TKHJ:ssä on yleensä komento create index, jolla taululle voidaan luoda hakemisto
|
|
- Veikko Manninen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Indeksin luonti ja hävitys TKHJ:ssä on yleensä komento create index, jolla taululle voidaan luoda hakemisto Komentoa ei ole standardoitu ja niinpä sen muoto vaihtelee järjestelmäkohtaisesti Indeksi voidaan luoda milloin tahansa taulun luonnin jälkeen siis tyhjälle taululle tai olemassa olevalle taululle jos tauluun ladataan suuri määrä dataa voi olla kannattavaa luoda indeksit vasta latauksen jälkeen saadaan aikaan parempi rakenne eikä jouduta jatkuviin rakenteen tasapainotuksiin Tietueet järjestetään ensin ja lisätään järjestyksessä 1
2 Indeksin luonti ja hävitys Indeksit voidaan myös tiputtaa pois drop index komennolla halutaan uudelleen organisoida indeksi tiputetaan se pois ja luodaan uudelleen suoritetaan iso päivityserä (lisäyksiä/poistoja/indeksointiavaimen muutoksia) on yleensä nopeampaa ja indeksien rakenteen kannalta parempi tiputtaa indeksit ja luoda ne uudelleen erän jälkeen 2
3 Indeksin luonti ja hävitys Pelkästään Create index komennolla voi luoda lähinnä tiheitä oheishakemistoja. Harvat hakemistot edellyttävät lisäksi taulumäärittelyn yhteydessä annettuja lisämääreitä. Harvojen hakemistojen tiputtaminen ja uudelleen perustaminen ei ole yhtä yksinkertaista kuin tiheiden hakemistojen käsittely. 3
4 Dynaamiset hajautusratkaisut Aiemmin käsitelty hajautusrakenne perustui siihen, että tietueelle laskettiin soluosoite hajautusavaimen perusteella. Hajautusfunktio oli kiinteä ja sen arvoalue (osoiteavaruus) piti kiinnittää funktiota määriteltäessä. Tällöin ei välttämättä ole riittävää tietoa siitä, miten hajautusfunktio jakaa tietueet todellisessa käyttötilanteessa eikä välttämättä edes tietoa siitä, miten nopeasti tietueiden määrä kasvaa. Solua laajentavan ylivuotoketjun pituutta ei voida hallita ja ainakin alussa täytyy varata tilaa paljon yli todellisen tarpeen. 4
5 Dynaamiset hajautusratkaisut B+ -puussa hakupolun pituus pidetään hallinnassa puolittamalla sivu ja pitämällä kummatkin puolikkaat samanmittaisen hakupolun päässä. Sivun puolituksen ideaa sovelletaan myös dynaamisissa hajautusrakenteissa. Tunnetuimpia näistä ovat laajeneva hajautus (extendible hashing) ja lineaarinen hajautus (linear hashing) 5
6 Laajeneva hajautus Laajenevassa hajautuksessa on käytössä kiinteä hajautusfunktio h ja sillä kiinteä osoiteavaruus osoiteavaruutta ei kuitenkaan suoraan vastaa mikään tilavaraus, joten se voi olla hyvinkin suuri tilavarauksessa lähdetään liikkeelle pienestä varauksesta ja sitä kasvatetaan tarpeen mukaan Rakenteessa käytetään soluhakemistoa, jonka koko on 2 d soluosoitetta. Eksponentti d ( 1) kasvaa tiedoston kasvaessa. Sitä kutsutaan rakenteen globaaliksi syvyydeksi (global depth). 6
7 Laajeneva hajautus Soluhakemiston koko on siis 2, 4, 8,. solua Olkoon rakenteen globaali syvyys d. Tällöin avaimen k solu (siis soluhakemiston indeksi) saadaan eristämällä hajautusfunktion antaman osoitteen lopusta d bitin pituinen osa tail_bits(h(k),d). Jos d=1 otetaan viimeinen bitti => {0,1} Jos d=2 otetaan 2 viimeistä bittiä => {00,01,10,11} 7
8 Laajeneva hajautus Lisäysten käsittely Jos soluhakemistosta löytyvässä kotilohkossa on tilaa tietue lisätään sinne kuten aiemmin käsitellyssä hajautuksessa Jos kotilohko (olkoon sen solutunnus binäärisenä {b}) on täynnä, otetaan käyttöön uusi lohko ja jaetaan ylivuotavan kotilohkon tietueet kotilohkon ja uuden lohkon välillä kotilohkolla on paikallinen syvyys (local depth) p (monenko bitin perusteella tietueet on sijoitettu lohkoon) 8
9 Laajeneva hajautus Lisäyksen käsittely jatkuu tietueille tehdään uusi sijoittelu ottamalla käyttöön hajauttimen tuottaman osoitteen lopusta päin p+1:s bitti ne tietueet, joilla tämä bitti on 0, jäävät kotilohkoon ja muut siirtyvät (oletetaan, että kaikki eivät menneet samaan lohkoon, näinkin voisi käydäl) kotilohkon ja uuden lohkon paikalliseksi syvyydeksi asetetaan p+1 soluhakemiston alkiot, joiden indeksin p+1 viimeistä bittiä ovat 1{b} asetetaan osoittamaan uuteen lohkoon 9
10 Laajeneva hajautus globaali syvyys lokaali syvyys monenko bitin perusteella sijoitettu lisätään:
