Kvanttifysiikan perusteet 2017

Samankaltaiset tiedostot
Shrödingerin yhtälön johto

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

Fysiikka 8. Aine ja säteily

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot

Osallistumislomakkeen viimeinen palautuspäivä on maanantai

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

3.1 Varhaiset atomimallit (1/3)

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)

Atomien rakenteesta. Tapio Hansson

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2

Suhteellisuusteorian perusteet 2017

S Fysiikka III (EST) Tentti ja välikoeuusinta

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )

Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto

Mustan kappaleen säteily

kolminkertaisesti tehtäviä tavallisiin harjoituksiin verrattuna, voi sen kokonaan tekemällä saada suunnilleen kolmen tavallisen harjoituksen edestä

Fysiikan valintakoe klo 9-12

9 Maxwellin yhtälöt. 9.5 Aaltoyhtälö ja kenttien lähteet Aaltoyhtälö tyhjössä Potentiaaliesitys Viivästyneet potentiaalit

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Sovelletun fysiikan pääsykoe

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017

Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti

Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3

Voima ja potentiaalienergia II Energian kvantittuminen

2. Fotonit, elektronit ja atomit

1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä

Varatun hiukkasen liike

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1

J 2 = J 2 x + J 2 y + J 2 z.

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe , malliratkaisut

Varatun hiukkasen liike

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus

E p1 = 1 e 2. e 2. E p2 = 1. Vuorovaikutusenergian kolme ensimmäistä termiä on siis

MATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai

x + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017

Braggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on

Fourier-analyysi, I/19-20, Mallivastaukset, Laskuharjoitus 7

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta

FYSA242 Statistinen fysiikka, Harjoitustentti

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?

3. MATERIALISTISTEN HIUKKASTEN AALTOLUONNE

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

= 6, Nm 2 /kg kg 71kg (1, m) N. = 6, Nm 2 /kg 2 7, kg 71kg (3, m) N

Aineen aaltoluonne. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 4. Mikro- ja nanotekniikan laitos

Matematiikan tukikurssi

Matematiikkaa kemisteille, kevät 2012 Ylimääräinen laskuharjoitus Palautus 7.5. klo (suositellaan kuitenkin tekemään ennen välikoetta 30.4!

Infrapunaspektroskopia

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa

x n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1

763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 5 Kevät 2016

n=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1

Derivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2

ELEC C4140 Kenttäteoria (syksy 2015)

Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi

5.9 Voiman momentti (moment of force, torque)

Aineaaltodynamiikkaa

Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 2016

Kertausta: Vapausasteet

Erityinen suhteellisuusteoria (Harris luku 2)

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x

L a = L l. rv a = Rv l v l = r R v a = v a 1, 5

a(t) = v (t) = 3 2 t a(t) = 3 2 t < t 1 2 < 69 t 1 2 < 46 t < 46 2 = 2116 a(t) = v (t) = 50

MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)

Luento 15: Ääniaallot, osa 2

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA

ELEC C4140 Kenttäteoria (syksy 2015)

Osittaisdifferentiaaliyhtälöt

ELEC C4140 Kenttäteoria (syksy 2016)

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö.

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai

ELEC C4140 Kenttäteoria (syksy 2016)

ja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N

Epäyhtälöt 1/7 Sisältö ESITIEDOT: yhtälöt

763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 5 Kevät 2013

Aikariippuva Schrödingerin yhtälö

Tfy Fysiikka IIB Mallivastaukset

Elektrodynamiikka, kevät 2002

Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 2017

Matematiikan tukikurssi

Transkriptio:

Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c. Maxwellin yhtälöt tyhjiössä ovat: E = 0 () B = 0 (2) E = B t B = ɛ 0 µ 0 E t missä E on sähkökenttä ja B on magneettikenttä (tarkalleen ottaen magneettivuon tiheys). Maxwellin yhtälöihin tutustutaan tarkemmin sähkömagnetismin kurssilla. Valon nopeudelle pätee c = / ɛ 0 µ 0, joten yhtälö (4) voidaan kirjoittaa myös (3) (4) B = c 2 E t (5) Koska ( V ) = ( V ) 2 V mille tahansa vektorikentälle V (tämä on todistettu matemaattisten apuneuvojen kurssilla), voidaan kirjoittaa 2 V = ( V ) ( V ) (6) Haluamme osoittaa, että sähkökenttä E ja magneettikenttä B toteuttavat aaltoyhtälön eli 2 E v 2 2 E t 2 = 0 (7) 2 B v 2 2 B t 2 = 0 (8)

