Sekvenssien rinnastus. Rinnastus: helppoa tai vaikeaa

Koko: px
Aloita esitys sivulta:

Download "Sekvenssien rinnastus. Rinnastus: helppoa tai vaikeaa"

Transkriptio

1 Sekvenssien rinnastus Rinnastus: helppoa tai vaikeaa Kaksi tai useampia (DNA tai proteiini) sekvenssejä: miten samankaltaisia sekvenssit ovat missä sekvenssikohdissa samankaltaisuutta esiintyy Kattava (globaali): Sekvenssit rinnastetaan koko pituudeltaan optimaalisesti Paikallinen (lokaali): Sekvenssien välille etsitään paras osittaisrinnastus Sekvenssi 1 Paik.rinnastus Sekvenssi 2 Rinnastus perustuu malliin tulos yhtä onnistunut kuin mitä malli Hyvä linjaus on luotu biologisen tietämyksen pohjalta: algoritmien tuloksia voi muokata käsin Rinnastuksen laatua vaikea arvioida matemaattisin perustein Voidaan tehdä myös kokonaan käsin GCGGCCCA TCAGGTAGTT GGTGG GCGGCCCA TCAGGTAGTT GGTGG GCGTTCCA TCAGCTGGTT GGTGG GCGTCCCA TCAGCTAGTT GGTGG GCGGCGCA TTAGCTAGTT GGTGA ******** ********** ***** TTGACATG CCGGGG---A AACCG TTGACATG CCGGTG--GT AAGCC TTGACATG -CTAGG---A ACGCG TTGACATG -CTAGGGAAC ACGCG TTGACATC -CTCTG---A ACGCG ********?????????? ***** Rinnastuksesta Rinnastuksella pyritään löytämään emästen/aminohappojen homologia Homologia: samankaltaisuus joka johtuu yhteisestä kantamuodosta ja perimästä. Proteiini 1: sitoo happea Sekvenssien samanlaisuus Proteiini 2: sitoo happea? Proteiini 3: rakenne tunnetaan Sekvenssien samanlaisuus Proteiini 4: rakenne proteiini 3:n kaltainen? Samanlaisuus eri otusten välisten evoluutiosuhteiden päättelyssä Samanlaisuus ominaisuuksien ennustamisessa Samanlaisuus rakenteen ennustamisessa Rinnastuksen pisteytys Pisteytysmatriisit kertovat mikä on rinnastuksen/linjauksen kustannus nukleotidien ja aminohappojen suhteen. Perustuvat empiiriseen aineistoon (geneettinen koodi, fysikaaliset ja kemialliset ominaisuudet, molekyylin rakenne ja evoluutio) Yleisimpiä: BLOSUM ja PAM matriisit A C G T A C G T A C G G C A : : : : A G G G T A = 12 Standardi DNA pisteytysmatriisi Pisteytysesimerkki Rinnastuksen pisteytys Aukkoparametrit kertovat miten (keinotekoiset) aukot sijoitetaan linjaukseen: Aukon pituus l tällöin yleensä 1) lineaarinen -ld (d aukon aloituskustannus) 2) affiini pisteytys -d - (l-1)g (g aukon pitkittymissakko). Affiini pisteytys: C A T A G G G T A T T G C A T A A T T G x (-0.1)=-10.3 Moninkertaiset lisäykset/poistot voivat olla seurausta yhdestä evoluutiotapahtumasta => Erilliset sakot aukon aloitukselle ja jatkolle Samankaltaisten perusosien korkeampi pisteytys Erilaiset kustannukset muutokselle ja pistemutaatiolle A C G T A C G T A C G G C A : : : : A G G G T A = 15 1