11 Laajeneva hajautus globaali syvyys lisätään: täynnä 11
12 Laajeneva hajautus globaali syvyys lisätään: siirretään ne, joilla 2. viimeinen bitti on 1 12
13 Laajeneva hajautus globaali syvyys siirretään ne, joilla 2. viimeinen bitti on 1 vanhan ja uuden paikallinen syvyys 2 vaihdetaan ne soluosoittimet, joiden indeksi loppuu..10 osittamaan uuteen 13
14 Laajeneva hajautus globaali syvyys siirretään ne, joilla 2. viimeinen bitti on 1 vaihdetaan ne soluosoittimet, joiden indeksi loppuu..10 osittamaan uuteen 14
15 Laajeneva hajautus Jos jaettavan kotilohkon paikallinen syvyys on sama kuin rakenteen globaali syvyys, joudutaan tuplaamaan soluhakemiston koko, (jotta voitaisiin kirjata osoite soluun 1{b}) Tuplaus tapahtuu helposti kopioimalla nykyinen soluhakemisto Tuplaus nostaa rakenteen globaalia syvyyttä yhdellä, kotilohkojen syvyydet säilyvät ennallaan 15
16 Laajeneva hajautus Rakenne laajenee sykäyksittäin Jos jakokohtaan osuvissa avaimissa on yhtenäinen bittisekvenssi, voidaan joutua tekemään monta jakoa ennen kuin tietueet saadaan jaettua Jos soluhakemisto kasvaa isoksi eikä sitä voida pitää keskusmuistissa voidaan hakuun tarvita 2 levyhakua jako ja tuplaus voivat edellyttää useita hakuja 16
17 Lineaarinen hajautus Lineaarisessa hajautuksessa (kotimaista alkuperää Per Larsson) ei välttämättä tarvita soluhakemistoa Hajautusaluetta laajennetaan solu kerrallaan jakamalla jakovuorossa olevan solun sisältö solun itsensä ja uuden solun kesken Solut saavat jakovuoronsa järjestyksessä, eikä jaettava solu ole suinkaan välttämättä se jonka kohdalla ylivuoto tapahtuu soluihin voidaan ylivuotavia tietueita varten liittää ylivuotolista 17
18 Lineaarinen hajautus Solun osoitteen määräämiseksi käytössä on sarja hajauttimia h 0,h 1,h 2,... Nämä ovat muotoa h i = h(k) mod (2 i N). h i N voidaan valita kakkosen potenssiksi 2 d, tällöin h i eristäisi d+i bittiä perushajauttimen tuottaman arvon lopusta jos d=5, niin h 0 eristää 5 bittiä, h 1 6 bittiä jne tietueen haussa tarvitaan perushajauttimen lisäksi kahta hajautinta h taso ja h taso+1 18
19 Lineaarinen hajautus Haku laske osoite h taso (h(k)), eli ota d+taso bittiä lopusta jos kyseessä on jakamaton solu, etsi tietuetta solusta. jos kyseessä on jaettu solu muodosta uusi osoite h taso+1 (h(k)), eli ota d+1+taso bittiä lopusta etsi tietuetta saadusta solusta Solu on jakamaton, jos sen indeksi on suurempi tai yhtä suuri kuin jakovuorossa olevan solun indeksi 19
20 Lineaarinen hajautus Olkoon d=1, taso=2, eli h 2 antaa osoitteet 0..7 ja h 3 osoitteet jaettuja jakovuorossa jaon tuloksena syntyneitä seuraavan tason soluja 20
21 Lineaarinen hajautus Lisäyksessä, solmu lisätään haun määräämään lohkoon jos solmu ei mahdu kotilohkoon, se lisätään ylivuotoketjuun. Ylivuoto käynnistää jako-operaation Olkoon jakovuorossa olevan solun taso+d bitistä muodostuva osoite {b} Otetaan käyttöön uusi solu jonka osoite on 1{b} jakovuorossa olevan solun tietueet jaetaan alkuperäisen soluun ja uuden solun kesken käyttäen hajautinta h taso+1 Jos jakovuorossa oli tason viimeinen solu siirtyy jakovuoro soluun 0 ja tasoa kasvatetaan yhdellä, muuten jakovuoro siirtyy seuraavaan soluun. 21
22 Lineaarinen hajautus Olkoon d=1, taso=2, eli h 2 antaa osoitteet 0..7 ja h 3 osoitteet jakovuorossa jaettuja jaon vastaanottajat 22
23 Lineaarinen hajautus Kullakin tasolla jaetaan vuorollaan jokainen tason solu. Kun kaikki on jaettu, on hajautusalue tuplautunut ja siirrytään seuraavalle tasolle. Rakenteessa voi olla pitkiäkin ylivuotoketjuja, mutta ne lyhenevät kun taso kasvaa. 23
Hajautusrakenteet. R&G Chapter Tietokannan hallinta, kevät 2006, Jan 1
Hajautusrakenteet R&G Chapter 11 16.02.06 Tietokannan hallinta, kevät 2006, Jan 1 Hajautukseen perustuvat tiedostorakenteet Hajautukseen perustuvissa tiedostorakenteissa on tavoitteena yksittäisen tietueen
D B. B+ -puun tasapainotus poistossa. B+ -puun tasapainotus poistossa. Poistot. B+ -puun tasapainotus poistossa. B+ -puun tasapainotus poistossa
Poistot Alkuperäisen B+ -puun idean mukaisesti tasapainotusta tehdään myös poistossa 50 Jos datasivun täyttösuhde laskee alle puoleen ja sivun ja sen velisivun (sibling, saman isäsivun alla oleva vierussivu)
