763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct, r cos ωt, r sin ωt, 0) (ct, x(t)). u µ dxµ dτ, missä τ on x:n mukana liikkuvan koordinaatiston ominaisaika. Koska dτ u 2 /c 2 dt, on u µ dt dx µ dx µ dτ dt u2 /c 2 dt. Tässä u ympyrärataa kulkevan kappaleen nopeus, eli u rω. Varmemmaksi vakuudeksi lasketaan tämä myös kappaleen paikan X avaruusosasta x: Nelinopeus on siis u dx dt d (r cos ωt, r sin ωt, 0) ( rω sin ωt, rω cos ωt, 0) dt u u r 2 ω 2 sin 2 ωt + r 2 ω 2 cos 2 ωt rω. u µ d (ct, x) r2 ω 2 /c 2 dt (c, rω sin ωt, rω cos ωt, 0). r2 ω 2 /c2 Nelikiihtyvyys A a µ saadaan vastaavasti nelinopeuden ominaisaika derivaattana: [ ] a µ duµ dτ d u2 /c 2 dt u2 /c (c, rω sin ωt, rω cos ωt, 0) 2 r 2 ω 2 /c 2 (0, rω2 cos ωt, rω 2 sin ωt, 0). Huomaa, että yleisesti nopeus u on ajasta riippuva, ja siten ylläolevassa laskussa tulisi myös derivoida tekijä γ(u) / u 2 /c 2. Tässä u rω on kuitenkin vakio. Nelikiihtyvyyden pituuden neliö on A A η µν a µ a ν (a 0 ) 2 (a ) 2 (a 2 ) 2 (a 3 ) 2 ( r 2 ω 2 /c 2 ) 2 (02 ( ) 2 r 2 ω 4 cos 2 ωt ( ) 2 r 2 ω 4 sin 2 ωt 0 2 ) r 2 ω 4 ( r 2 ω 2 /c 2 ) 2. Nelinopeuden ja nelikiihtyvyyden kohtisuuruus tarkoittaa, että U A 0. Osoitetaan suoralla laskulla, että näin on: U A η µν u µ a ν u 0 a 0 u a u 2 a 2 u 3 a 3 rω 2 (c 0 ( )rω sin ωt cos ωt rω cos ωt sin ωt 0 0) ( r 2 ω 2 /c 2 ) 3/2 0. Neliliikemäärä p µ mu µ on siis vain nelinopeus kerrottuna lepomassalla. Vastaavasti nelivoima f µ, f µ dpµ dτ on nelikiihtyvyys kerrottuna lepomassalla. mduµ dτ maµ,
2. Neliavaruuden skalaaritulo Kysymys siis on: Miltä kohtisuorassa olevat vektorit näyttävät Minkowskin diagrammissa, eli koordinaatistossa, jossa pystyakseli on ajanlaatuinen x 0 ja vaaka-akseli paikanlaatuinen x? On annettu kaksi neliavaruuden vektoria A ja B, a µ (a sin α, a cos α, 0, 0), b µ (b sin β, b cos β, 0, 0). Tässä a ja b mittaavat (Euklidista) etäisyyttä origosta, ja kulmat α ja β kertovat kulman x akselista vastapäivään: Lasketaan skalaaritulo A B: η νµ a ν b µ a sin α b sin β a cos α b cos β ab cos(α + β). Jotta tämä olisi nolla, on oltava α + β π 2 + nπ, missä n on kokonaisluku. Valitaan selvyyden vuoksi 0 α, β π/2, jolloin n:n täytyy olla nolla. Kohtisuoruusehdosta α + β π/2 saadaan tällöin α π 2 β. Toisin sanoen, A muodostaa kulman β koordinaattiakseliin 0 nähden:
Kohtisuoruusehto voidaan vaihtoehtoisesti kirjoittaa muotoon α π 4 π 4 β. Yhtälön vasen puoli on kulma A:n ja suoran x 0 x välillä, ja oikea puoli sama B:lle. Tästä saadaan kohtisuoruuden ehkä selkein tulkinta: A B 0 Vektoreiden A ja B suunnat diagrammissa ovat symmetriset viivan x 0 x suhteen. Euklidisessä geometriassa vektorit x, joille x 2 x x vakio, muodostavat ympyrän (pallon kolmessa ulottuvuudessa). Millaisen käyrän kiinnitetyn mittaiset nelivektorit muodostavat Minkowskin diagrammissa? Nelinopeuden U u µ (u 0, u, 0, 0) pituus on aina c, joten sille U U (u 0 ) 2 (u ) 2 c 2. Koska diagrammimme akselit ovat tässä u 0 ja u, ratkaistaan yllä olevasta yhtälöstä u 0 koordinaatin u avulla. Sen jälkeen voimme yksinkertaisesti piirtää kuvaajan u 0 u 0 (u ). Nyt voidaan hahmotella u 0 :n kuvaaja: u 0 ± c 2 + (u ) 2. Koska p µ mu µ ja m on vakio, neliliikemäärät ovat myös aina saman muotoisella kuvaajalla Minkowskin diagrammissa. (c) Yhdistetään edellisten kohtien tulokset. Valitaan ensin jokin U u µ edellä piirretyltä kuvaajalta. Seuraavaksi katsotaan se kulma, jonka jää U:n ja suoran u 0 u väliin. Kutsutaan sitä vaikka θ:ksi. Sitten, piirretään vektori A a µ samaan kulmaan u 0 u :stä (a 0 a :stä), mutta toiselle puolelle. A:n pituus voi olla mitä vain. Ja siinä kaikki! Kuitenkin, jos A:n piirtää U:n kärkeen, niin A on käyrän tangentin suuntainen siinä pisteessä.
3. Energia, liikemäärä ja nopeus Koska saadaan liikemäärälle p E mc 2 u2 /c 2, p mu u2 /c 2, mu c 2 c 2 u 2 /c 2 mc 2 u2 /c 2 u c 2 E c 2 u. Energia lausuttuna liikemäärän avulla on siis E c m 2 c 2 + p 2 mc 2 + p 2 /m 2 c 2. Kun p mc, eli kun p 2 /m 2 c 2, saadaan käyttämällä Taylorin sarjaa + ε + ε/2 + [ E mc 2 + p 2 ] 2 m 2 c 2 mc 2 + p2 2m. Ensimmäinen termi on tietenkin lepoenergia, ja jälkimmäinen klassinen kineettinen energia, p 2 /2m m 2 v 2 /2m mv 2 /2. 4. CERNin protonit SI-yksiköissä yksi elektronivoltti on ev.602 0 9 J. Koska protonin lepoenergia on yhden GeV:n luokkaa, on E p 7 TeV:n protonin kokonaisenergia käytännössä pelkästään kineettistä energiaa. Kun suihkussa on N 3 0 4 protonia, on sen kineettinen energia E suihku NE p 3 0 4 7 0 2 ev 2 0 26.602 0 9 J 33.6 0 7 J 336 MJ.
Yritetään laskea auton nopeus epärelativistisella kaavalla. Jos tulos on liian suuri, yli c/0:n luokkaa, tulee käyttää relativististä liike-energiaa. Sijoitataan lukuarvot: 2 m autou 2 E suihku u 2E suihku /m auto. u 820 m s. Eli lujaa menee, mutta ei relativistisen lujaa. Liikemäärä voidaan laskea kaavasta E c m 2 c 2 + p 2. Jälleen, koska lepoenergia on pieni verrattuna kineettiseen energiaan, voidaan arvioida E c p 2 cp. Siten p suihku E suihku c. kgm. s Autolle riittää epäilemättä käyttää epärelativistista kaavaa: m auto u p suihku u p suihku m auto 0.00 m s.