2 Proteiinien pisteytysmatriisi A 5 R -2 7 N D C Q E G H I L K Henikoff and Henikoff: BLOSUM50 matriisi: Positiiviset pisteet diagonaalilla Samankaltaiset perusosat pisteytetään korkeammalle Erilaiset perusosat pisteytetään matalammalle (negatiivinen). M F P S T W Y V A R N D C Q E G H I L K M F P S T W Y V BLOSUM pisteytysmatriisi BLOCKS tietokannan sekvenssit ryhmitellään samanlaisiin lohkoihin (ryhmiin) niin että kussakin ryhmässä on vähintään 50% samankaltaisia perusosia (BLOSUM 50) Sekvenssit verrataan parittain toisiinsa ja havaitut perusosaparit (aminohapot) lasketaan (eli., A on A:n parina 40% kaikista tapauksista, A R:n parina in 1.2%, jne.) Tilastollisesti odotetut suhteelliset esiintymislukumäärät perusosapareille lasketaan yksittäisten aminohappojen esiintymislukumäärien mukaan Jokaisen parin pisteytys lasketaan seuraavasti pyöristettynä kokonaislukuun: Pari-frekvenssi(havaittu) log Pari-frekvenssi(odotettu) ID FIBRONECTIN_2; BLOCK COG9_CANFA GNSAGEPCVFPFIFLGKQYSTCTREGRGDGHLWCATT COG9_RABIT GNADGAPCHFPFTFEGRSYTACTTDGRSDGMAWCSTT FA12_HUMAN LTVTGEPCHFPFQYHRQLYHKCTHKGRPGPQPWCATT HGFA_HUMAN LTEDGRPCRFPFRYGGRMLHACTSEGSAHRKWCATTH MANR_HUMAN GNANGATCAFPFKFENKWYADCTSAGRSDGWLWCGTT MPRI_MOUSE ETDDGEPCVFPFIYKGKSYDECVLEGRAKLWCSKTAN PB1_PIG AITSDDKCVFPFIYKGNLYFDCTLHDSTYYWCSVTTY SFP1_BOVIN ELPEDEECVFPFVYRNRKHFDCTVHGSLFPWCSLDAD SFP3_BOVIN AETKDNKCVFPFIYGNKKYFDCTLHGSLFLWCSLDAD SFP4_BOVIN AVFEGPACAFPFTYKGKKYYMCTRKNSVLLWCSLDTE SP1_HORSE AATDYAKCAFPFVYRGQTYDRCTTDGSLFRISWCSVT COG2_CHICK GNSEGAPCVFPFIFLGNKYDSCTSAGRNDGKLWCAST COG2_HUMAN GNSEGAPCVFPFTFLGNKYESCTSAGRSDGKMWCATT COG2_MOUSE GNSEGAPCVFPFTFLGNKYESCTSAGRNDGKVWCATT COG2_RABIT GNSEGAPCVFPFTFLGNKYESCTSAGRSDGKMWCATS COG2_RAT GNSEGAPCVFPFTFLGNKYESCTSAGRNDGKVWCATT COG9_BOVIN GNADGKPCVFPFTFQGRTYSACTSDGRSDGYRWCATT COG9_HUMAN GNADGKPCQFPFIFQGQSYSACTTDGRSDGYRWCATT COG9_MOUSE GNGEGKPCVFPFIFEGRSYSACTTKGRSDGYRWCATT COG9_RAT GNGDGKPCVFPFIFEGHSYSACTTKGRSDGYRWCATT FINC_BOVIN GNSNGALCHFPFLYNNHNYTDCTSEGRRDNMKWCGTT FINC_HUMAN GNSNGALCHFPFLYNNHNYTDCTSEGRRDNMKWCGTT FINC_RAT GNSNGALCHFPFLYSNRNYSDCTSEGRRDNMKWCGTT MPRI_BOVIN ETEDGEPCVFPFVFNGKSYEECVVESRARLWCATTAN MPRI_HUMAN ETDDGVPCVFPFIFNGKSYEECIIESRAKLWCSTTAD PA2R_BOVIN GNAHGTPCMFPFQYNQQWHHECTREGREDNLLWCATT PA2R_RABIT GNAHGTPCMFPFQYNHQWHHECTREGRQDDSLWCATT PAM pisteytysmatriisi Suosittu proteiinien pisteytysmatriisi Perustuu arvioon siitä miten evoluutiossa aminohapot syrjäyttävät toisensa Dayhoffin PAM-250: - Perustuu tietokantaan joka koostuu 71:stä ryhmästä samankaltaisia proteiineja - Tietokannassa yhteensä 1572 aminohappomuutosta - Näiden havaittujen muutoksien avulla arvioitu mutaatioiden esiintymistodennäköisyyksiä - Esiintymistodennäköisyydet johtavat 1. kertaluvun Markovin malliin (PAM-1 matriisi vastaa siirtymätodennäköisyysmatriisia) - PAM-N matriisit saadaan PAM-1:stä: PAM-N = (PAM-1) N - N tarkoittaa että sekvenssiin kohdistunut N mutaatiota ja PAM-N antaa mutaatiotodennäköisyyden N:lle mutaatiolle. - Pisteytysmatriisinä käytetään yleensä log 10 PAM-N PAM pisteytysmatriisi Parittainen rinnastus: ongelma Parittainen rinnastus: ratkaisu Kaikkien mahdollisten rinnastusten lukumäärä kahden sekvenssin välillä kasvaa räjähdysmäisesti sekvenssin pituuden funktiona Kaksi 100:n aminohapon pituista proteiinisekvenssiä voidaan rinnastaa suunnilleen erilaisella tavalla. Kaikkien mahdollisuuksien testaaminen nykytietokoneilla veisi osapuilleen saman verran aikaa kuin mitä koko maailmankaikkeus on ollut olemassa. Dynaaminen ohjelmointi ratkaisu ongelmaan Dynaamisessa ohjelmoinnissa kokonaisratkaisuoptimi etsitään osaoptimiratkaisujen avulla. Tärkeimpiä menetelmiä: Paikallinen rinnastus (local alignment) -Smith-Waterman algoritmi Kattava rinnastus (global alignment) - Needleman-Wunch algoritmi 2

3 Parittainen rinnastus: kattava Needleman-Wunch (NW) algoritmi johtaa optimaaliseen kattavaan rinnastukseen. ESIM: Tarkastellaan kahta aminohapposekvenssiä: HEAGAWGHEE ja PAWHEAE. Lasketaan BLOSUM50:llä parittaiset pisteet: P A W H E A E H E A G A W G H E E Needleman-Wunsch algoritmi Olkoon rinnastettavat sekvenssit x=x 1,,x i, x n ja y=y 1,,y j, y m Rakennetaan matriisi F, missä matriisin alkio F(i,j) antaa parhaan rinnastuksen pisteytyksen sekvenssien x 1,,x i ja y=y 1,,y j välillä. F(i,j) rakennetaan rekursiivisesti aloittaen F(0,0)=0 alkiosta ja siirtyen matriisin vasemmasta yläkulmasta oikeaan alalaitaan. F(i,j) saadaan F(i-1,j-1), F(i-1,j) ja F(i,j-1) avulla (lineaarinen aukko): F(i,j) = max{f(i-1,j-1) + s(x i,y j ), F(i-1,j) d, F(i,j-1) d}, missä F(i-1,j-1) + s(x i,y j ) tarkoittaa että x i linjataan y j :n kanssa F(i-1,j)-d tarkoittaa että x i linjataan aukon kanssa F(i,j-1)-d tarkoittaa että y j linjataan aukon kanssa F(i-1,j-1) F(i-1,j) s(x i,y j ) -d F(i,j-1) F(i,j) -d Needleman-Wunsch algoritmi Samalla kun täytetään F(i,j) arvoja, niin pidetään kirjaa siitä mitä pitkin alkioon F(i,j) on päädytty (linkkitietoa). Matriisin F alkio F(n,m) antaa parhaan pisteyksen rinnastukseen Lähtemällä liikkeelle F(n,m) alkiosta ja menemällä takaperin kohti F(0,0) alkiota linkkitietoja pitkin aina kutakin F(i,j) alkiota edeltävän kautta (joku kolmesta F(i-1,j-1), F(i-1,j) tai F(i,j-1)) saadaan rinnastus seuraavasti: Jos F(i,j):n edeltävä F(i-1,j-1): linjaa x i ja y j toisiinsa F(i-1,j): linjaa x i aukon ( - merkin) kanssa F(i,j-1): linjaa y j aukon ( - merkin) kanssa Needleman-Wunsch algoritmi ESIM: HEAGAWGHEE ja PAWHEAE ja BLOSUM50 rinnastus. Huomaa F matriisien F(i,0) ja F(0,j) alustus aukkosakon d=8 mukaan: -id ja jd. Smith-Waterman algoritmi Smith-Waterman algoritmi sopii paikalliseen rinnastamiseen. Lähtökohtaisesti samankaltainen kuin Needleman-Wunsch, eli muodostetaan F matriisi. Sääntö vaihtuu seuraavaksi: F(i,j) = max{0, F(i-1,j-1) + s(x i,y j ), F(i-1,j) d, F(i,j-1) d}, missä F(i-1,j-1) + s(x i,y j ) tarkoittaa että x i linjataan y j :n kanssa F(i-1,j)-d tarkoittaa että x i linjataan aukon kanssa F(i,j-1)-d tarkoittaa että y j linjataan aukon kanssa Jos F(i,j):n arvoksi valitaan 0, niin se tarkoittaa että aloitetaan uusi rinnastus tästä kohdasta. F(i,j):n alkiot F(0,i) ja F(j,0) alustetaan 0:ksi (eli aloitetaan uusi rinnastus). Paikallinen rinnastus aloitetaan takaperin kaikista F(i,j):n paikallisista maksimeista. Smith-Waterman algoritmi ESIM: HEAGAWGHEE ja PAWHEAE ja BLOSUM50 rinnastus. Huomaa F matriisien F(i,0) ja F(0,j) alustus 0:ksi 3