Hajautusrakenteet. Hajautukseen perustuvat tiedostorakenteet. Hajautukseen perustuvat tiedostorakenteet. Hajautukseen perustuvat tiedostorakenteet
Hajautusrakenteet R&G Chapter Hajautukseen perustuvissa tiedostorakenteissa on tavoitteena yksittäisen tietueen nopea haku. Tähän pyritään siten, että tietueen sijoituspaikan eli solun (cell, bucket) osoite
Yksitasoisia talletusrakenteita käytetään lähinnä datatietueiden talletukseen
Yksitasoiset talletusrakenteet Yksitasoisia talletusrakenteita käytetään lähinnä datatietueiden talletukseen järjestämätön peräkkäisrakenne (kasa, heap) järjestetty peräkkäisrakenne (sequential file) hajautusrakenne
Helsingin yliopisto/tktl Tietokannan hallinta kevät Harri Laine 1 D B. Yksitasoiset talletusrakenteet
Yksitasoiset talletusrakenteet Yksitasoisia talletusrakenteita käytetään lähinnä datatietueiden talletukseen järjestämätön peräkkäisrakenne (kasa, heap) järjestetty peräkkäisrakenne (sequential file) hajautusrakenne
Helsingin yliopisto/tktl Kyselykielet, s 2006 Tietokantaoperaatioiden toteutuksesta Harri Laine 1. Tiedostorakenteet.
Tiedostorakenteet Tiedostorakenne määrittelee miten tietueet tallennetaan tiedostoon miten tietoja haetaan Tiedostorakenne on yksitasoinen (flat), jos se muodostuu pelkästään datatietueista. Tiedostorakenne
Algoritmit 2. Luento 3 Ti Timo Männikkö
Algoritmit 2 Luento 3 Ti 20.3.2018 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2018 Luento 3 Ti 20.3.2018
Algoritmit 2. Luento 3 Ti Timo Männikkö
Algoritmit 2 Luento 3 Ti 21.3.2017 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2017 Luento 3 Ti 21.3.2017
Algoritmit 2. Luento 4 To Timo Männikkö
Algoritmit 2 Luento 4 To 21.3.2019 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2019 Luento 4
oheishakemistoja voi tiedostoon liittyä useita eri perustein muodostettuja
Tietokantojen hakemistorakenteet Hakemistorakenteiden (indeksien) tarkoituksena on nopeuttaa tietojen hakua tietokannasta. Hakemisto voi olla ylimääräinen oheishakemisto (secondary index), esimerkiksi
B-puu. 3.3 Dynaamiset hakemistorakenteet
Tietokannan hallinta 2 3. Tietokannan hakemistorakenteet 3.3 Dynaamiset hakemistorakenteet Käsitellyt hakemistot (hajautus, ISAM): hakemisto-osa on staattinen eli ei muutu muuten kuin uudelleenorganisoinnissa.
Käsitellyt hakemistot (hajautus, ISAM): hakemisto-osa on staattinen eli ei muutu muuten kuin uudelleenorganisoinnissa.
Tietokannan hallinta 35 3. Tietokannan 3.3 Dynaamiset Käsitellyt hakemistot (hajautus, ISAM): hakemisto-osa on staattinen eli ei muutu muuten kuin uudelleenorganisoinnissa. Ajan mittaan epätasapainoa:
D B. Tietokannan hallinta kertaus
TKHJ:n pääkomponentit metadata TKHJ:ssä Tiedostojen käsittely puskurien rooli tiedostokäsittelyssä levymuistin rakenne ja käsittely mistä tekijöistä hakuaika muodostuu jonotus jos useita samanaikaisia
Tiedostorakenteet. R&G Chapter Tietokannan hallinta, kevät 2006, Jan 1
Tiedostorakenteet R&G Chapter 9 16.02.06 Tietokannan hallinta, kevät 2006, Jan 1 Tiedostorakenteet Tiedostojen tehokkuutta yhtä kyselyä kohti arvioidaan usein tarvittavien levyhakujen määrällä. kuten levykäsittelyn
Algoritmit 2. Luento 4 Ke Timo Männikkö
Algoritmit 2 Luento 4 Ke 22.3.2017 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2017 Luento 4
D B. Harvat hakemistot. Harvat hakemistot
Harvassa hakemistossa on ei ole hakemistomerkintöjä jokaista tietuetta kohden vaan yksi merkintä jotain isompaa kokonaisuutta esimerkiksi sivua tai sivujoukkoa (esim. saman uran sivut) kohti Harvan hakemiston
5. Hajautus. Tarkastellaan edelleen sivulla 161 esitellyn joukkotietotyypin toteuttamista
5. Hajautus Tarkastellaan edelleen sivulla 161 esitellyn joukkotietotyypin toteuttamista Useissa sovelluksissa riittää että operaatiot insert, delete ja search toimivat nopeasti esim. sivun 30 puhelinluetteloesimerkissä
Luento 2: Tiedostot ja tiedon varastointi
HELIA 1 (19) Luento 2: Tiedostot ja tiedon varastointi Muistit... 2 Päämuisti (Primary storage)... 2 Apumuisti (Secondary storage)... 2 Tiedon tallennuksen yksiköitä... 3 Looginen taso... 3 Fyysinen taso...
