a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.



Samankaltaiset tiedostot
Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Integrointi ja sovellukset

Differentiaalilaskennan tehtäviä

x n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x

Pyramidi 10 Integraalilaskenta harjoituskokeiden ratkaisut sivu 298 Päivitetty

Differentiaalilaskenta 1.

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) = = 21 tosi

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

Integroimistekniikkaa Integraalifunktio

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

l 1 2l + 1, c) 100 l=0

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun.

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1

= 9 = 3 2 = 2( ) = = 2

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a)

Talousmatematiikan perusteet: Luento 16. Integraalin käsite Integraalifunktio Integrointisääntöjä

MAA10 HARJOITUSTEN RATKAISUJA

H5 Malliratkaisut - Tehtävä 1

Juuri 2 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Matematiikan tukikurssi

3 Määrätty integraali

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Differentiaali- ja integraalilaskenta

cos x cos 2x dx a) symbolisesti, b) numeerisesti. Piirrä integroitavan funktion kuvaaja. Mikä itse asiassa on integraalin arvo?

Funktio 1. a) Mikä on funktion f (x) = x lähtöjoukko eli määrittelyjoukko, kun 0 x 5?

6. Toisen ja korkeamman kertaluvun lineaariset

* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat

MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)

Derivaatan sovellukset (ääriarvotehtävät ym.)

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

Johdantoa INTEGRAALILASKENTA, MAA9

derivaatta pisteessä (YOS11) a) Näytä, että a n+1 > a n, kun n = 1, 2, 3,.

π( f (x)) 2 dx π(x 2 + 1) 2 dx π(x 4 + 2x 2 + 1)dx ) = 1016π 15

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT:

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta

KERTAUSHARJOITUKSIA. 1. Rationaalifunktio a) ( ) 2 ( ) Vastaus: a) = = 267. a) a b) a. Vastaus: a) a a a a 268.

Hyvä uusi opiskelija!

Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3

A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /

2 Funktion derivaatta

2 Funktion derivaatta

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M)

4 Yleinen potenssifunktio ja polynomifunktio

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

Matematiikan perusteet taloustieteilij oille I

MATP153 Approbatur 1B Harjoitus 5 Maanantai

Funktion derivoituvuus pisteessä

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo Ratkaisut ja pisteytysohjeet

Preliminäärikoe Pitkä Matematiikka

MAT Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ

Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.

integraali Integraalifunktio Kaavoja Integroimiskeinoja Aiheet Linkkejä Integraalifunktio Kaavoja Integroimiskeinoja Määrätty integraali

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1.

Pisteessä (1,2,0) osittaisderivaatoilla on arvot 4,1 ja 1. Täten f(1, 2, 0) = 4i + j + k. b) Mihin suuntaan pallo lähtee vierimään kohdasta

x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1

(b) = x cos x 1 ( cos x)dx. = x cos x + cos xdx. = sin x x cos x + C, C R.

Matematiikan peruskurssi 2

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

f(x) f(y) x y f f(x) f(y) (x) = lim

Matematiikan tukikurssi

Yleisiä integroimissääntöjä

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

b) Määritä/Laske (ei tarvitse tehdä määritelmän kautta). (2p)

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

Tekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a)

Numeeriset menetelmät Pekka Vienonen

Mapu I Laskuharjoitus 2, tehtävä 1. Derivoidaan molemmat puolet, aloitetaan vasemmasta puolesta. Muistetaan että:

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista.

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ

sin x cos x cos x = sin x arvoilla x ] π

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

3. Reaalifunktioiden määräämätön integraali

dy dx = y x + 1 dy dx = u+xdu dx, u = y/x, u+x du dx = u+ 1 sinu eli du dx = 1 1 Erotetaan muuttujat ja integroidaan puolittain: y = xln(ln(cx 2 )).

Oletetaan sitten, että γ(i) = η(j). Koska γ ja η ovat Jordan-polku, ne ovat jatkuvia injektiivisiä kuvauksia kompaktilta joukolta, ja määrittävät

MAA10 HARJOITUSTEHTÄVIÄ

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

H7 Malliratkaisut - Tehtävä 1

Mapu 1. Laskuharjoitus 3, Tehtävä 1

Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa

Reaalilukuvälit, leikkaus ja unioni (1/2)

B. 2 E. en tiedä C ovat luonnollisia lukuja?

Transkriptio:

Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin määritelmä atkaisu: a) eaalifunktion f integraalifunktioksi sanotaan jokaista funktiota F, jonka derivaatta on f. Koska f (x) on jokaisen funktion F(x) +C derivaatta (missä C on vakio), ei integraalifunktio ole yksikäsitteinen. Saman funktion integraalifunktiot voivat siis erota toisistaan vakiolla. Esimerkiksi funktion f (x) = x derivaatta on f (x) = x. Funktion f (x) mikä tahansa integraalifunktio F(x) = x +C, siis esimerkiksi f (x) = x +. b) Määrätty integraali tietyllä välillä tarkoitta funktion ja akselin tai kahden funktion väliin jäävän alueen pinta-alaa kyseisellä välillä. Esimerkiksi funktion f (x) = x + 4 ja x- akselin väliin jäävän alueen pinta-ala välillä [, ] on / ( x + 4)dx = ( x + 4x) = 8 + 4 = 6 =.. Ovatko alla olevat väittämät tosia? Perustele tai anna vastaesimerkki. a) Jos F on jokin funktion f integraalifunktio, niin kaikki f :n integraalifunktiot ovat muotoa F +C, jossa C on vakio. b) Jokaisella jatkuvalla funktiolla on integraalifunktio. { c) Paloittaisella funktiolla h(x) = x, kun x <, kun x on integraalifunktio, joka on määritelty kaikilla reaaliluvuilla. d) Jos funktio f on derivoituva, se ei ole integroituva. e) Funktion ja x-akselin väliin jäävän alueen pinta-ala välillä [a,b] saadaan kaavalla b f (x)dx, kun f (x) välillä [a, b]. a f) Funktiolla f (x) on ainakin kaksi nollakohtaa välillä [a, b], kun käyrän ja x-akselin välisen alueen ala A = c f (x)dx d f (x)dx + b f (x)dx. a c d

g) Analyysin peruslauseen mukaan b f (x)dx = Vihje: funktion f jokin integraalifunktio. * Integraalifunktion käsite a / b * Määrätyn integraalin ja integraalifunktion yhteys Vastaus: a) tosi b) tosi c) epätosi d) epätosi e) tosi f) tosi g) epätosi atkaisu: a) Tosi. b) Tosi. a F(x) = F(a) F(b), kun F on jatkuvan c) Epätosi. Epäjatkuvuuskohdassa funktiolla ei ole integraalifunktiota, koska integroimalla erikseen{ funktion h lausekkeet saadaan x +C, kun x < H(x) = x +C, kun x Jatkuvuusehto antaa yhtälön +C = +C C = +C = 4 +C Tällöin { x 4 H(x) = +C, kun x < x +C, kun x Huomataan, että H (x) = h(x), kun x. Koska lim x H (x) = lim x h(x) = ja lim x + H (x) = lim x + h(x) =, ei H() ole olemassa. Se merkitsee, että funktiolla h ei ole integraalifunktiota, joka olisi määritelty kaikilla reaaliluvuilla. d) Epätosi. Väittämä ei ole tosi, mikä voidaan todistaa vastaesimerkin avulla: funktio f (x) = x + on derivoituva ja sen derivaatta on f (x) = x +. Funktio on myös integroituva. Sen integraalifunktio on F(x) = x4 4 + x +C.

e) Tosi. f) Tosi. g) Analyysin peruslauseen mukaan b funktion f jokin integraalifunktio. a f (x)dx = b F(x) = F(b) F(a), kun F on jatkuvan a. Integroi a) (x + x + )dx b) ( + x x4 )dx c) x dx Vihje: * Suoria integrointikaavoja I * Suoria integrointikaavoja II * Osittaisintegrointi Vastaus: a) (x + x + )dx = x + x + x +C b) ( + x x4 )dx = x + 7 x x5 +C c) x dx = 6 x +C atkaisu: a) (x + x + )dx = x + x + x +C b) ( + x x4 )dx = x + 7 x x5 +C c) x dx = 6 x +C 4. Integroi a) ( x 5 + e+x )dx b) ( 4cos(x) ) dx c) (7 7 u + u 7 6 7 u )du

d) (t t) dt = 7 t t +C e) ( tan(r) + sin(r) ) dr Vastaus: a) ( x 5 + e+x )dx = ln x 5x + e+x +C b) ( 4cos(x) ) dx = 4 sin(x) +C c) (7 7 u + u 7 6 7 u )du = 7( 7 u 8 + 7 u 6 ) +C d) (t t) dt = 7 t t +C e) ( tan(r) + sin(r) ) dr = ln cos(r) cos(r) +C atkaisu: a) ( x 5 + e+x )dx = ln x 5x + e+x +C b) ( 4cos(x) ) dx = 4 sin(x) +C c) (7 7 u + u 7 6 7 u )du = 7( 7 u 8 + 7 u 6 ) +C d) (t t) dt = t 7 7 = 7 t t +C e) ( tan(r) + sin(r) ) dr = ln cos(r) cos(r) +C 5. Osoita, että funktio F : F(x) = x + on funktion f : f (x) = x eräs integraalifunktio. x + Vihje: Derivaatta on integraalin käänteinen toimenpide. atkaisu: Jos funktio F(x) on funtion f (x) eräs integraalifuntio, F (x) = f (x). Saadaan F (x) = (x + ) x = x = x = f (x). x + x + F(x) on siis eräs funktion f (x) integraalifunktio. 6. a) Määritä funktion f : f (x) = x se integraalifunktio F, jonka kuvaaja kulkee pisteen (,) kautta. b) Määritä se funktion f : f (x) = x + integraalifunktio F, jonka kuvaaja sivuaa suoraa y = x +.

Vastaus: a) F(x) = x x + b) F(x) = x + x + atkaisu: a) Integroidaan funktio: F(x) = (x )dx = x x +C. Vakion C arvo saadaan sijoittamalla piste (,): F() = +C = C = F(x) = x x +. b) Integroidan funktio: F(x) = (x + )dx = x + x +C = x + x +C. atkaistaan suoran ja integraalin yhteinen piste. Muodostetaan yhtälö x + x +C = x + x + 4x + ( +C) = x = 4± 6 4 (+C). Jotta suoralla ja integraalifunktiolla olisi vain yksi yhteinen piste, on diskriminantin oltava nolla. D = 6 4 ( +C) = 6 4C = 4C = 4 C = F(x) = x + x + 7. Tutki, onko yhtälö tosi. a) (5x + ) dx = (5x + )4 +C b) 4x + dx = (4x + ) +C c) cos(x)dx = sin(x) +C d) sin( π 4 x)dx = cos( π 4 x) +C e) e x dx = ln e x +C Vihje: * Sijoitusmenettely

Vastaus: a) tosi b) epätosi c) tosi d) tosi e) epätosi atkaisu: a) Tosi. Käytetään sijoituskeinoa: 5x + = t 5dx = dt 5 (5x + ) dx = t 5 dt = 5 t4 4 +C = (5x + )4 +C b) Epätosi. Käytetään sijoituskeinoa: 4x + = t 4dx = dt 4 4x + dx = t dt 4 = 4 t +C = 6 t +C = 6 (4x + ) +C c) Tosi. Käytetään sijoituskeinoa: x = t cos(x)dx = cos(t) dt = sin(t) +C = sin(x) +C d) Tosi. Käytetään sijoituskeinoa: π x = t dx = dt sin( π 4 x)dx = sin(t) dt = ( cos(t)) +C = cos(t) +C = cos( π 4 x) +C e) Epätosi. Saadaan e x dx = x e π +C 8. Tutki, onko yhtälö tosi.

a) dx x+ = ln x + +C b) x(x + ) dx = 8 (x + ) 4 +C c) x (x ) dx = (x ) +C d) xe x dx = e x +C Vastaus: a) epätosi b) tosi c) epätosi d) tosi atkaisu: a) Epätosi. Käytetään sijoituskeinoa: x + = t dx x+ = dt t = ln t +C b) Tosi. Käytetään sijoituskeinoa: x + = t xdx = dt x x(x + ) dx = t dt = 8 t4 +C = 8 (x + ) 4 +C c) Epätosi. Käytetään sijoituskeinoa: x = t x dx = dt x x (x ) dx = t dt = t4 +C = (x ) 4 +C d) Tosi. Käytetään sijoituskeinoa: x = t xdx = dt x xe x dx = e t dt = et +C = e x +C

9. Integroi a) sin(x)cos(x)dx b) ( sin(x) ) cos(x)dx c) dx xlnx d) e x e x + dx Vastaus: ( ) sin(x) a) sin(x)cos(x)dx = +C b) ( sin(x) ) ( ) sin(x) cos(x)dx = +C c) dx xlnx = ln lnx +C d) e x e x + dx = ln(ex + ) +C atkaisu: a) Käytetään sijoituskeinoa: sin(x) = t cos(x)dx = dt dx = dt cos(x) sin(x)cos(x)dx = t dt = t ( +C = ) sin(x) +C b) Käytetään sijoituskeinoa, ks. tehtävä 9 a) ( sin(x) ) cos(x)dx = t dt = t ( +C = ) sin(x) +C c) Käytetään sijoituskeinoa: ln(x) = t x dx = dt dx = xdt dx xlnx = dt t = ln(t) +C = ln ( ln(x) ) +C

d) Käytetään sijoituskeinoa: e x + = t e x dx = dt e x e x e x + dx = dt t = ln t +C = ln e x + +C = ln(e x + ) +C. Integroi a) ( sin(x) ) dx b) x x+ dx c) x x x+ dx Vastaus: a) ( sin(x) ) dx = x 4 sin(x) +C b) x x+ c) x x x+ atkaisu: dx = x + 5ln x + +C dx = (x+) (x + )x + x + +C a) ( sin(x) ) dx = ( cos(x)) dx = x cos(x)dx Käytetään sijoituskeinoa: x = t x cos(x)dx = x cos(t)dt = x 4 sin(t) +C = x 4 sin(x) +C b) Käytetään sijoituskeinoa: x + = t x = t x x+ dx = (t ) t dt = 5 t dt = t 5ln t +C = x + 5ln x + +C c) Käytetään sijoituskeinoa, ks. tehtävä b) x x x+ dx = (t ) (t ) t dt = t t +t t dt = (t t + )dt = t t +t +C = (x+) (x + )x + x + +C

. a) Olkoon F funktion f : f (x) = x se integraalifunktio, jolle F() =. Laske F(). b) f (x) = x + x ja f () =. Määritä funktio f. Vihje: Integraalifunktion F:n tulee olla jatkuva. Vastaus: { x x + 7, x a) F(x) = x + x +, x < F() = 9 6 + 7 = 5 x + x 7, x b) f (x) = x 7, < x < x x,x atkaisu: a) Integroidaan funktio { x, x f (x) = x = x +, x < Saadaan{ x x +C, x F(x) = x + x +C,x <. F:n tulee olla jatkuva kohdassa x =. Sijoitetaan x = yhtälöparin lausekkeisiin ja lasketaan vakio C : 4 +C = + 4 +C C = 4 +C. Integraalifunktioksi { saadaan x x +C, x F(x) = x + x 4 +C, x < Ehdon F() = + 4 +C = C = 7 avulla integraalifunktioksi saadaan { x x + 7, x F(x) = x + x +,x < Lisäksi F() = 9 6 + 7 = 5 { x + x +C, x b) f (x) = x +C, x < x < x x +C, x

f (x):n tulee olla jatkuva rajakohdissa, jolloin C = C ja 4 +C = C. (ks.edellinen) { x + x +C, x f (x) = x +C, x < x < x x + 4 +C, x f () = + 4 +C = C = 7 { x + x 7, x f (x) = x 7, x < x < x x, x. Laske a) b) c) d) (x ) dx 9 xdx t x+4 dx cos(t y)dy ( e) (x +t) dt ) dx Vastaus: a) b) 6 c) ( ) d) sin(t) e) 8 atkaisu: a) (x ) dx = (4x x + 9)dx / 4x = 6x + 9x = 4 + 8 ( 4 6 9) =

b) Käytetään sijoituskeinoa: 9 x = t dx = dt 9 xdx = = = = / / t dt t t 9 / 9 (9 x) = 9 (9 ) ( 9 (9 ) ) = 6 c) Käytetään sijoituskeinoa: x 4 = t Integroidaan sivussa: x+4 dx = t dt = t +C = t +C = x + 4 +C = / x + 4 ( ) + 4 ( ) + 4 = ( ) d) Käytetään sijoituskeinoa: t y = h dy = dh dy = dh Integroidaan sivussa: cos(t y)dy = cos(h) dh = sin(h) +C = sin(t y) +C / t sin(t y) = sin(t t) + sin(t) = sin(t) e) ( (x +t) dt ) dx = ( (t + 4xt + 4x ) dt)dx

= / t ( + xt + 4x t)dx = ( + x + 4x )dx / = ( x + x + 4x ) = + 4 + = 8. (*) atkaise kaksoisepäyhtälö < x Vastaus: < x < 9 t dt < ln, kun x >. t + atkaisu: Integroidaan itse funktio. Käytetään sijoituskeinoa: t + = h t dt = dh dt = dh t Integroidaan sivussa: t t + dt = t h dh t = dh h = ln h +C = ln t + +C = ln(t + ) +C x / x t t + dt = ln(t + ) = ln(x + ) ln() = ln( x + ) < ln( x + ) < ln, kun x > ln < ln( x + ) < ln < x + < < x + < < x < 9 < x < 9, kun x > 4. (*) Laske ( x + + x )dx. Vihje: Lausekkeen itseisarvot jakavat tarkastelun eri väleihin. Vastaus: 4 atkaisu: ( x + + x ) dx = ((x + ) + x )dx = (x + + x)dx + (x + + x )dx = (x x + )dx + (x + x)dx

/ / = ( x x + x)dx + ( x + x ) = + ( 8 4 4) + 8 + 4 ( + ) = 4 5. (*) Määritä funktion f (x) = Vihje: * Tarkastele lausekkeen arvoa muuttujan x eri väleillä. * Pienimmän arvon voi tulkita esimerkiksi kuvaajasta. Vastaus: Pienin arvo on f () =. x t dt pienin arvo. Piirrä funktion f kuvaaja. atkaisu: Integroitaessa tarkastellaan funktiota eri x:n arvoilla. Saadaan kolme tapausta: ) x : f (x) = ( x +t)dt = ) x : f (x) = (x t)dt = / / (t xt) = 4 x = x (xt t ) = x ) < x < : f (x) = x (x t)dt + (t x)dt = x ) = x x + x / x (xt t ) + / x (t xt) = x x x + ( x Kuvaajasta tarkastelemalla nähdään, että funktio saavuttaa pienimmän arvonsa välillä < x <. Pienin arvo löytyy tämän välin derivaatan nollakohdasta: f (x) = x = x = x =. 4-4 - - - 4 - - - -4

Pienin arvo on siis f () =. 6. (*) Sievennä f (x) = x x + 4, x Vastaus: f (x) = x 4, x 6 4 x x + 4, < x < 6 t dt. Piirrä funktion f kuvaaja. atkaisu: Tarkastellaan funktiota eri x:n arvoilla. Saadaan kolme tapausta: ) x x : f (x) = / ( x +t)dt = xt ( + t ) = x + 4 ) x x 6: f (x) = / ( x t)dt = ( xt t ) = x 4 ) < x < < x < 6: f (x) = x ( x t)dt + x ( x +t)dt = / x ( xt t ) + / x ( xt + t ) = x 4 x 8 + 4 x x ( 4 + x 8 ) = 4 x x + 4 x + 4, x f (x) = x 4, x 6 4 x x + 4, < x < 6 7.5 5.5 - -7.5-5 -.5.5 5 7.5 -.5-5 -7.5-7. a) Laske käyrän y = x, x-akselin sekä suorien x = pinta-ala. ja x = rajoittaman alueen

b) Määritä käyrän y = x x, x-akselin ja suoran x = rajoittaman, kaksiosaisen alueen pinta-ala. c) Laske käyrien y = 4 x +, y = x +, x = ja x = rajoittaman alueen pinta-ala. Vihje: * Määrätyn integraalin laskusäännöt * Esimerkkejä määrätyn integraalin laskemisesta Vastaus: a) A = 7 8 b) A = c) A = atkaisu: a) 4-4 - - - 4 - - - -4

Kuvaajasta nähdään, että kyseinen alue on x-akselin alapuolella, joten määrätyn integraalin kaava antaa negatiivisen arvon. Ala saadaan laskemalla funktion y = x määrätty integraali välillä [,]. A = ( x )dx = / ( x x) = ( 8 + ) = 4 8 4 4 4 4 = 7 8 b) 4-4 - - - 4 - - - -4 Kuvaajasta nähdään, että välillä [, ] alue on x-akselin alapuolella, joten määrätyn integraalin kaava antaa negatiivisen arvon. Välillä [, ] alue taas on x-akselin yläpuolella, jolloin määrätyn integraalin kaavasta saatu arvo on positiivinen. Kokonaispinta-ala saadaan laskemalla yhteen näiden kahden alueen alat. A = (x x)dx / = ( x x ) = = 6 A = (x x)dx / = ( x x ) = 8 4 + = 5 6 A = A + A = 6 + 5 6 = c)

4-4 - - - 4 - - - -4 Koska funktio y = x + rajaa aluetta yläpuolelta ja funktio y = 4 x + alapuolelta saadaan alueen pinta-ala integroimalla funktioiden erotus välillä [,]: A = ( x + ( 4 x + ))dx = ( 4 x + x + )dx / = ( x + x 4 + x) = 8 + + =. 8. Määritä käyrän y = x x 4 rajaaman kuvion pinta-ala. Vihje: * Hyödynnä kuvion symmetriaa pinta-alan laskemisessa. * Huomaa reaalisuusehto Vastaus: A = atkaisu:.5.5 - -.5 - -.5.5.5 -.5 - -.5 - Saadaan y = x x 4 y = ± x ( x ). Koska pinta-ala on symmetrinen x-akselin suhteen, riittää, että lasketaan x-akselin yläpuolella olevan alueen pinta-ala ja kerrotaan se kahdella. Myös akselin yläpuolella olevan alueen ala koostuu kahdesta keskenään symmetrisestä osiosta, joista vain toisen ala on syytä laskea.

Tarkastellaan funktiota y = x ( x ). Lasketaan funktion nollakohdat: x ( x ) = x = x = x = x = ±. Saadaan reaalisuusehto: x ( x ) x tai x x tai x ±. Merkkikaaviosta nähdään, että funktion reaalisuusehto täyttyy välillä [, ]. Merkitään x-akselin yläpuolelle jäävän alueen pinta-alaa välillä [,] A : A = ( x ( x ) ) dx = (x x )dx. Integroidaan sivussa ja käytetään sijoituskeinoa: x = t xdx = dt x x x dx = x t x dt = t dt = t +C = ( x ) +C A = (x x )dx = / ( ( x ) ) = ( ) + ( ) = Saadaan kokonaisala A = 4 A =. 9. Käyrän y = x pisteiden (,) ja (,) välinen kaari pyörähtää a) x-akselin ja b) y-akselin ympäri. Laske muodostuvan pyörähdyskappaleen tilavuus. Vihje: * Pyörähdyspinnan ala Vastaus: a) 8 5 π b) 7 π atkaisu:

.5.5 - -.5 - -.5.5.5 -.5 - -.5 - a) Pyörähdyskappaleen tilavuus saadaan integroimalla x-akselin suhteen välillä [,] kaavan V = π b a f (x) dx avulla: V = π (x ) dx = π (x 4 x + )dx / = π ( x5 5 x + x = π( 5 6 + ) π( 5 + ) = 5 8 π. b) Muunnetaan funktio muotoon x = y +. Pyörähdyskappaleen tilavuus saadaan integroimalla y-akselin suhteen välillä [,] kaavan V = π b f (x) dx avulla: a V = π ( y + ) dy = π (y + )dy / = π ( y + y = π( 9 + ) π( + ) = 7 π.. Funktioiden f (x) = x ja g(x) = + x kuvaajien väliin jäävä alue välillä [,] pyörähtää x-akselin ympäri. Laske syntyvän kappaleen tilavuus. Vastaus: 49 7 atkaisu:

.5.5 - -.5 - -.5.5.5 -.5 - -.5 - Syntyvän pyärähdyskappaleen tilavuus saadaan onton pyörähdyskappaleen tilavuuden kaavalla: V = π ( + x ) x dx = π 4 + x4 dx = π ( 4 + x4 )dx = π / 4 x + x5 5 5 + 4 ) = π( 4 = 49 7 π.