4 Parittainen rinnastus: muistettavaa Optimaalinen rinnastus tarkoittaa että löydetään paras mahdollinen pisteytys annettuna pisteytysmatriisi ja aukkosakot. Tulos EI ole välttämättä biologisesti tarkoituksenmukaisesti paras rinnastus. Rinnastusten alla olevat olettamukset eivät välttämättä ole oikeita: sijoitukset eivät ole todellisuudessa yhtä todennäköisiä kaikissa kohdissa sekvenssiä, aukkosakot eivät ehkä mallita lisäyksiä/poistoja hyvin, jne. Parittainen rinnastusalgoritmi tuottaa aina linjauksen onko se biologiselta kannalta hyvä vai ei, sitä tietoa linjaustulos ei kerro. Rinnastus ja tietokantahaut Parittaista rinnastusta käytetään useimmiten etsimään tietokannoista kiinnostavaa sekvenssiä lähellä olevia sekvenssejä. Esim: Päättele uuden havaitun proteiinin toiminnallisuus etsimällä tätä lähimpänä olevat tunnetut proteiinit joiden toiminnallisuus tiedetään. Paikallisia rinnastuksia käytetään useimmiten tietokantahaussa: Ollaan kiinnostuneita tietämään onko joku osa sekvenssiä (esim. Proteiinista) samankaltainen kuin jonkun tunnetun sekvenssin (proteiinin) osa. Smith-Waterman algoritmi on usein liian raskas laajoihin tietokantahakuihin, niinpä heurestisia menetelmiä on kehitetty (esim: fasta, BLAST) ja niitä käytetään yleisesti. BLAST ja FASTA Monen sekvenssin linjaus FASTA (Pearson 1995) Käyttää heurestisia sääntöjä välttämään kokonaisen F matriisin laskennan. Nopeuttaa tietokantahakuja useita kertoja verrattuna täydelliseen Smith-Waterman algoritmiin Tilastolliselta pohjaltaan FASTA BLAST:aa vahvempi. BLAST (Altschul 1990, 1997) Käyttää indeksoituja sanatauluja, joilla tietokantasekvenssien osia hylätään haussa mahdottomina Hakuajat paljon pienempiä kuin mitä FASTA algoritmilla, ja erittäin paljon nopeampi verrattuna Smith-Waterman algoritmiin Tarkkuudeltaan lähes FASTA:n luokkaa Muutetaan rinnastusongelma kahden sekvenssin tai sekvenssiryhmän välisiksi rinnastukseksi. ClustalW (ohjelma) suosituin: 1. Tehdään parittaiset vertailut kaikkien sekvenssien kesken ja määritellään sekvenssien samankaltaisuus. 2. Tehdään samankaltaisuudesta johdettua etäisyyksiä käyttäen NJ-puuta (Neighbor Joining) 3. Yhdistellään sekvenssit NJ-puun mukaisesti, rinnastamalla ensi lähimmät sekvenssiparit ja yhdistelemällä sitten näin saadut sekvenssiryhmät, kunnes kaikki sekvenssit on rinnastettu. ClustalW pystyy linjaamaan suuria sekvenssimääriä, mutta ei takaa parhaan linjauksen löytämistä. Sekvenssien rinnastusjärjestys vaikuttaa lopputulokseen ja alkuvaiheessa tapahtuneet virheet heijastuvat koko lopputulokseen S1 1 - S S S S ClustalW 5768:9<;<=:6!>! " # #$% Etäisyysmatriisi ja ohjauspuu Rinnasta jokaiset sekvenssit parittain toisiinsa: - yhteensä (n-1)+(n-2)...(n-n+1) rinnastusta. S1 S2 S3 S4 S5 1 PEEKSAVTALWGKVN--VDEVGG 2 GEEKAAVLALWDKVN--EEEVGG 3 PADKTNVKAAWGKVGAHAGEYGA 4 AADKTNVKAAWSKVGGHAGEYGA 5 EHEWQLVLHVWAKVEADVAGHGQ & '(*), '0/ 1 + (. $% 2 &43 / + (. / " / Laske jokaisen sekvenssiparin etäisyys (pisteytys) ja generoi etäisyysmatriisi (ylä tai alakolmiomatriisi). Määritä naapurien yhdistämis- (Neighbor-Joining, NJ) ohjauspuu etäisyysmatriisin avulla. Ohjauspuu määrittää missä järjestyksessä rinnastusta jatketaan parittaisen rinnastuksen jälkeen. 4