A274101 TIETORAKENTEET JA ALGORITMIT
A274101 TIETORAKENTEET JA ALGORITMIT HAJAUTUS, JÄRJESTÄMISESTÄ HAJAUTTAMISEN IDEA Jos avaimet (tai data) ovat kokonaislukuja välillä 1 N, voidaan niitä käyttää suoraan indeksointiin Järkevä rakenne on
Hakemistorakenteet. R & G Chapter Tietokannan hallinta, kevät 2006, Jan 1
Hakemistorakenteet R & G Chapter 10 16.02.06 Tietokannan hallinta, kevät 2006, Jan 1 Hakemistotyypeistä Hakemistomerkintä sisältää hakemistoavaimen (indexing key) muodostusperustan määrittelemänä tietueesta
Algoritmit 2. Luento 5 Ti Timo Männikkö
Algoritmit 2 Luento 5 Ti 26.3.2019 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot B-puun muunnelmia Algoritmit 2 Kevät 2019 Luento 5 Ti 26.3.2019 2/34 B-puu B-puut ovat tasapainoisia
Jokaisella tiedostolla on otsake (header), joka sisältää tiedostoon liittyvää hallintatietoa
Tietojen tallennusrakenteet Jokaisella tiedostolla on otsake (header), joka sisältää tiedostoon liittyvää hallintatietoa tiedot tiedostoon kuuluvista lohkoista esim. taulukkona, joka voi muodostua ketjutetuista
Hakemistotyypeistä. Hakemistorakenteet. Hakemiston toteutuksesta. Hakemiston toteutuksesta
Hakemistotyypeistä Hakemistorakenteet R & G Chapter 10 Hakemistomerkintä sisältää hakemistoavaimen (indexing key) muodostusperustan määrittelemänä tietueesta tai tietuejoukosta tuotettu tunnus yleensä
Hajautus. operaatiot insert ja search pyritään tekemään erittäin nopeiksi
Hajautus eräs (osittainen) toteutus joukko-tietotyypille operaatiot insert ja search pyritään tekemään erittäin nopeiksi tärkeä tekniikka käytännön ohjelmoinnissa valmiita toteutuksia on, mutta väärät
v 1 v 2 v 3 v 4 d lapsisolmua d 1 avainta lapsen v i alipuun avaimet k i 1 ja k i k 0 =, k d = Sisäsolmuissa vähint. yksi avain vähint.
Yleiset hakupuut 4 Monitiehakupuu: Binäärihakupuu 0 1 3 5 6 7 8 v k 1 k k 3 v v 3 v 4 k 1 k 3 k 1 k k k 3 d lapsisolmua d 1 avainta Yleinen hakupuu? Tietorakenteet, syksy 007 1 Esimerkki monitiehakupuusta
Tietorakenteet ja algoritmit. Hajautus. Ari Korhonen Tietorakenteet ja algoritmit - syksy
Tietorakenteet ja algoritmit Hajautus Ari Korhonen 10.11.2015 Tietorakenteet ja algoritmit - syksy 2015 1 9 Hajautus 9.1 Yleistä 9.2 Hajautusfunktio 9.3 Erillinen ketjutus 9.4 Avoin osoitus 9.4.1 Lineaarinen
Algoritmit 2. Luento 6 To Timo Männikkö
Algoritmit 2 Luento 6 To 28.3.2019 Timo Männikkö Luento 6 B-puun operaatiot Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2019 Luento 6 To 28.3.2019 2/30 B-puu 40 60 80 130 90 100
Algoritmit 1. Luento 5 Ti Timo Männikkö
Algoritmit 1 Luento 5 Ti 24.1.2017 Timo Männikkö Luento 5 Järjestetty lista Järjestetyn listan operaatiot Listan toteutus taulukolla Binäärihaku Binäärihaun vaativuus Algoritmit 1 Kevät 2017 Luento 5 Ti
D B. Harvat hakemistot
Harvat hakemistot Harvassa hakemistossa on ei ole hakemistomerkintöjä jokaista tietuetta kohden vaan yksi merkintä jotain isompaa kokonaisuutta esimerkiksi sivua tai sivujoukkoa (esim. saman uran sivut)
Algoritmit 2. Luento 7 Ti Timo Männikkö
Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26
Algoritmit 2. Luento 2 To Timo Männikkö
Algoritmit 2 Luento 2 To 14.3.2019 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2019 Luento
Luku 8. Aluekyselyt. 8.1 Summataulukko
Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa
Helsingin yliopisto /TKTL Tietokannan hallinta Harri Laine 1 D B. Harvat hakemistot. Harvat hakemistot
Harvassa hakemistossa on ei ole hakemistomerkintöjä jokaista tietuetta kohden vaan yksi merkintä jotain isompaa kokonaisuutta esimerkiksi sivua tai sivujoukkoa (esim. saman uran sivut) kohti Harvan hakemiston
