Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava. TKK (c) Ilkka Mellin (2005) 1

Samankaltaiset tiedostot
Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat

Johdatus todennäköisyyslaskentaan Todennäköisyyslaskenta ja puudiagrammit. TKK (c) Ilkka Mellin (2005) 1

Osa 1: Todennäköisyys ja sen laskusäännöt

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit: Esitiedot

Liite 2: Verkot ja todennäköisyyslaskenta. Todennäköisyyslaskenta ja puudiagrammit

Sovellettu todennäköisyyslaskenta B

Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava: Esitiedot

Varma tapahtuma, Yhdiste, Yhdistetty tapahtuma, Yhteenlaskusääntö

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden peruslaskusäännöt

Johdatus todennäköisyyslaskentaan Verkot ja todennäköisyyslaskenta. TKK (c) Ilkka Mellin (2004) 1

Sovellettu todennäköisyyslaskenta B

ABHELSINKI UNIVERSITY OF TECHNOLOGY

A. Jos A on niiden perusjoukon S alkioiden x joukko, jotka toteuttavat ehdon P(x) eli joille lause P(x) on tosi, niin merkitsemme

Mat Sovellettu todennäköisyyslasku A

B. Siten A B, jos ja vain jos x A x

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 1

Johdatus todennäköisyyslaskentaan Todennäköisyyden peruslaskusäännöt. TKK (c) Ilkka Mellin (2005) 1

1. laskuharjoituskierros, vko 4, ratkaisut

Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Verkot ja todennäköisyyslaskenta

(x, y) 2. heiton tulos y

Todennäköisyyslaskennan peruslaskusäännöt. Todennäköisyyslaskennan peruslaskusäännöt. Todennäköisyyslaskennan peruslaskusäännöt: Esitiedot

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat:

Johdatus todennäköisyyslaskentaan Todennäköisyyden aksioomat. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1

031021P Tilastomatematiikka (5 op)

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden aksioomat

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1

A = B. jos ja vain jos. x A x B

Mat Sovellettu todennäköisyyslasku A

Todennäköisyyslaskenta: Liitteet. Liite 1. Joukko oppi Liite 2. Todennäköisyyslaskenta ja puudiagrammit. Ilkka Mellin (2006) 449

Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta: Esitiedot

Verkot ja todennäköisyyslaskenta Verkko Verkko eli graafi muodostuu pisteiden joukosta V, särmien joukosta A ja insidenssikuvauksesta : A V V jossa

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

D ( ) Var( ) ( ) E( ) [E( )]

Johdatus todennäköisyyslaskentaan Klassinen todennäköisyys ja kombinatoriikka. TKK (c) Ilkka Mellin (2005) 1

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

Todennäköisyyslaskenta: Todennäköisyys ja sen laskusäännöt

HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I

Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2005) 1

Miten hyvin mallit kuvaavat todellisuutta? Tarvitaan havaintoja.

Sovellettu todennäköisyyslaskenta B

Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

Moniulotteisia todennäköisyysjakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

Ilkka Mellin Todennäköisyyslaskenta. Osa 3: Todennäköisyysjakaumia. Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2007) 1

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

30A02000 Tilastotieteen perusteet

Johdatus todennäköisyyslaskentaan Todennäköisyys ja sen määritteleminen. TKK (c) Ilkka Mellin (2005) 1

Liite: Verkot. TKK (c) Ilkka Mellin (2004) 1

ABHELSINKI UNIVERSITY OF TECHNOLOGY

2. laskuharjoituskierros, vko 5, ratkaisut

Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko

Ilkka Mellin Todennäköisyyslaskenta

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

ABHELSINKI UNIVERSITY OF TECHNOLOGY

Inversio-ongelmien laskennallinen peruskurssi Luento 7

Sovellettu todennäköisyyslaskenta B

031021P Tilastomatematiikka (5 op)

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

1. Matkalla todennäköisyyteen

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy Tehtävissä 1, 2, ja 3 tarkastelemme seuraavaa tilannetta:

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Todennäköisyyslaskenta. β versio. Todennäköisyyslaskenta. Ilkka Mellin. Teknillinen korkeakoulu, Matematiikan laboratorio. Ilkka Mellin (2006) I

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1

Todennäköisyyslaskenta IIa, syyslokakuu 2019 / Hytönen 2. laskuharjoitus, ratkaisuehdotukset

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat

Normaalijakaumasta johdettuja jakaumia

Testit laatueroasteikollisille muuttujille

Osa 2: Otokset, otosjakaumat ja estimointi

Testejä suhdeasteikollisille muuttujille

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Satunnaismuuttujat ja todennäköisyysjakaumat

Johdatus todennäköisyyslaskentaan Joukko-oppi. TKK (c) Ilkka Mellin (2005) 1

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I

Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä

Olkoon R S otosavaruuksien R ja S karteesinen tulo: Satunnaismuuttujien X ja Y järjestetty pari (X, Y) määrittelee kaksiulotteisen satunnaismuuttujan:

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Todennäköisyyslaskenta

805306A Johdatus monimuuttujamenetelmiin, 5 op

Joukko-oppi. Joukko-oppi. Joukko-oppi. Joukko-oppi: Mitä opimme? Joukko-opin peruskäsitteet

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi

Matemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Todennäköisyys (englanniksi probability)

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko

Transkriptio:

Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava TKK (c) Ilkka Mellin (2005) 1

Kokonaistodennäköisyys ja Bayesin kaava Kokonaistodennäköisyys ja Bayesin kaava: Johdanto Kokonaistodennäköisyyden kaava Bayesin kaava Kokonaistodennäköisyyden ja Bayesin kaavojen systeemiteoreettinen tulkinta TKK (c) Ilkka Mellin (2005) 2

Kokonaistodennäköisyys ja Bayesin kaava: Mitä opimme? Tarkastelemme tässä luvussa kahta hyödyllistä todennäköisyyslaskennan kaavaa, kokonaistodennäköisyyden kaavaa ja Bayesin kaavaa. Molemmille kaavoille esitetään todistus, mutta lisäksi kaavoja motivoidaan sovellusesimerkkien avulla. Bayesin kaavan yhteydessä määritellään ns. Bayeslaisessa tilastotieteessä keskeiset priori-todennäköisyyden ja posterioritodennäköisyyden käsitteet. Sekä kokonaistodennäköisyyden kaavalle että Bayesin kaavalle esitetään myös systeemiteoreettiset tulkinnat. TKK (c) Ilkka Mellin (2005) 3

Kokonaistodennäköisyys ja Bayesin kaava: Esitiedot Esitiedot: ks. seuraavia lukuja: Todennäköisyys ja sen määritteleminen Todennäköisyyden peruslaskusäännöt TKK (c) Ilkka Mellin (2005) 4

Kokonaistodennäköisyys ja Bayesin kaava >> Kokonaistodennäköisyys ja Bayesin kaava: Johdanto Kokonaistodennäköisyyden kaava Bayesin kaava Kokonaistodennäköisyyden ja Bayesin kaavojen systeemiteoreettinen tulkinta TKK (c) Ilkka Mellin (2005) 5

Kokonaistodennäköisyys ja Bayesin kaava: Johdanto Avainsanat Bayesin kaava Ehdollinen todennäköisyys Indusoitu ositus Kokonaistodennäköisyyden kaava Laadunvalvonta Ositus Toisensa poissulkevat tapahtumat Tulosääntö Yhteenlaskusääntö TKK (c) Ilkka Mellin (2005) 6