5 Naapurien yhdistäminen (NJ)! " # $ %'& ( & ) * + ) + #, $ -) *)#** (+ ( +& #). / &! ' 0 1 ( + *$. ( - * +23 (, )#*) ( ( -,4 + ' 5 ) #. 6/& 7*8 % & () +#! * * 95 :!;,8 * # < What is required for the Neighbour joining method? Distance matrix Etäisyysmatriisi PAM Solmu S1 A B Ensimmäinen yhdistäminen =, 9>0 $BDCE )#8 $ #, 9 '# &# C/ ) 4* )*'&# ) -?# 0 Uusien etäisyyksien laskenta Kun kaksi lehtisolmua on yhdistetty täytyy laskea yhdistyksen tuloksena saadun solmun etäisyys muihin lehtiin. Laskennassa käytetään keskimääräisiä etäisyyksiä: Etäisyys[, MonHum] = (Etäisyys[, ] + Etäisyys[, ])/2 = ( )/2 = Seuraava askel uusilla etäisyyksillä PAM MonHum MonHum Viimeistä edellinen askel PAM MosMonHum MosMonHum Mos-() Spin- Mos-() 5

6 Viimeinen yhdistäminen PAM Spin MosMonHum MosMonHum Etäisyyksien mukaan piirretty NJ puu (Spin-)-(Mos-()) Spin- Mos-() Monen sekvenssin linjaus ensimmäinen pari Rinnasta kaksi lähinnä olevaa sekvenssiä ensin toisiinsa. Tämä kohdistus jäädytetään eikä sitä enään muuteta. Jos aukko lisätään myöhemmissä rinnastuksissa, niin se lisätään samaan kohtaan näihin molempiin (jolloin näiden suhteellinen rinnastus pysyy muuttumattomana). Ohjauspuu päätöksen apuna Katso ohjauspuusta mitkä sekvenssit rinnastetaan toisiinsa seuraavaksi. Kaksi vaihtoehtoa: Rinnasta kolmas sekvenssi jo kahteen rinnastettuun, TAI Rinnasta kaksi erillistä sekvenssiä toisiinsa. Rinnastusta jatketaan ohjauspuun mukaan niin että joka askeleella tehdään parittainen rinnastus kunnes kaikki sekvenssit on rinnastettu ClustalW-Risut ja ruusut Ruusut: Nopea. Yksinkertainen -> helppo ymmärtää Risut: Ei kohdefunktiota jota optimoidaan. Ei mahdollista määritellä rinnastukselle hyvyyttä Ei anna tietoa rinnastuksen oikeellisuudesta. Paikallisen minimin ongelma: jos rinnastuksessa tehdään alkuvaiheessa virhe, ei algoritmi pysty korjaamaan virhettä rinnastuksen jatkuessa Risuista huolimatta havaittu käyttökelpoiseksi 6

2. luento Kahden sekvenssin rinnastus

2. luento Kahden sekvenssin rinnastus 2. luento Kahden sekvenssin rinnastus Miksi rinnastusta opetetaan Keskeisintä bioinformatiikkaa Voidaan päätellä: konservoituneita alueita pistemutaatioita lajien tai geenien evolutiivisia suhteita Osa

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

Proteiinien kontaktiresidyjen ennustaminen. Tuomo Hartonen Teoreettisen fysiikan syventävien opintojen seminaari

Proteiinien kontaktiresidyjen ennustaminen. Tuomo Hartonen Teoreettisen fysiikan syventävien opintojen seminaari Proteiinien kontaktiresidyjen ennustaminen Tuomo Hartonen Teoreettisen fysiikan syventävien opintojen seminaari 13.12.12 Terminologiaa Aminohappo = proteiinien rakennuspalikka, luonto käyttää 20 erilaista

Lisätiedot

Harjoitus 6 ( )

Harjoitus 6 ( ) Harjoitus 6 (21.4.2015) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s. t. g(x) 0 h(x) = 0 x X olevan optimointitehtävän Lagrangen duaali on missä max θ(u, v) s. t.

Lisätiedot

Harjoitus 6 ( )

Harjoitus 6 ( ) Harjoitus 6 (30.4.2014) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on max θ(u,v) s.t. u 0,

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 6 24.4.2017 Tehtävä 1 Määritelmän (ks. luentomonisteen s. 107) mukaan yleisen muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on min θ(u,v)

Lisätiedot

Algoritmit 1. Luento 8 Ke Timo Männikkö

Algoritmit 1. Luento 8 Ke Timo Männikkö Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin

Lisätiedot

Harjoitus 4: Matlab - Optimization Toolbox

Harjoitus 4: Matlab - Optimization Toolbox Harjoitus 4: Matlab - Optimization Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen

Lisätiedot

Algoritmit lyhyiden sekvenssien rinnastamiseen referenssigenomia vasten. Krista Longi

Algoritmit lyhyiden sekvenssien rinnastamiseen referenssigenomia vasten. Krista Longi Algoritmit lyhyiden sekvenssien rinnastamiseen referenssigenomia vasten. Krista Longi 19.05.2014 DNA:n sekvensointi DNA:n pilkotaan lyhyiksi mallipalasiksi, templaateiksi, joiden emäsjärjestys selvitetään.