Tietokannan indeksointi: B puun ja hajautusindeksin tehokkuus
Tietokannan indeksointi: B puun ja hajautusindeksin tehokkuus Tuomas Kortelainen 28.4.2008 Joensuun yliopisto Tietojenkäsittelytiede Pro gradu tutkielma Tiivistelmä Tässä tutkielmassa esitellään tietokannan
A TIETORAKENTEET JA ALGORITMIT
A274105 TIETORAKENTEET JA ALGORITMIT HARJOITUSTEHTÄVÄT 6 DEADLINE 1.4.2009 KLO 9:00 Kynätehtävät tehdään kirjallisesti ja esitetään harjoituksissa. Välivaiheet näkyviin! Ohjelmointitehtävät sähköisesti
Liitosesimerkki Tietokannan hallinta, kevät 2006, J.Li 1
Liitosesimerkki 16.02.06 Tietokannan hallinta, kevät 2006, J.Li 1 Esim R1 R2 yhteinen attribuutti C T(R1) = 10,000 riviä T(R2) = 5,000 riviä S(R1) = S(R2) = 1/10 lohkoa Puskuritilaa = 101 lohkoa 16.02.06
Liitosesimerkki. Esim R1 R2 yhteinen attribuutti C. Vaihtoehdot
Esim yhteinen attribuutti C Liitosesimerkki T() = 10,000 riviä T() = 5,000 riviä S() = S() = 1/10 lohkoa Puskuritilaa = 101 lohkoa 1 2 Vaihtoehdot Sisäkkäiset silmukat Liitosjärjestys:, Liitosalgoritmit:
Algoritmit 2. Luento 5 Ti Timo Männikkö
Algoritmit 2 Luento 5 Ti 28.3.2017 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot Algoritmit 2 Kevät 2017 Luento 5 Ti 28.3.2017 2/29 B-puu Algoritmit 2 Kevät 2017 Luento 5 Ti
Algoritmit 1. Luento 7 Ti Timo Männikkö
Algoritmit 1 Luento 7 Ti 31.1.2017 Timo Männikkö Luento 7 Järjestetty binääripuu Binääripuiden termejä Binääripuiden operaatiot Solmun haku, lisäys, poisto Algoritmit 1 Kevät 2017 Luento 7 Ti 31.1.2017
Algoritmit 2. Demot Timo Männikkö
Algoritmit 2 Demot 2 3.-4.4.2019 Timo Männikkö Tehtävä 1 Avoin osoitteenmuodostus: Hajautustaulukko t (koko m) Erikoisarvot VAPAA ja POISTETTU Hajautusfunktio h(k,i) Operaatiot: lisaa etsi poista Algoritmit
4. Hajautus. Hajautus (hashing) on vaihtoehto tasapainoisille puille dynaamisen joukon toteuttamisessa:
4. Hajautus Hajautus (hashing) on vaihtoehto tasapainoisille puille dynaamisen joukon toteuttamisessa: Search, Insert ja Delete yleensä ajassa O(1) (tasapainoisella puulla O(log n)) pahimmassa tapauksessa
Helsingin yliopisto/tktl Tietokantojen perusteet, s 2006 Tietokantaoperaatioiden toteutuksesta 3. Harri Laine 1
Tietokantojen hakemistorakenteet Hakemistorakenteiden (indeksien) tarkoituksena on nopeuttaa tietojen hakua tietokannasta. Hakemisto voi olla ylimääräinen oheishakemisto (secondary index), esimerkiksi
Algoritmit 2. Luento 6 Ke Timo Männikkö
Algoritmit 2 Luento 6 Ke 29.3.2017 Timo Männikkö Luento 6 B-puun operaatiot B-puun muunnelmia Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2017 Luento 6 Ke 29.3.2017 2/31 B-puu
Algoritmit 1. Luento 9 Ti Timo Männikkö
Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward
HELIA 1 (16) Outi Virkki Tietokantasuunnittelu
HELIA 1 (16) Luento 3.2 Suorituskyvyn optimointi jatkuu...... 2 Tietojen tallennusratkaisut... 2 Tiedon tallennuksen yksiköitä... 3 Loogiset... 3 Fyysiset... 3 Tallennusmäärittelyt Oraclessa... 5 Loogiset
Tietorakenteet, laskuharjoitus 7, ratkaisuja
Tietorakenteet, laskuharjoitus, ratkaisuja. Seuraava kuvasarja näyttää B + -puun muutokset lisäysten jälkeen. Avaimet ja 5 mahtuvat lehtisolmuihin, joten niiden lisäys ei muuta puun rakennetta. Avain 9
2. Tietokannan tallennusrakenteet
Tietokannan hallinta 1 2. Tietokannan tallennusrakenteet 2. Tietokannan tallennusrakenteet 2.1 Levymuisti ja sen käyttö Muistilaitteiden hierarkia: ainakin keskusmuisti levymuisti (+ muita tukimuisteja,
Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}.