Kokonaistodennäköisyys ja Bayesin kaava: Johdanto Esimerkki laadunvalvonnasta 1/10 Ruuvitehtaalla on kaksi konetta A ja B, joilla tehdään samanlaisia ruuveja. A- ja B-koneen valmistamat ruuvit sekoitetaan ja pakataan laatikoihin. Koska A-kone toimii hitaammin, laatikoihin tulee A- ja B-koneiden valmistamia ruuveja suhteessa 3:5. Osa kummankin koneen valmistamista ruuveista on viallisia: (i) 5 % A-koneen valmistamista ruuveista on viallisia. (ii) 8 % B-koneen valmistamista ruuveista on viallisia. TKK (c) Ilkka Mellin (2005) 7

Kokonaistodennäköisyys ja Bayesin kaava: Johdanto Esimerkki laadunvalvonnasta 2/10 Valitaan satunnaisesti laatikollinen ruuveja tutkittavaksi. Poimitaan valitusta laatikosta satunnaisesti 1 ruuvi tutkittavaksi. Kysymyksiä: (i) Mikä on todennäköisyys, että poimittu ruuvi on viallinen? (ii) Mikä on todennäköisyys, että ruuvin on valmistanut A-kone, jos ruuvi osoittautuu vialliseksi? (iii) Mikä on todennäköisyys, että ruuvin on valmistanut B-kone, jos ruuvi osoittautuu vialliseksi? TKK (c) Ilkka Mellin (2005) 8

Kokonaistodennäköisyys ja Bayesin kaava: Johdanto Esimerkki laadunvalvonnasta 3/10 Merkintöjä: Otosavaruus S muodostuu laatikollisesta ruuveja Tapahtuma A = Ruuvin on valmistanut A-kone Tapahtuma B = Ruuvin on valmistanut B-kone Tapahtuma V = Ruuvi on viallinen Seuraavat todennäköisyydet tunnetaan: Pr(A) = 3/8 Pr(V A) = 0.05 Pr(B) = 5/8 Pr(V B) = 0.08 Seuraavia todennäköisyyksiä kysytään: Pr(V) Pr(A V) Pr(B V) TKK (c) Ilkka Mellin (2005) 9

Kokonaistodennäköisyys ja Bayesin kaava: Johdanto Esimerkki laadunvalvonnasta 4/10 Tapahtumat A ja B muodostavat otosavaruuden S osituksen: (i) A ja B ovat epätyhjiä: A ja B (ii) A ja B ovat pistevieraita: A B = (iii) Joukkojen A ja B yhdisteenä saadaan perusjoukko S: S = A B TKK (c) Ilkka Mellin (2005) 10

Kokonaistodennäköisyys ja Bayesin kaava: Johdanto Esimerkki laadunvalvonnasta 5/10 Ositus S = A B indusoi osituksen tapahtumaan V, millä tarkoitetaan seuraavaa: (i) Jos V on epätyhjä eli V, ainakin toinen joukoista V A ja V B on epätyhjä: V A tai V B (ii) V A ja V B ovat pistevieraita: (V A) (V B) = koska A B = (iii) Joukkojen V A ja V B yhdisteenä saadaan joukko V: V = (V A) (V B) TKK (c) Ilkka Mellin (2005) 11

Kokonaistodennäköisyys ja Bayesin kaava: Johdanto Esimerkki laadunvalvonnasta 6/10 A B V A V B V S TKK (c) Ilkka Mellin (2005) 12

Kokonaistodennäköisyys ja Bayesin kaava: Johdanto Esimerkki laadunvalvonnasta 7/10 Toisensa poissulkevien tapahtumien yhteenlaskusäännön mukaan: Pr(V) = Pr(V A) + Pr(V B) (1) Yleisen tulosäännön mukaan: Pr(V A) = Pr(A)Pr(V A) (2) Pr(V B) = Pr(B)Pr(V B) (3) Sijoittamalla lausekkeet (2) ja (3) kaavaan (1) saadaan todennäköisyydeksi, että satunnaisesti poimittu ruuvi on viallinen: Pr(V) = Pr(A)Pr(V A) + Pr(B)Pr(V B) = (3/8) 0.05 + (5/8) 0.08 = 0.06875 = 6.875 % Todennäköisyyden Pr(V) lauseketta sanotaan kokonaistodennäköisyyden kaavaksi. TKK (c) Ilkka Mellin (2005) 13