Lisätiedot

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1 1.1 Funktion optimointiin perustuvat klusterointialgoritmit Klusteroinnin onnistumista mittaavan funktion J optimointiin perustuvissa klusterointialgoritmeissä

Lisätiedot

Algoritmit 2. Luento 5 Ti Timo Männikkö

Algoritmit 2. Luento 5 Ti Timo Männikkö Algoritmit 2 Luento 5 Ti 26.3.2019 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot B-puun muunnelmia Algoritmit 2 Kevät 2019 Luento 5 Ti 26.3.2019 2/34 B-puu B-puut ovat tasapainoisia

Lisätiedot

1 Rajoittamaton optimointi

1 Rajoittamaton optimointi Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.34 Lineaarinen ohjelmointi..27 Luento 5 Simplexin implementaatioita (kirja 3.2-3.5) Lineaarinen ohjelmointi - Syksy 27 / Luentorunko (/2) Simplexin implementaatiot Naiivi Revised Full tableau Syklisyys

Lisätiedot

Algoritmit 2. Luento 12 To Timo Männikkö

Algoritmit 2. Luento 12 To Timo Männikkö Algoritmit 2 Luento 12 To 3.5.2018 Timo Männikkö Luento 12 Geneettiset algoritmit Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Algoritmit 2 Kevät 2018 Luento 12 To 3.5.2018 2/35 Algoritmien

Lisätiedot

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1 1.1 Funktion optimointiin perustuvat klusterointialgoritmit Klusteroinnin onnistumista mittaavan funktion J optimointiin perustuvissa klusterointialgoritmeissä

Lisätiedot

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

Algoritmit 1. Luento 12 Ke Timo Männikkö

Algoritmit 1. Luento 12 Ke Timo Männikkö Algoritmit 1 Luento 12 Ke 15.2.2017 Timo Männikkö Luento 12 Pikalajittelu Pikalajittelun vaativuus Osittamisen tasapainoisuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 27.1.2010 T-106.1208 Ohjelmoinnin perusteet Y 27.1.2010 1 / 37 If-käsky toistokäskyn sisällä def main(): HELLERAJA = 25.0 print "Anna lampotiloja, lopeta -300:lla."

Lisätiedot

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2 HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Olkoon f : R R f(x 1, x ) = x 1 + x Olkoon C R. Määritä tasa-arvojoukko Sf(C) = {(x 1, x

Lisätiedot

Algoritmit 2. Luento 13 Ti Timo Männikkö

Algoritmit 2. Luento 13 Ti Timo Männikkö Algoritmit 2 Luento 13 Ti 30.4.2019 Timo Männikkö Luento 13 Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Ositus ja rekursio Rekursion toteutus Algoritmit 2 Kevät 2019 Luento 13 Ti 30.4.2019

Lisätiedot

n! k!(n k)! n = Binomikerroin voidaan laskea pelkästään yhteenlaskun avulla käyttäen allaolevia ns. palautuskaavoja.

n! k!(n k)! n = Binomikerroin voidaan laskea pelkästään yhteenlaskun avulla käyttäen allaolevia ns. palautuskaavoja. IsoInt Tietokoneiden muisti koostuu yksittäisistä muistisanoista, jotka nykyaikaisissa koneissa ovat 64 bitin pituisia. Muistisanan koko asettaa teknisen rajoituksen sille, kuinka suuria lukuja tietokone

Lisätiedot

Algoritmit 1. Luento 12 Ti Timo Männikkö

Algoritmit 1. Luento 12 Ti Timo Männikkö Algoritmit 1 Luento 12 Ti 19.2.2019 Timo Männikkö Luento 12 Osittamisen tasapainoisuus Pikalajittelun vaativuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu Algoritmit

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 16.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 16.9.2015 1 / 26 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

Algoritmit 1. Luento 7 Ti Timo Männikkö

Algoritmit 1. Luento 7 Ti Timo Männikkö Algoritmit 1 Luento 7 Ti 31.1.2017 Timo Männikkö Luento 7 Järjestetty binääripuu Binääripuiden termejä Binääripuiden operaatiot Solmun haku, lisäys, poisto Algoritmit 1 Kevät 2017 Luento 7 Ti 31.1.2017

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti Luku 6 Dynaaminen ohjelmointi Dynaamisessa ohjelmoinnissa on ideana jakaa ongelman ratkaisu pienempiin osaongelmiin, jotka voidaan ratkaista toisistaan riippumattomasti. Jokaisen osaongelman ratkaisu tallennetaan

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut

58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 1. Palautetaan vielä mieleen O-notaation määritelmä. Olkoon f ja g funktioita luonnollisilta luvuilta positiivisille

Lisätiedot

Luentorunko keskiviikolle Hierarkkinen ryvästäminen

Luentorunko keskiviikolle Hierarkkinen ryvästäminen Luentorunko keskiviikolle 3.12.2008 Hierarkkinen ryvästäminen Ryvästyshierarkia & dendrogrammi Hierarkkinen ryvästäminen tuottaa yhden ryvästyksen sijasta sarjan ryvästyksiä Tulos voidaan visualisoida

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

massa vesi sokeri muu aine tuore luumu b 0,73 b 0,08 b = 0,28 a y kuivattu luumu a x 0,28 a y 0,08 = 0,28 0,08 = 3,5

massa vesi sokeri muu aine tuore luumu b 0,73 b 0,08 b = 0,28 a y kuivattu luumu a x 0,28 a y 0,08 = 0,28 0,08 = 3,5 A1. Tehdään taulukko luumun massoista ja pitoisuuksista ennen ja jälkeen kuivatuksen. Muistetaan, että kuivatuksessa haihtuu vain vettä. Näin ollen sokerin ja muun aineen massa on sama molemmilla riveillä.

Lisätiedot

52739 Bioinformatiikan perusteet Kevät 2013

52739 Bioinformatiikan perusteet Kevät 2013 52739 Bioinformatiikan perusteet Kevät 2013 Petri Törönen Materiaalia kommentoineet: Pekka Kohonen, Petri Auvinen, Liisa Holm Kiitokset Päivi Onkamo äitiyslomalla Petri Törönen tuuraamassa Email: petri

Lisätiedot

Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia

Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Kukin alkio (viite) talletettuna solmuun (node) vastaa paikan käsitettä

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48 MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?