Jaetaan ryhmä G = Z 17 n H = 4 sivuluokkiin. Ratkaisu: Koska 17 on alkuluku, #G = 16, alkiona jäännösluokat a, a = 1, 2,..., 16. Määrätään ensin n H alkiot: H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4
Algoritmit 1. Luento 11 Ti Timo Männikkö
Algoritmit 1 Luento 11 Ti 14.2.2017 Timo Männikkö Luento 11 Algoritminen ongelmanratkaisu Osittaminen Lomituslajittelu Lomituslajittelun vaativuus Rekursioyhtälöt Pikalajittelu Algoritmit 1 Kevät 2017
Lineaarinen optimointitehtävä
Lineaarinen optimointitehtävä Minimointitehtävä yhtälörajoittein: min kun n j=1 n j=1 c j x j a ij x j = b i x j 0 j = 1,..., n i = 1,..., m Merkitään: z = alkuperäisen objektifunktion arvo käsiteltävänä
Helsingin yliopisto/tktl Kyselykielet, s 2006 Optimointi Harri Laine 1. Kyselyn optimointi. Kyselyn optimointi
Miksi optimoidaan Relaatiotietokannan kyselyt esitetään käytännössä SQLkielellä. Kieli määrittää halutun tuloksen, ei sitä miten tulos muodostetaan (deklaratiivinen kyselykieli) Tietokannan käsittelyoperaatiot
58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut
Tietorakenteet ja algoritmit (syksy 0) Toinen välikoe, malliratkaisut. (a) Alussa puu näyttää tältä: Lisätään 4: 4 Tasapaino rikkoutuu solmussa. Tehdään kaksoiskierto ensin oikealle solmusta ja sitten
811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 2. Lukujen esittäminen ja aritmetiikka 2.1 Kantajärjestelmät ja lukujen esittäminen Käytettävät lukujoukot: Luonnolliset luvut IN = {0,1,2,3,... } Positiiviset kokonaisluvut
Algoritmit 1. Luento 8 Ke Timo Männikkö
Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin
Algoritmit 1. Luento 4 Ke Timo Männikkö
Algoritmit 1 Luento 4 Ke 18.1.2017 Timo Männikkö Luento 4 Tietorakenteet Pino Pinon toteutus Jono Jonon toteutus Lista Listaoperaatiot Algoritmit 1 Kevät 2017 Luento 4 Ke 18.1.2017 2/29 Pino Pino, stack,
Tietorakenteet, laskuharjoitus 8, malliratkaisut
Tietorakenteet, laskuharjoitus 8, malliratkaisut 1. Seuraavassa on yksi tapa toteuttaa metodit hashcode ja equals: public int hashcode() { return this.x * 31 + this.y; public boolean equals(object o) {
1. a) Laadi suoraviivaisesti kyselyä vastaava optimoimaton kyselypuu.
Helsingin yliopisto, Tietojenkäsittelytieteen laitos Kyselykielet, s 2006, Harjoitus 5 (7.12.2006) Tietokannassa on tietoa tavaroista ja niiden toimittajista: Supplier(sid,sname,city,address,phone,etc);
811312A Tietorakenteet ja algoritmit Kertausta jälkiosasta
811312A Tietorakenteet ja algoritmit 2018-2019 Kertausta jälkiosasta V Hashtaulukot ja binääriset etsintäpuut Hashtaulukot Perusajatus tunnettava Tiedettävä mikä on tiivistefunktio Törmäysongelman hallinta:
Tietorakenteet ja algoritmit - syksy 2015 1
Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä
Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen
Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari 1 1. JOHDANTO 1.1 Määritelmiä 1.2 Tietorakenteen ja algoritmin valinta 1.3 Algoritmit ja tiedon määrä 1.4 Tietorakenteet ja toiminnot 1.5 Esimerkki:
(a) L on listan tunnussolmu, joten se ei voi olla null. Algoritmi lisäämiselle loppuun:
Tietorakenteet ja algoritmit, kevät 201 Kurssikoe 1, ratkaisuja 1. Tehtävästä sai yhden pisteen per kohta. (a) Invariantteja voidaan käyttää algoritmin oikeellisuustodistuksissa Jokin väittämä osoitetaan
D B. Tiedostojen käsittely
Tietokantojen tietoja säilytetään yleensä apumuistissa, lähinnä levymuisteissa Apumuistiin tallentamisen merkittäviä etuja keskusmuistiin nähden ovat tiedon säilyvyys (virtakatkon yli) säilytyskapasiteetin
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 11.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 11.2.2009 1 / 33 Kertausta: listat Tyhjä uusi lista luodaan kirjoittamalla esimerkiksi lampotilat = [] (jolloin
2. Tietokannan tallennusrakenteet
2. Tietokannan tallennusrakenteet - tallennusrakenne = säilytysrakenne 2.1 Levymuisti ja sen käyttö 2.2 Puskurointi 2.3 Tietokannan tiedostorakenne 2.4 Järjestämätön peräkkäistiedosto (kasa) 2.5 Järjestetty
HELIA 1 (15) Outi Virkki Tiedonhallinta
HELIA 1 (15) Luento Suorituskyvyn optimointi... 2 Tiedonhallintajärjestelmän rakenne... 3 Suunnittele... 4 SQL-komentojen viritys... 5 Tekninen ympäristö... 6 Fyysisen tason ratkaisut... 7 Indeksit...