Sähkökentälle saadaan laskusääntöä (6) ja Maxwellin yhtälöitä (), (2) ja (5) (tässä järjestyksessä) käyttäen 2 E = ( E) ( E) = 0 ( E) = ( B t ) = t ( B) = c 2 2 E t 2 eli havaitsemme että aaltoyhtälö (7) toteutuu kun v = ±c. Vastaavasti magneettikentälle saadaan laskusääntöä (6) ja Maxwellin yhtälöitä (5) ja (3) (tässä järjestyksessä) käyttäen 2 B = ( B) ( B) = 0 ( B) = ( c 2 E t ) = c 2 t ( E) = c 2 2 B t 2 eli havaitsemme että aaltoyhtälö (8) toteutuu kun v = ±c. Tehtävä 2 Tarkastellaan klassisella ympyräradalla olevan elektronin putoamista ytimeen, jonka kooksi oletamme r 0 = fm. Oletetaan vielä, että rata pysyy koko ajan ympyräratana ja että elektroni putoaa Coulombin potentiaalissa V = e 2 /r (tässä siis asetetaan 4πɛ 0 =. Elektronin kokonaisenergia E sen radalla koostuu liike-energiasta ja potentiaalienergiasta. Lähde liikkeelle Larmorin kaavasta P = de dt = 2e2 a 2 3c 3 (9) ja ratkaise ensin differentiaaliyhtälö elektronin etäisyydelle r(t) ja lue siitä aika, joka kuluu elektronin putoamiseen Bohrin säteeltä a 0 etäisyydelle r 0. Tämä olisi vetyatomin elinikä Rutherfordin mallissa. Alkuun huomio yksiköistä: potentiaalienergian kaavassa V = e 2 /r ja Larmorin kaavassa (9) käytetään yksiköitä, joissa on asetettu 4πɛ 0 =, eli oikeastaan se on sisällytetty sähkövarauksen e määritelmään: e 2 = e 2 SI /(4πɛ 0). Sähkömagnetismin kurssilla opitaan että Coulombin voima, siis se sähkömagneettinen voima jolla elektroni ja vetyatomin ydin vetävät toisiaan puoleensa, on tyhjiössä suuruudeltaan F = 4πɛ 0 qq r 2 (0) missä q ja Q ovat elektronin ja ytimen varaukset ja r näiden välinen etäisyys. Vetyatomille q = Q = e SI, joten uusissa yksiköissä saadaan voiman suuruudeksi F = e 2 SI 4πɛ 0 r 2 = e2 r 2. () 2

Haluamme johtaa lausekkeen r(t) elektronin etäisyydelle ytimestä ajan funktiona. Larmorin kaava (9) kertoo energian muutoksen ajan suhteen, eli ensin pitää selvittää energian E riippuvuus etäisyydestä r. Elektronin kokonaisenergia on E = E liike + V = 2 mv2 e2 r. (2) Vielä pitäisi saada ensimmäinen termi kirjoitettua r:n funktiona. Newtonin II laki F = m a auttaa eteenpäin: ympyräradalla sekä voimavaktori että kiihtyvyysvektori osoittavat radan keskipistettä kohti (valitaan tämä positiiviseksi suunnaksi) ja keskeiskiihtyvyyden suuruus on a = v 2 /r. Siis: F = ma e 2 r 2 = mv2 r e 2 r = mv2 (3) ja toisaalta kiihtyvydelle saadaan etäisyyden r funktiona lauseke a(r) = F m = e2 mr 2. (4) Yhdistämällä yhtälöt (2) ja (3) saadaan elektronin kokonaisenergiaksi r:n funktiona E(r) = 2 mv2 e2 r = e 2 2 r e2 r = e 2 2 r Sijoittamalla (4) ja (5) Larmorin kaavaan (9) saadaan d dt d 2e2 E(r) = dt 3c 3 a(r)2 ( e 2 ) = 2e2 e 4 2 r 3c 3 m 2 r 4 d dt r = 2e2 e 4 2 3c 3 m 2 r 4 e 2 r 2 dr dt = 4e4 3c 3 m 2 r 4 r 2 dr = 4e4 3c 3 m 2 dt Nyt voimme ratkaista yhtälön integroimalla puolittain ajanhetkestä 0 jolloin elektroni on Bohrin säteen etäisyydellä a 0 ajanhetkeen t jolloin elektroni on etäisyydellä r(t): r(t) r 2 dr = 4e4 a 0 3c 3 m 2 3 r(t)3 3 a 0 3 = 4e4 3c 3 m 2 t t 0 dt (5) r(t) 3 = a 3 0 4e4 c 3 m 2 t (6) r(t) = 3 a 03 4e4 c 3 m 2 t Kun asetamme yhtälössä (6) r(t) = r 0, missä r 0 vastaa ytimen kokoluokkaa, saamme atomin elinajaksi t = (a 3 0 r0) 3 c3 m 2 4e 4 = (a 3 0 r0) 3 c3 m 2 (4πɛ 0 ) 2. (7) 4 Kun r 0 0 5 m, Bohrin säde a 0 = 5.29 0 m, m = 9.09 0 3 kg, c = 3 0 8 m/s, e SI =.602 0 9 C ja ɛ 0 = 8.854 0 9 F/m, saadaan tulokseksi t.6 0 s. e 4 SI 3