Lisätiedot

Kombinatorinen optimointi

Kombinatorinen optimointi Kombinatorinen optimointi Sallittujen pisteiden lukumäärä on äärellinen Periaatteessa ratkaisu löydetään käymällä läpi kaikki pisteet Käytännössä lukumäärä on niin suuri, että tämä on mahdotonta Usein

Lisätiedot

Algoritmit 2. Luento 5 Ti Timo Männikkö

Algoritmit 2. Luento 5 Ti Timo Männikkö Algoritmit 2 Luento 5 Ti 28.3.2017 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot Algoritmit 2 Kevät 2017 Luento 5 Ti 28.3.2017 2/29 B-puu Algoritmit 2 Kevät 2017 Luento 5 Ti

Lisätiedot

Ongelma(t): Miten merkkijonoja voidaan hakea tehokkaasti? Millaisia hakuongelmia liittyy bioinformatiikkaan?

Ongelma(t): Miten merkkijonoja voidaan hakea tehokkaasti? Millaisia hakuongelmia liittyy bioinformatiikkaan? Ongelma(t): Miten merkkijonoja voidaan hakea tehokkaasti? Millaisia hakuongelmia liittyy bioinformatiikkaan? 2012-2013 Lasse Lensu 2 Ihmisen, eläinten ja kasvien hyvinvoinnin kannalta nykyaikaiset mittaus-,

Lisätiedot

Datatähti 2019 loppu

Datatähti 2019 loppu Datatähti 2019 loppu task type time limit memory limit A Summa standard 1.00 s 512 MB B Bittijono standard 1.00 s 512 MB C Auringonlasku standard 1.00 s 512 MB D Binääripuu standard 1.00 s 512 MB E Funktio

Lisätiedot

ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa.

ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa. BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 7, Syksy 206 Tutkitaan yhtälöryhmää x + y + z 0 2x + y + az b ax + y + 2z 0 (a) Jos a 0 ja b 0 niin mikä on yhtälöryhmän ratkaisu? Tulkitse ratkaisu

Lisätiedot

Algoritmit 1. Luento 9 Ti Timo Männikkö

Algoritmit 1. Luento 9 Ti Timo Männikkö Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

Ratkaisuehdotukset LH 3 / alkuvko 45

Ratkaisuehdotukset LH 3 / alkuvko 45 Ratkaisuehdotukset LH 3 / alkuvko 45 Tehtävä : Olkoot A, B, X R n n, a, b R n ja jokin vektorinormi. Kätetään vektorinormia vastaavasta operaattorinormista samaa merkintää. Nätä, että. a + b a b, 2. A

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 11.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 11.2.2009 1 / 33 Kertausta: listat Tyhjä uusi lista luodaan kirjoittamalla esimerkiksi lampotilat = [] (jolloin

Lisätiedot

Reaalilukuvälit, leikkaus ja unioni (1/2)

Reaalilukuvälit, leikkaus ja unioni (1/2) Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut

Lisätiedot

f (28) L(28) = f (27) + f (27)(28 27) = = (28 27) 2 = 1 2 f (x) = x 2

f (28) L(28) = f (27) + f (27)(28 27) = = (28 27) 2 = 1 2 f (x) = x 2 BMA581 - Differentiaalilaskenta ja sovellukset Harjoitus 4, Syksy 15 1. (a) Olisiko virhe likimain.5, ja arvio antaa siis liian suuren arvon. (b) Esim (1,1.5) tai (,.5). Funktion toinen derivaatta saa

Lisätiedot

4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen

4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen 4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen Käypä kantaratkaisu löytyy helposti, esimerkiksi tapauksessa Ax b, b 0 x 0 jolloin sen määräävät puutemuuttujat. Tällöin simplex-menetelmän alustus

Lisätiedot

Lineaarinen optimointi. Harjoitus 6-7, Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän. c T x = min!

Lineaarinen optimointi. Harjoitus 6-7, Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän. c T x = min! Lineaarinen optimointi Harjoitus 6-7, 016. 1. Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän c T x = min! (T) Ax b x 0 duaalitehtävän duaali on tehtävä (T). Ratkaisu. (P) c T x = min! Ax b x

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

Algoritmit 2. Luento 2 To Timo Männikkö

Algoritmit 2. Luento 2 To Timo Männikkö Algoritmit 2 Luento 2 To 14.3.2019 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2019 Luento

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 5 Ti 20.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 5 Ti 20.9.2011 p. 1/40 p. 1/40 Choleskyn menetelmä Positiivisesti definiiteillä matriiseilla kolmiohajotelma

Lisätiedot

Paikkatiedon käsittely 6. Kyselyn käsittely

Paikkatiedon käsittely 6. Kyselyn käsittely HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon käsittely 6. Kyselyn käsittely Antti Leino antti.leino@cs.helsinki.fi 1.2.2007 Tietojenkäsittelytieteen laitos Kysely indeksin

Lisätiedot

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 1. (a) Tunnemme vektorit a = [ 5 1 1 ] ja b = [ 2 0 1 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien

Lisätiedot

Geneettiset algoritmit

Geneettiset algoritmit Geneettiset algoritmit Evoluution piirteitä laskennassa Optimoinnin perusteet - Kevät 2002 / 1 Sisältö Geneettisten algoritmien sovelluskenttä Peruskäsitteitä Esimerkkejä funktion ääriarvon etsintä vangin

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, 652013, vastauksia 1 [6 pistettä] Vastaa jokaisesta alla olevasta väittämästä onko se tosi vai epätosi ja anna lyhyt perustelu Jokaisesta kohdasta

Lisätiedot

Demo 1: Simplex-menetelmä

Demo 1: Simplex-menetelmä MS-C2105 Optimoinnin perusteet Malliratkaisut 3 Ehtamo Demo 1: Simplex-menetelmä Muodosta lineaarisen tehtävän standardimuoto ja ratkaise tehtävä taulukkomuotoisella Simplex-algoritmilla. max 5x 1 + 4x

Lisätiedot

Kokonaislukuoptimointi

Kokonaislukuoptimointi Kokonaislukuoptimointi Optimointitehtävät, joissa muuttujat tai osa niistä voivat saada vain kokonaislukuarvoja Puhdas kokonaislukuoptimointitehtävä: Kaikki muuttujat kokonaislukuja Sekoitettu kokonaislukuoptimointitehtävä:

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 4 3.4.017 Tehtävä 1 Tarkastellaan harjoituksen 1 nopeimman reitin ongelmaa ja etsitään sille lyhin virittävä puu käyttämällä kahta eri algoritmia. a) (Primin algoritmi) Lähtemällä

Lisätiedot

Johdatus verkkoteoriaan 4. luento

Johdatus verkkoteoriaan 4. luento Johdatus verkkoteoriaan 4. luento 28.11.17 Viikolla 46 läpikäydyt käsitteet Viikolla 47 läpikäydyt käsitteet Verkko eli graafi, tasoverkko, solmut, välit, alueet, suunnatut verkot, isomorfiset verkot,

Lisätiedot

811312A Tietorakenteet ja algoritmit, 2014-2015, Harjoitus 7, ratkaisu

811312A Tietorakenteet ja algoritmit, 2014-2015, Harjoitus 7, ratkaisu 832A Tietorakenteet ja algoritmit, 204-205, Harjoitus 7, ratkaisu Hajota ja hallitse-menetelmä: Tehtävä 7.. Muodosta hajota ja hallitse-menetelmää käyttäen algoritmi TULOSTA_PUU_LASKEVA, joka tulostaa

Lisätiedot

58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen)

58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen) 58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen) 1. Avaimet 1, 2, 3 ja 4 mahtuvat samaan lehtisolmuun. Tässä tapauksessa puussa on vain yksi solmu, joka on samaan aikaan juurisolmu

Lisätiedot

Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen

Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Jos sallittuja kokonaislukuratkaisuja ei ole kovin paljon, ne voidaan käydä kaikki läpi yksitellen Käytännössä tämä ei kuitenkaan ole yleensä mahdollista

Lisätiedot

TKHJ:ssä on yleensä komento create index, jolla taululle voidaan luoda hakemisto

TKHJ:ssä on yleensä komento create index, jolla taululle voidaan luoda hakemisto Indeksin luonti ja hävitys TKHJ:ssä on yleensä komento create index, jolla taululle voidaan luoda hakemisto Komentoa ei ole standardoitu ja niinpä sen muoto vaihtelee järjestelmäkohtaisesti Indeksi voidaan

Lisätiedot

12. Hessen matriisi. Ääriarvoteoriaa

12. Hessen matriisi. Ääriarvoteoriaa 179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu

Lisätiedot

Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita.

Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita. Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita. Tehtävä 1 Mitä seuraavat käsitteet tarkoittavat? Monitahokas (polyhedron).

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB3 - Harjoitustehtävien ratkaisut: 1 Funktio 1.1 Piirretään koordinaatistoakselit ja sijoitetaan pisteet: 1 1. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä.

Lisätiedot

Mediaanisuodattimet. Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että. niiden ominaisuudet tunnetaan hyvin

Mediaanisuodattimet. Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että. niiden ominaisuudet tunnetaan hyvin Mediaanisuodattimet Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että niiden ominaisuudet tunnetaan hyvin niiden analysointiin on olemassa vakiintuneita menetelmiä

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

10. Painotetut graafit

10. Painotetut graafit 10. Painotetut graafit Esiintyy monesti sovelluksia, joita on kätevä esittää graafeina. Tällaisia ovat esim. tietoverkko tai maantieverkko. Näihin liittyy erinäisiä tekijöitä. Tietoverkkoja käytettäessä

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Optimaalisuus: objektiavaruus f 2 min Z = f(s) Parhaat arvot alhaalla ja vasemmalla

Lisätiedot

Tietorakenteet, laskuharjoitus 7, ratkaisuja

Tietorakenteet, laskuharjoitus 7, ratkaisuja Tietorakenteet, laskuharjoitus, ratkaisuja. Seuraava kuvasarja näyttää B + -puun muutokset lisäysten jälkeen. Avaimet ja 5 mahtuvat lehtisolmuihin, joten niiden lisäys ei muuta puun rakennetta. Avain 9

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 2. luento 10.11.2017 Keinotekoiset neuroverkot Neuroverkko koostuu syöte- ja ulostulokerroksesta

Lisätiedot

Algoritmit 1. Luento 10 Ke Timo Männikkö

Algoritmit 1. Luento 10 Ke Timo Männikkö Algoritmit 1 Luento 10 Ke 14.2.2018 Timo Männikkö Luento 10 Algoritminen ongelmanratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Lisäyslajittelu Valintalajittelu Permutaatiot

Lisätiedot

Harjoitus 7: vastausvihjeet

Harjoitus 7: vastausvihjeet Taloustieteen matemaattiset menetelmät 31C01100 Kevät 2017 Topi Hokkanen topi.hokkanen@aalto.fi Harjoitus 7: vastausvihjeet 1. (Epäyhtälörajoitteet) Olkoon f (x, y) = 6x + 4y ja g (x, y) = x 2 + y 2 2.