Helsingin yliopisto/tktl Kyselykielet, s 2006 Tietokantaoperaatioiden toteutuksesta Harri Laine 1. Kyselyjen käsittely
Kyselyjen käsittely Kyselyn käsittelyn vaiheet: TKHJ ottaa vastaan kyselyn asiakasohjelmalta Kysely selataan ja jäsennetään tarkistetaan kyselyn rakenteellinen oikeellisuus Jäsennetty kysely muunnetaan
811312A Tietorakenteet ja algoritmit Kertausta jälkiosasta
811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta jälkiosasta IV Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden aikakompleksisuus
Algoritmit 1. Luento 6 Ke Timo Männikkö
Algoritmit 1 Luento 6 Ke 25.1.2017 Timo Männikkö Luento 6 Järjestetty lista Listan toteutus dynaamisesti Linkitetyn listan operaatiot Vaihtoehtoisia listarakenteita Puurakenteet Binääripuu Järjestetty
. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että
4. Joukkojen käsittely
4 Joukkojen käsittely Tämän luvun jälkeen opiskelija osaa soveltaa lomittuvien kasojen operaatioita tuntee lomittuvien kasojen toteutuksen binomi- ja Fibonacci-kasoina sekä näiden totetutusten analyysiperiaatteet
811312A Tietorakenteet ja algoritmit, , Harjoitus 5, Ratkaisu
1312A Tietorakenteet ja algoritmit, 2018-2019, Harjoitus 5, Ratkaisu Harjoituksen aihe ovat hash-taulukot ja binääriset etsintäpuut Tehtävä 5.1 Tallenna avaimet 10,22,31,4,15,28,17 ja 59 hash-taulukkoon,
815338A Ohjelmointikielten periaatteet Harjoitus 3 vastaukset
815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 3 vastaukset Harjoituksen aiheena ovat imperatiivisten kielten muuttujiin liittyvät kysymykset. Tehtävä 1. Määritä muuttujien max_num, lista,
2017 = = = = = = 26 1
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 2, MALLIRATKAISUT Tehtävä 1. Sovella Eukleiden algoritmia ja (i) etsi s.y.t(2017, 753) (ii) etsi kaikki kokonaislukuratkaisut yhtälölle 405x + 141y = 12. Ratkaisu
CUDA. Moniydinohjelmointi 17.4.2012 Mikko Honkonen
CUDA Moniydinohjelmointi 17.4.2012 Mikko Honkonen Yleisesti Compute Unified Device Architecture Ideana GPGPU eli grafiikkaprosessorin käyttö yleiseen laskentaan. Nvidian täysin suljetusti kehittämä. Vuoden
D B. Levykön rakenne. pyöriviä levyjä ura. lohko. Hakuvarsi. sektori. luku-/kirjoituspää
Levyn rakenne Levykössä (disk drive) on useita samankeskisiä levyjä (disk) Levyissä on magneettinen pinta (disk surface) kummallakin puolella levyä Levyllä on osoitettavissa olevia uria (track), muutamasta
Viimeistely Ajourien huomiointi puutiedoissa ja lopullinen kuviointi. Metsätehon tuloskalvosarja 5/2018 LIITE 4 Timo Melkas Kirsi Riekki Metsäteho Oy
Viimeistely Ajourien huomiointi puutiedoissa ja lopullinen kuviointi Metsätehon tuloskalvosarja 5/2018 LIITE 4 Timo Melkas Kirsi Riekki Metsäteho Oy Viimeistely ajourien huomiointi ja lopullinen kuviointi
Algoritmit 2. Luento 13 Ti Timo Männikkö
Algoritmit 2 Luento 13 Ti 30.4.2019 Timo Männikkö Luento 13 Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Ositus ja rekursio Rekursion toteutus Algoritmit 2 Kevät 2019 Luento 13 Ti 30.4.2019
Tietorakenteet, laskuharjoitus 8,
Tietorakenteet, laskuharjoitus 8, 23.-26.3 1. Ohessa on esitetty algoritmit toteuttamaan muutokset ASCII-merkkijonosta kokonaisluvuksi ja kokonaisluvusta ASCII-merkkijonoksi. Esityksessä oletetaan, että
AVL-puut. eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta
AVL-puut eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta pohjana jo esitetyt binäärihakupuiden operaatiot tasapainotus vie pahimmillaan lisäajan lisäys- ja
A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.
Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =
1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.
Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i
Yleistä. Nyt käsitellään vain taulukko (array), joka on saman tyyppisten muuttujien eli alkioiden (element) kokoelma.