Tehtävä 3 Vedyn Balmerin sarjan spektri syntyy transitioista, jotka päättyvät tilaan n = 2. Mitkä sarjan fotoneista ovat näkyvän valon alueella? Mikä on sarjan lyhin aallonpituus? Mitkä ovat vastaavat energiat? Bohrin atomimallissa vain tietyt energiatilat ovat sallittuja, joten esimerkiksi vety absorboi ja emittoi fotoneja vain tietyillä energioilla/aallonpituuksilla, jotka liittyvät elektronien transitioihin sallitulta tilalta toiselle. Luentokalvoissa on annettu kaava fotoniin enerigalle sallituissa transitioissa: E = E m E n = ( 2 α2 mc 2 n 2 ) m 2. (8) Kvanttimekaniikassa fotonin energia on E = hν = hc λ, (9) missä h on Planckin vakio, ν on taajuus, c on valonnopeus ja λ on aallonpituus. Usein käytetään myös redusoitua Planckin vakiota, joka määritellään h = h/(2π). Luentokalvoissa on myös määritelty Rydbergin vakio: R H = α2 mc 4π h = 9.44 0 8 (20) m Sijoittamalla yhtälöt (9) ja (20) kaavaan (8) saamme hc λ = ( 2 (4πR H) n 2 ) m 2 h λ = ( 2 (2 2π R H) n 2 ) m ( 2 λ = R H n 2 ) m 2 λ = ( R H n 2 ) m 2 (2) Balmerin sarja saadaan, kun n = 2 ja m = 3, 4, 5... Nyt voimme laskea mahdolliset aallonpituudet ja vastaavat energiat yhtälöistä (2) ja (9). Tulokseksi saadaan: m λ (nm) E (ev) 3 656.89 4 486 2.55 5 434 2.86 6 40 3.02 7 397 3.2 8 389 3.9......... Taulukon neljä ensimmäistä fotonia ovat näkyvän valon alueella (n. 400 700 nm). Taulukosta huomaamme, että aallonpituus lyhenee kun m kasvaa. Sarjan lyhin aallonpituus saadaan siis rajalla jossa m, jolloin λ = ( ) R H 2 2 0 = 4 = 365 nm (22) R H joka vastaa energiaa E = 3.40 ev. 4

Tehtävä 4 a) Tarkastellaan kahta reaalista aaltoa: ψ (x) = cos(3πx) ja ψ 2 (x) = 2 sin(2πx). Hahmottele intensiteetin I = ψ + 2ψ 2 2 käyttäytymistä. Missä intensiteetti saa minimiarvonsa? Intensiteetti saa miniarvonsa, kun ψ + 2ψ 2 = cos 3πx + 4 sin 2πx = 0 Käyttäen trigonometrian kaavoja cos 3θ = 4 cos 3 θ 3 cos θ ja sin 2θ = 2 sin θ cos θ voidaan tämä ehto kirjoittaa muodossa 4 cos 3 πx 3 cos πx + 8 sin πx cos πx = 0 Koska sin 2 θ + cos 2 θ =, saadaan 4 cos 2 πx = 4 4 sin 2 πx eli cos πx(4 cos 2 πx 3 + 8 sin πx) = 0 (23) cosπx( 4 sin 2 πx + 8 sin πx + ) = 0 (24) Toisen yhtälön (24) termeistä on oltava 0. Ehto cos πx = 0 toteutuu kun πx = ±π/2 + 2πn (n kokonaisluku) eli kun x = ±/2 + 2n. Jälkimmäisen termin tunnistamme toisen asteen yhtälöksi 4y 2 + 8y + = 0 missä y = sin πx. Toisen asteen yhtälön ratkaisukaavalla saadaan sin πx = y = 8 ± 8 2 4 ( 4) = 8 80 6 5 5 2 ( 4) 8 ± = ± 8 2 6 = ± 2 Koska sin πx, valitsemme ratkaisun sin πx = 5/2, joka toteutuu kahdessa tapauksessa. Ensimmäinen vaihtoehto on, että πx = arcsin( 5/2) + 2πn eli x = 5 π arcsin( ) + 2n 0.038 + 2n (25) 2 Toinen vaihtoehto on, että πx = π arcsin( 5/2) + 2πn eli x = 5 π arcsin( ) + 2n.038 + 2n (26) 2 Yhteensä löysimme siis kolme ratkaisua kolmannen asteen yhtälöön (23), jotka kaikki vastaavat intensiteetin minimikohtia: x = ±/2 + 2n tai x 0.038 + 2 tai x.038 + 2n, missä n on kokonaisluku. 5

b) Olkoot kaksi kompleksista aaltoa ψ (s) = 2e i2πx ja ψ 2 (s) = e iπx. Hahmottele intensiteetin I = ψ + ψ 2 2 käyttäytymistä. Missä intensiteetti saa minimiarvonsa? I = ψ + ψ 2 2 = (ψ + ψ2)(ψ ψ 2 ) = (ψψ + ψψ 2 + ψ2ψ ψ2ψ 2 ) = ψ 2 + ψ 2 2 + ψψ 2 + ψ2ψ = 2 2 + 2 + 2e i2πx e iπx + e iπx e i2πx = 5 + 2(e i3πx + e i3πx ) = 5 + 4 cos(3πx) Intensiteetti saa siis minimiarvonsa kun cos(3πx) =, mikä toteutuu kun 3πx = π + 2πn (n kokonaisluku), eli minimissä x = 3 + 2 3 n 6