Lisätiedot

Algoritmit 2. Luento 4 To Timo Männikkö

Algoritmit 2. Luento 4 To Timo Männikkö Algoritmit 2 Luento 4 To 21.3.2019 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2019 Luento 4

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot

Algoritmit 2. Luento 6 To Timo Männikkö

Algoritmit 2. Luento 6 To Timo Männikkö Algoritmit 2 Luento 6 To 28.3.2019 Timo Männikkö Luento 6 B-puun operaatiot Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2019 Luento 6 To 28.3.2019 2/30 B-puu 40 60 80 130 90 100

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Lokaalit ääriarvot Yhden muuttujan funktion f (x) lokaali maksimi on piste x 0, jossa f (x) on suurempi kuin muualle pisteen x 0 ympäristössä, eli kun f (x 0 )

Lisätiedot

1 Rajoitettu optimointi I

1 Rajoitettu optimointi I Taloustieteen mat.menetelmät 2017 materiaali II-1 1 Rajoitettu optimointi I 1.1 Tarvittavaa osaamista Matriisit ja vektorit, matriisien de niittisyys Derivointi (mm. ketjusääntö, Taylorin kehitelmä) Implisiittifunktiolause

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT PUURAKENTEET, BINÄÄRIPUU, TASAPAINOTETUT PUUT MIKÄ ON PUUTIETORAKENNE? Esim. Viereinen kuva esittää erästä puuta. Tietojenkäsittelytieteessä puut kasvavat alaspäin.

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 8 To 29.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 8 To 29.9.2011 p. 1/36 p. 1/36 Interpolointi kuutiosplinillä Osavälit: I i = [t i 1,t i ], i = 1,2,...,n

Lisätiedot

Kimppu-suodatus-menetelmä

Kimppu-suodatus-menetelmä Kimppu-suodatus-menetelmä 2. toukokuuta 2016 Kimppu-suodatus-menetelmä on kehitetty epäsileiden optimointitehtävien ratkaisemista varten. Menetelmässä approksimoidaan epäsileitä funktioita aligradienttikimpulla.

Lisätiedot

Muita rekisteriallokaatiomenetelmiä

Muita rekisteriallokaatiomenetelmiä TIE448 Kääntäjätekniikka, syksy 2009 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 23. marraskuuta 2009 Sisällys Sisällys Seuraava deadline Vaihe E tiistai 1.12. klo 10 koodigenerointi (ilman rekisteriallokaatiota)

Lisätiedot

Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi.

Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi. 5..0 Tehtävä Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi. (c) (d) Arvostelu Kanta on degeneroitunut jos ja vain jos sitä vastaava kantamatriisi on singulaarinen. Optimissa muuttujan

Lisätiedot

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) on voimassa

Lisätiedot

Graafin 3-värittyvyyden tutkinta T Graafiteoria, projektityö (eksakti algoritmi), kevät 2005

Graafin 3-värittyvyyden tutkinta T Graafiteoria, projektityö (eksakti algoritmi), kevät 2005 Graafin 3-värittyvyyden tutkinta T-79.165 Graafiteoria, projektityö (eksakti algoritmi), kevät 2005 Mikko Malinen, 36474R 29. maaliskuuta, 2005 Tiivistelmä Artikkelissa käydään läpi teoriaa, jonka avulla

Lisätiedot

Jäsennysaiheesta lisää Täydentäviä muistiinpanoja TIEA241 Automaatit ja kieliopit, syksy 2016

Jäsennysaiheesta lisää Täydentäviä muistiinpanoja TIEA241 Automaatit ja kieliopit, syksy 2016 Jäsennysaiheesta lisää Täydentäviä muistiinpanoja TIA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho 4. lokakuuta 2016 1 simerkki arleyn algoritmin soveltamisesta Tämä esimerkki on laadittu

Lisätiedot

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet )

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet ) T-79144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet 11-22) 26 29102004 1 Ilmaise seuraavat lauseet predikaattilogiikalla: a) Jokin porteista on viallinen

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 LIITE 1 VIRHEEN ARVIOINNISTA Mihin tarvitset virheen arviointia? Mittaustulokset ovat aina todellisten luonnonvakioiden ja tutkimuskohdetta kuvaavien suureiden likiarvoja, vaikka mittauslaite olisi miten

Lisätiedot

= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0.

= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0. HARJOITUS 1, RATKAISUEHDOTUKSET, YLE11 2017. 1. Ratkaise (a.) 2x 2 16x 40 = 0 (b.) 4x 2 2x+2 = 0 (c.) x 2 (1 x 2 )(1+x 2 ) = 0 (d.) lnx a = b. (a.) Toisen asteen yhtälön ratkaisukaavalla: x = ( 16)± (

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 24.1.2011 T-106.1208 Ohjelmoinnin perusteet Y 24.1.2011 1 / 36 Luentopalaute kännykällä alkaa tänään! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti Vast

Lisätiedot

Algoritmit 2. Luento 2 Ke Timo Männikkö

Algoritmit 2. Luento 2 Ke Timo Männikkö Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento

Lisätiedot

Tietorakenteet ja algoritmit - syksy 2015 1

Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä

Lisätiedot

Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa Linkkikeskukset ja auktoriteetit (hubs and authorities) -algoritmi

Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa Linkkikeskukset ja auktoriteetit (hubs and authorities) -algoritmi Kurssin loppuosa Diskreettejä menetelmiä laajojen 0-1 datajoukkojen analyysiin Kattavat joukot ja niiden etsintä tasoittaisella algoritmilla Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa

Lisätiedot

Algoritmit 2. Luento 4 Ke Timo Männikkö

Algoritmit 2. Luento 4 Ke Timo Männikkö Algoritmit 2 Luento 4 Ke 22.3.2017 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2017 Luento 4

Lisätiedot

6.4. Järjestyssuhteet

6.4. Järjestyssuhteet 6.4. Järjestyssuhteet Joukon suhteilla voidaan kuvata myös alkioiden järjestystä tietyn ominaisuuden suhteen. Järjestys on myös kaksipaikkainen suhde (ja on monia erilaisia järjestyksiä). Suhde R joukossa

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 3: Funktiot 4.3 Funktiot Olkoot A ja B joukkoja. Funktio joukosta A joukkoon B on sääntö, joka liittää yksikäsitteisesti määrätyn

Lisätiedot