 1. Kahdesta kohteesta (A ja K) kerättiin maanäytteitä ja näistä mitattiin SiO -pitoisuus. Tulokset (otoskoot ja otosten tunnusluvut): A K 10 16 Ü 64.94 57.06 9.0 7.29 Oletetaan mittaustulosten

Lisätiedot

Stokastiikan perusteet

Stokastiikan perusteet Stokastiikan perusteet Lasse Leskelä 10. joulukuuta 2013 Tiivistelmä Tämä luentomoniste sisältää muistiinpanoja asioista, joita käsiteltiin Jyväskylän yliopiston kurssilla MATA280 Stokastiikan perusteet

Lisätiedot

Satunnaislukujen generointi

Satunnaislukujen generointi Satunnaislukujen generointi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Satunnaislukujen generointi 1/27 Kevät 2003 Lähteet Knuth, D., The Art of Computer Programming,

Lisätiedot

8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH

8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH 8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH Osa aikasarjoista kehittyy hyvin erityyppisesti erilaisissa tilanteissa. Esimerkiksi pörssikurssien epävakaus keskittyy usein lyhyisiin

Lisätiedot

3.6 Su-estimaattorien asymptotiikka

3.6 Su-estimaattorien asymptotiikka 3.6 Su-estimaattorien asymptotiikka su-estimaattorit ovat usein olleet puutteellisia : ne ovat usein harhaisia ja eikä ne välttämättä ole täystehokkaita asymptoottisilta ominaisuuksiltaan ne ovat yleensä

Lisätiedot

A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä. 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä.

A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä. 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä. HUUTOKAUPOISTA A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä. 2. Huutokauppapelejä voidaan käyttää taloustieteen

Lisätiedot

Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä palamisaikaa?

Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä palamisaikaa? 21.3.2019/1 MTTTP1, luento 21.3.2019 7 TILASTOLLISEN PÄÄTTELYN PERUSTEITA Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä

Lisätiedot

Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten

Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten Todennäköisyys Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten tietoliikennejärjestelmien ymmärtämisessä

Lisätiedot

3 Derivoituvan funktion ominaisuuksia

3 Derivoituvan funktion ominaisuuksia ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2019 3 Derivoituvan funktion ominaisuuksia 31 l Hospitalin sääntö 1 Määritä 2 5 4 2 + 2 7 12 + 11, e 1 2, (c) tan sin 2 Määritä 2012 3 704 + 2 6 30 13 10 + 7, 3 2017

Lisätiedot

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu) 21.11.2017/1 MTTTP5, luento 21.11.2017 Otossuureita ja niiden jakaumia (jatkuu) 4) Olkoot X 1, X 2,..., X n satunnaisotos (, ):sta ja Y 1, Y 2,..., Y m satunnaisotos (, ):sta sekä otokset riippumattomia.

Lisätiedot

4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5)

4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5) 4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja

Lisätiedot

Markov-ketjut pitkällä aikavälillä

Markov-ketjut pitkällä aikavälillä 2A Markov-ketjut pitkällä aikavälillä Tämän harjoituksen tavoitteena on oppia lukemaan siirtymämatriisista tai siirtymäkaaviosta, milloin Markov-ketju on yhtenäinen ja jaksoton; oppia tunnistamaan, milloin

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä

Lisätiedot

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1 Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon

Lisätiedot

4.0.2 Kuinka hyvä ennuste on?

4.0.2 Kuinka hyvä ennuste on? Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

805306A Johdatus monimuuttujamenetelmiin, 5 op

805306A Johdatus monimuuttujamenetelmiin, 5 op monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos Lineaarinen erotteluanalyysi (LDA, Linear discriminant analysis) Erotteluanalyysin avulla pyritään muodostamaan selittävistä muuttujista

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot