Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia

Samankaltaiset tiedostot
Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike

Luento 5: Käyräviivainen liike

Luento 5: Käyräviivainen liike

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Ei-inertiaaliset koordinaatistot

ELEC C4140 Kenttäteoria (syksy 2015)

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

DYNAMIIKKA II, LUENTO 2 (SYKSY 2015) Arttu Polojärvi

ELEC-A3110 Mekaniikka (5 op)

Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

8 Suhteellinen liike (Relative motion)

DYNAMIIKKA II, LUENTO 4 (SYKSY 2015) Arttu Polojärvi

Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 2016

Suhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää

Mekaniikan jatkokurssi Fys102

kertausta Esimerkki I

Mekaniikan jatkokurssi Fys102

Luento 7: Pyörimisliikkeen dynamiikkaa

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali.

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

ELEC-A3110 Mekaniikka (5 op)

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten)

ELEC-A3110 Mekaniikka (5 op)

Fysiikka ei kerro lopullisia totuuksia. Jokin uusi havainto voi vaatia muuttamaan teorioita.

Luento 7: Pyörimisliikkeen dynamiikkaa

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

4 Kaksi- ja kolmiulotteinen liike

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

ELEC C4140 Kenttäteoria (syksy 2016)

Viikon aiheet. Funktion lineaarinen approksimointi

Luento 10: Työ, energia ja teho

A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1

Mekaniikka, osa 2. Perttu Lantto. Luentokalvot

ELEC C4140 Kenttäteoria (syksy 2016)

6 PISTETULON JA RISTITULON SOVELLUKSIA. 6.1 Pyörivistä kappaleista. Vaasan yliopiston julkaisuja Voiman momentti akselin suhteen avaruudessa

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4

Nopeus, kiihtyvyys ja liikemäärä Vektorit

Luento 10: Keskeisvoimat ja gravitaatio

MEI Kontinuumimekaniikka

(ks. kuva) ja sen jälkeen x:n ja y:n suhteen yli xy-tasossa olevan alueen projektion G:

Luento 7: Voima ja Liikemäärä. Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause

kaikki ( r, θ )-avaruuden pisteet (0, θ ) - oli θ

Luento 6: Liikemäärä ja impulssi

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

edition). Luennot seuraavat tätä kirjaa, mutta eivät orjallisesti.

DYNAMIIKKA II, LUENTO 6 (SYKSY 2015) Arttu Polojärvi

Luento 12: Keskeisvoimat ja gravitaatio. Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä

Luennoitsija: Jukka Maalampi Luennot: , ma 9-10 ja ke Luentoja ei ole viikoilla 15 (pääsiäisviikko).

Luento 9: Pyörimisliikkeen dynamiikkaa

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

4. Käyrän lokaaleja ominaisuuksia

Erityinen suhteellisuusteoria (Harris luku 2)

Liike pyörivällä maapallolla

Nyt kerrataan! Lukion FYS5-kurssi

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017

DYNAMIIKKA II, LUENTO 3 (SYKSY 2015) Arttu Polojärvi

Vektoriarvoiset funktiot Vektoriarvoisen funktion jatkuvuus ja derivoituvuus

( ds ) A (2) ψ ξ dv + ψ 2 ξ dv = ψ 2 ξ ξ 2 ψ ) V

ELEC C4140 Kenttäteoria (syksy 2015)

Liikkuvan varauksen kenttä

Hitaustensori. Inertiaalikoordinaatisto {x} Kappaleen (mahd. ei-inertiaalinen) lepokoordinaatisto {y} )2 x = 1 2 T = 1.

Esim. Liikkuvan kappaleen radiusvektori. on ajan funktio, missä komponentit x, y ja z riippuvat yhdestä muuttujasta, ajasta t.

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!

Liikkuvan varauksen kenttä

5.9 Voiman momentti (moment of force, torque)

Luento 7: Voima ja Liikemäärä

Luento 8: Liikemäärä ja impulssi. Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä

Luento 5: Voima ja Liikemäärä

Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 2010 PARTIKKELI. Suoraviivainen liike

ELEC C4140 Kenttäteoria (syksy 2016)

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitusviikkoon 5 /

:37:37 1/50 luentokalvot_05_combined.pdf (#38)

Moderni fysiikka. Syyslukukausi 2008 Jukka Maalampi

ELEC C4140 Kenttäteoria (syksy 2016)

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 4: Taso- ja avaruuskäyrät

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa

Vektorilaskenta, tentti

Täydennetään ja kerrataan Fitzpatrickin lukujen 18 ja 19 esitystä.

Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 2017

Gaussin lause eli divergenssilause 1

Transkriptio:

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 1 / 31

Luennon sisältö Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 2 / 31

Suhteellinen liike Nopeusmittauksista suhteellinen nopeus (relative speed) = nopeus suhteessa johonkin koordinaatistoon (frame of reference) Tarkastellaan suoraviivaista liikettä Kaksi havaitsijaa A ja B, jotka liikkuvat toistensa suhteen nopeudella v AB Havaitsijoiden koordinaatistojen origot pisteissä O ja O Paikkavektori pisteeseen P havaitsijasta A on r = OP ja havaitsijasta B on r = O P, jolloin r = r + r AB, missä r AB on vektori, joka osoittaa A:sta B:hen Oletetaan, että havaitsija B ei ole kiihtyvässä liikkeessä A:han nähden

Galilein koordinaatistomuunnos Derivoidaan ajan suhteen d r = d r + d r AB Derivoimalla uudestaan ajan suhteen saadaan d v = v = v + v AB, = a = a Jos valitaan A ja B samaan pisteeseen ajanhetkellä t = 0, saadaan muunnoskaavat r = r v AB t v = v v AB a = a t B = t A = Galilein koordinaatistomuunnos

Inertiaalikoordinaatisto (inertial frame of reference) Tasaisella nopeudella liikkuva koordinaatisto Galilein muunnoksen keskeisin ominaisuus on että molemmat havaitsijat mittaavat saman kiihtyvyyden Seuraus: kiihtyvyys invariantti koordinaatistomuunnoksessa, kunhan molemmat koordinaatistot ovat inertiaalikoordinaatistoja Merkitys: kaikki inertiaalikoordinaatistot ovat yhdenvertaisia Koordinaatisto, joka liikkuu tasaisella nopeudella johonkin inertiaalikoordinaatistoon nähden myös inertiaalikoordinaatisto Ei-inertiaalinen koordinaatisto kiihtyvässä liikkeessä Myös normaalikiihtyyys kiihtyvää liikettä Normaalikiihtyvyys muuttaa koordinaatiston liikesuuntaa

Luennon sisältö Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 6 / 31

Kulmasuureet Kertausta Ympyräradalla kulkevaa kappaletta kuvataan kulmasuureilla Hiukkasen paikka ympyräradalla paikkavektorin ja x-akselin välinen kulma θ Kulmanopeus ω ja ratanopeus v y ω = dθ ja v = ds = d(rθ) = Rω Kulmakiihtyvyys α R α = dω = d 2 θ 2 θ x 7 / 31

Kiihtyvyyden komponentit Kiihtyvyyden tangentiaalikomponentti Normaalikomponentti a T = dv a N = v 2 = R dω R = (ωr)2 R = Rα = Rω2 8 / 31

Pyörimisliikkeen vektorisuureet Kertaus Kulmanopeusvektori ω Kohtisuorassa pyörimisliikkeen tasoa vastaan Suunta määrätään oikean käden säännöllä ω α, α > 0 ω Kulmakiihtyvyysvektori α Samansuuntainen kuin ω jos α > 0 Vastakkaissuuntainen jos α < 0 9 / 31

Pyörimisliikkeen vektorisuureista tarkemmin z Tarkastellaan z-akselin ympäri (vakio)etäisyydellä R, kulmanopeudella ω tapahtuvaa ympyräliikettä Säde R voidaan esittää myös paikkavektorin r pituuden r ja kulman γ avulla R = r sin γ Tällöin ratanopeus v = ωr sin γ R r γ 10 / 31

Nopeus- ja kiihtyvyysvektorit v = ωr sin γ vektorimuodossa: v = ω r Kulmanopeusvektori ω pyörimistasoa vastaan kohtisuora vektori Suunta oikean käden säännöllä Tasaisessa ympyräliikkeessä vakio ω Kiihtyvyydellä vain normaalikomponentti Eli a = d v = ω d r = ω v a = ω v = ω ( ω r)! Pätevät tässä muodossa vain kun r ja γ vakioita 11 / 31

Pyörivät koordinaatistot johtavat fiktiivisiin kiihtyvyyksiin Tarkastellaan suhteellista liikettä kahdesta toistensa suhteen pyörivästä eri koordinaatistosta Toinen koordinaatistoista on inertiaalinen, pyörivä ei ole (miksi?) Tarkoituksena on osoittaa että koordinaatistomuunnoksen seurauksena saadaan ei-inertiaalisessa koordinaatistossa fiktiivisiä kiihtyvyystermejä Saadaan keskipakokiihtyvyys ja corioliskiihtyvyys Molemmat seurauksia pyörivästä koordinaatistosta! 12 / 31

Pyörivät koordinaatistot Kaksi toistensa suhteen pyörivää koordinaatistoa Koordinaatistojen origot O ja O samassa pisteessä O pyörii kulmanopeudella ω inertiaalikoordinaatiston O suhteen Mielivaltainen vektori A(t) Koordinaatistossa O Koordinaatistossa O A = A x î + A y ĵ + A z ˆk A = A x î + A yĵ + A ˆk z Origot samat A = A x î + A y ĵ + A z ˆk = A x î + A yĵ + A z ˆk = A 13 / 31

Aikaderivaatat Tarkkana pilkullisten ja pilkuttomien suureiden suhteen! Inertiaalikoordinaatistossa O Pyörivässä koordinaatistossa O d A = da x O î + da y ĵ + da z ˆk d A O = da x î + da y ĵ + da z ˆk Vain yksikkövektorit î, ĵ ja ˆk vakioita inertiaalikoordinaatistossa, joten d A O = da x î + da y ĵ + da z ˆk + A dî x + A dĵ y + A d ˆk z

Pyörivän koordinaatiston yksikkövektorit Koordinaatisto O (ja sen yksikkövektorit) pyörii vakiokulmanopeudella ω = dî = ω î, dĵ = ω ĵ, d ˆk = ω ˆk = A dî x + A dĵ y + A d ˆk z = A x( ω î) + A y( ω ĵ) + A z( ω ˆk) = ω A xî + ω A yĵ + ω A ˆk z = ω A = ω A Seuraa yleinen aikaderivoimisääntö d A O = d A O + ω A 15 / 31

Paikka- ja nopeusvektorit Sovelletaan derivoimissääntöä paikkavektoreihin d r = d r O O + ω r Merkitsemällä saadaan v = d r O ja v = d r O v = v + ω r 16 / 31

Kiihtyvyysvektori Kiihtyvyysvektoria muunnettaessa huomattava, että molemmat derivoinnit suoritettava samassa koordinaatistossa a = d 2 r 2 O = d O d r O a = d 2 r 2 O = d O d r O Tästä saadaan tulokseksi a = a + 2 ω v }{{} + ω ( ω r) }{{} Coriolis keskipako Esimerkki siitä, miksi Galilein muunnos menee rikki ei-inertiaalisessa koordinaatistossa kiihtyvyys ei enää invariantti 17 / 31

Maapallon pyörimisen aiheuttama kiihtyvyys Maapallo pyörii kulmanopeudella 7.3 10 5 rad s 1, jonka suunta maapallon keskustasta pohjoisnavalle päin Jos maapallo ei pyörisi, vapaasti putoavalle kappaleelle mitattaisiin kiihtyvyys g 0 Pyörimisen takia maan mukana pyörivä havaitsija näkee kappaleella kiihtyvyyden a = g 0 2 ω v ω ( ω r) 18 / 31

Keskipakokiihtyvyys maan pinnalla Maan pyöriminen muuttaa maan pinnalla olevien kappaleiden kokemaa maan vetovoiman kiihtyvyyttä Jos kappale paikallaan, Coriolis-termi häviää Efektiivinen vetovoiman kiihtyvyys g = g 0 ω ( ω r) Vetovoiman kiihtyvyys riippuu korkeusasteesta λ (latitude): Korjaustermin suuruus ω ( ω r) = ω 2 r cos 2 λ = 3.34 10 2 cos λ m/s 2 Korjaustermin suuruus pieni verrattuna g 0 :n arvoon 9.81 m s 2 N ω r g 0 ω ( ω r) λ

Luennon sisältö Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 20 / 31

Karteesinen koordinaatisto z (x, y, z) r dz dx dy Tilavuuselementti dv = dx dy dz x y

Karteesinen koordinaatisto Karteesisen koordinaatiston paikkavektori r = xî + yĵ + z ˆk Nopeusvektori Kiihtyvyys Yleinen vektori v = d r a = d v = dx î + dy ĵ + dz ˆk = dv x î + dv y ĵ + dv z ˆk A = A x î + A y ĵ + A z ˆk 22 / 31

Napakoordinaatisto Sylinterikoordinaatiston erikoistapaus 2D:ssä y Koordinaatit ρ Etäisyys origosta ϕ Paikkavektorin ja positiivisen x-akselin kulma Muuntoyhtälöt ρ ϕ r x x(ρ, ϕ) = ρ cos ϕ; ρ(x, y) = x 2 + y 2 y(ρ, ϕ) = ρ sin ϕ; ϕ(x, y) = arctan y x Huomaa, että ρ 0 ja ϕ [0, 2π] 23 / 31

Yksikkövektorit Koordinaattisysteemien koordinaatteja vastaa yksikkövektorit y A Yksikkövektori osoittaa kasvavien arvojen suuntaan Tyypillisesti yksikkövektorien suunta riippuu tarkastelupisteestä Napakoordinaatiston paikkavektori ê ϕ ρ ϕ r ê ρ x r(ρ, ϕ) = ρê ρ Yleinen vektorisuure napakoordinaatistossa A = A ρ ê ρ + A ϕ ê ϕ

Napakoordinaatiston yksikkövektorit Napakoordinaatiston yksikkövektorit kytketty karteesisen koordinaatiston yksikkövektoreihin ] [ ] [î ] [êρ cos ϕ sin ϕ = (Rotaatiomatriisi) sin ϕ cos ϕ ĵ ê ϕ Napakoordinaatiston yksikkövektorit riippuvat ϕ:stä! Lasketaan niiden derivaatat ajan suhteen: dê ρ dê ϕ = d cos ϕ î + d sin ϕ ĵ + dî = d cos ϕ dϕ dϕ î + d sin ϕ dϕ = dϕ êρ cos ϕ + dĵ sin ϕ dϕ ĵ = dϕ êϕ

Nopeus ja kiihtyvyys napakoordinaatistossa y Nopeusvektori v = d r ê ϕ dϕ ϕ a = d v r ê ϕ r = d ê ρ ê ρ x = d (ρê ρ) = dρ êρ + ρ dê ρ Nopeus [ dρ êρ + ρ dϕ ] êϕ =... v = d r = d (ρê ρ) = dρ êρ + ρ dê ρ = dρ êρ + ρ dϕ êϕ Kiihtyvyys saadaan nopeuden aikaderivaatasta = ( d 2 ρ [ dϕ ] 2 ) ( ρ 2 ê ρ + 2 dρ dϕ + ρ d 2 ϕ 2 ) ê ϕ

Sylinterikoordinaatisto (x, y, z) = (ρ, φ, z) z ρ dz r dφ dρ φ x y ρ dφ Tilavuuselementti dv = ρ dρ dφ dz

Sylinterikoordinaatisto Napakoordinaatiston yleistys kolmeen ulottuvuuteen Täydennetty karteesisella z-komponentilla z Muuntoyhtälöt x(ρ, ϕ, z) = ρ cos ϕ ρ(x, y, z) = x 2 + y 2 ρ y(ρ, ϕ, z) = ρ sin ϕ z(ρ, ϕ, z) = z ϕ(x, y, z) = arctan y x z(x, y, z) = z ϕ z y x 28 / 31

Yksikkövektorit sylinterikoordinaatistossa Paikkavektori r = ρê ρ + z ˆk Nopeus v = dρ êρ + ρ dϕ êϕ + dz ˆk Kiihtyvyys a = ( 2 dρ ( d 2 ρ [ dϕ ] 2 ) ρ 2 ê ρ dϕ + ρ d 2 ϕ ) 2 ê ϕ + d 2 z ˆk Yleinen vektori A = Aρ ê ρ + A ϕ ê ϕ + A z ˆk z r ˆk ê ϕ ê ρ y x 29 / 31

Pallokoordinaatisto (x, y, z) = (r, θ, φ) r sin θ z θ φ r dr x r dθ dθ y dφ r sin θ dφ Tilavuuselementti dv = r 2 sin θ dr dθ dφ

Pallokoordinaatisto Koordinaatteina etäisyys origosta r ja kulmat θ, ϕ Muuntoyhtälöt z x(r, ϕ, θ) = r sin θ cos ϕ ê r y(r, ϕ, θ) = r sin θ sin ϕ z(r, ϕ, θ) = r cos θ ρ(x, y, z) = x 2 + y 2 + z 2 x 2 + y θ(x, y, z) = 2 arctan z x ϕ θ r ê θ ê ϕ y ϕ(x, y, z) = arctan y x