2. Taulukot 2.1 Sisältö Yleistä. Esittely ja luominen. Alkioiden käsittely. Kaksiulotteinen taulukko. Taulukko operaation parametrina. Taulukko ja HelloWorld-ohjelma. Taulukko paluuarvona. 2.2 Yleistä
58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut
58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 1. Palautetaan vielä mieleen O-notaation määritelmä. Olkoon f ja g funktioita luonnollisilta luvuilta positiivisille
Tietorakenteet ja algoritmit syksy Laskuharjoitus 1
Tietorakenteet ja algoritmit syksy 2012 Laskuharjoitus 1 1. Tietojenkäsittelijä voi ajatella logaritmia usein seuraavasti: a-kantainen logaritmi log a n kertoo, kuinka monta kertaa luku n pitää jakaa a:lla,
Algoritmit 2. Luento 2 Ke Timo Männikkö
Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento
TIEDONHALLINTA - SYKSY Luento 11. Hannu Markkanen /10/12 Helsinki Metropolia University of Applied Sciences
TIEDONHALLINTA - SYKSY 2011 Kurssikoodi: Saapumisryhmä: Luento 11 TU00AA48-2002 TU10S1E Hannu Markkanen 22.11.2011 9/10/12 Helsinki Metropolia University of Applied Sciences 1 Indeksit Indeksit Taulun
Helsingin yliopisto/tktl Tietokannan hallinta, s Harri Laine 1 D B. Kyselyjen käsittely ja optimointi
Kyselyn käsittelyn vaiheet: TKHJ ottaa vastaan kyselyn asiakasohjelmalta Kysely selataan ja jäsennetään tarkistetaan kyselyn rakenteellinen oikeellisuus Jäsennetty kysely muunnetaan relaatiolausekkeiksi
58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen)
58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen) 1. Avaimet 1, 2, 3 ja 4 mahtuvat samaan lehtisolmuun. Tässä tapauksessa puussa on vain yksi solmu, joka on samaan aikaan juurisolmu
Algoritmit 2. Luento 12 To Timo Männikkö
Algoritmit 2 Luento 12 To 3.5.2018 Timo Männikkö Luento 12 Geneettiset algoritmit Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Algoritmit 2 Kevät 2018 Luento 12 To 3.5.2018 2/35 Algoritmien
Datatähti 2019 loppu
Datatähti 2019 loppu task type time limit memory limit A Summa standard 1.00 s 512 MB B Bittijono standard 1.00 s 512 MB C Auringonlasku standard 1.00 s 512 MB D Binääripuu standard 1.00 s 512 MB E Funktio
Mat Lineaarinen ohjelmointi
Mat-2.3140 Lineaarinen ohjelmointi 4.10.2007 Luento 4 Ekstreemipisteiden optimaalisuus ja Simplex (kirja 2.4-2.6, 3.1-3.2) Lineaarinen ohjelmointi - Syksy 2007 / 1 Luentorunko Degeneroituvuus Ekstreemipisteiden
ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012
ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,
Kirjoita ohjelma jossa luetaan kokonaislukuja taulukkoon (saat itse päättää taulun koon, kunhan koko on vähintään 10)
Tehtävä 40. Kirjoita ohjelma, jossa luetaan 20 lukua, joiden arvot ovat välillä 10 100. Kun taulukko on täytetty, ohjelma tulostaa vain ne taulukon arvot, jotka esiintyvät taulukossa vain kerran. Tehtävä
Kyselyiden käsittely. R & G Chapter Tietokannan hallinta, kevät 2006, Jan 1
Kyselyiden käsittely R & G Chapter 12 15 16.02.06 Tietokannan hallinta, kevät 2006, Jan 1 Kyselyjen käsittely ja optimointi Kyselyn käsittelyn vaiheet: TKHJ ottaa vastaan kyselyn asiakasohjelmalta Kysely
A274101 TIETORAKENTEET JA ALGORITMIT
A274101 TIETORAKENTEET JA ALGORITMIT PUURAKENTEET, BINÄÄRIPUU, TASAPAINOTETUT PUUT MIKÄ ON PUUTIETORAKENNE? Esim. Viereinen kuva esittää erästä puuta. Tietojenkäsittelytieteessä puut kasvavat alaspäin.
Laskuharjoitus 9, tehtävä 6
Aalto-yliopiston perustieteiden korkeakoulu Jouni Pousi Systeemianalyysin laboratorio Mat-2.4129 Systeemien identifiointi Laskuharjoitus 9, tehtävä 6 Tämä ohje sisältää vaihtoehtoisen tavan laskuharjoituksen
D B. Kyselyjen käsittely ja optimointi. Kyselyn käsittelyn vaiheet:
Kyselyjen käsittely ja optimointi Kyselyn käsittelyn vaiheet: TKHJ ottaa vastaan kyselyn asiakasohjelmalta Kysely selataan ja jäsennetään tarkistetaan kyselyn rakenteellinen oikeellisuus Jäsennetty kysely
811312A Tietorakenteet ja algoritmit, , Harjoitus 5, Ratkaisu
1312A Tietorakenteet ja algoritmit, 2016-2017, Harjoitus 5, Ratkaisu Harjoituksen aihe ovat hash-taulukot ja binääriset etsintäpuut Tehtävä 5.1 Tallenna avaimet 10,22,31,4,15,28,17 ja 59 hash-taulukkoon,
Viikon aiheet. Funktion lineaarinen approksimointi
Viikon aiheet Funktion ääriarvot Funktion lineaarinen approksimointi Vektorit, merkintätavat, pituus, yksikkövektori, skalaarilla kertominen, kanta ja kannan vaihto Funktion ääriarvot 6 Väliarvolause Implisiittinen
Kierros 5: Hajautus. Tommi Junttila. Aalto University School of Science Department of Computer Science
Kierros 5: Hajautus Tommi Junttila Aalto University School of Science Department of Computer Science CS-A1140 Data Structures and Algorithms Autumn 017 Tommi Junttila (Aalto University) Kierros 5 CS-A1140