Kokonaistodennäköisyys ja Bayesin kaava: Johdanto Esimerkki laadunvalvonnasta 8/10 Ehdollisen todennäköisyyden määritelmän perusteella Pr(A V) = Pr(V A)/Pr(V) (4) Pr(B V) = Pr(V B)/Pr(V) (5) Yleisen tulosäännön mukaan Pr(V A) = Pr(V A)Pr(A) (6) Pr(V B) = Pr(V B)Pr(B) (7) Edellä on todettu, että Pr(V) = Pr(A)Pr(V A) + Pr(B)Pr(V B) (8) TKK (c) Ilkka Mellin (2005) 14

Kokonaistodennäköisyys ja Bayesin kaava: Johdanto Esimerkki laadunvalvonnasta 9/10 Sijoittamalla lausekkeet (6) ja (8) kaavaan (4) saadaan ehdolliseksi todennäköisyydeksi Pr(A V): Pr( AV) Pr( V A) = Pr( V ) Pr( A)Pr( V A) = Pr( A)Pr( VA) + Pr( B)Pr( VB) 3 0.05 8 3 = = = 0.27 3 5 0.05 + 0.08 11 8 8 Ehdollisen todennäköisyyden Pr(A V) lauseketta sanotaan Bayesin kaavaksi. TKK (c) Ilkka Mellin (2005) 15

Kokonaistodennäköisyys ja Bayesin kaava: Johdanto Esimerkki laadunvalvonnasta 10/10 Sijoittamalla lausekkeet (7) ja (8) kaavaan (5) saadaan ehdolliseksi todennäköisyydeksi Pr(B V): Pr( BV) Pr( V B) = Pr( V ) Pr( B)Pr( V B) = Pr( A)Pr( VA) + Pr( B)Pr( VB) 5 0.08 8 8 = = = 0.73 3 5 0.05 + 0.08 11 8 8 Ehdollisen todennäköisyyden Pr(B V) lauseketta sanotaan Bayesin kaavaksi. TKK (c) Ilkka Mellin (2005) 16

Kokonaistodennäköisyys ja Bayesin kaava Kokonaistodennäköisyys ja Bayesin kaava: Johdanto >> Kokonaistodennäköisyyden kaava Bayesin kaava Kokonaistodennäköisyyden ja Bayesin kaavojen systeemiteoreettinen tulkinta TKK (c) Ilkka Mellin (2005) 17

Kokonaistodennäköisyyden kaava Avainsanat Indusoitu ositus Kokonaistodennäköisyyden kaava Ositus Riippumattomuus Toisensa poissulkevat tapahtumat Tulosääntö Yhteenlaskusääntö TKK (c) Ilkka Mellin (2005) 18

Kokonaistodennäköisyyden kaava Otosavaruuden ositus Otosavaruuden S osajoukot B 1, B 2,, B n muodostavat otosavaruuden S osituksen toisensa poissulkeviin tapahtumiin, jos (i) B i, i = 1, 2,, n (ii) B i B j =, i j (iii) S = B 1 B 2 B n B 1 B 2 B 3 B 4 B 5 S TKK (c) Ilkka Mellin (2005) 19

Kokonaistodennäköisyyden kaava Otosavaruuden ositus: Kommentteja Otosavaruuden SositusB 1, B 2,, B n muodostaa avaruuden S alkioiden luokkajaon, koska: (i) Joukot B 1, B 2,, B n ovat epätyhjiä. (ii) Joukot B 1, B 2,, B n ovat pareittain pistevieraita. (iii) S = B i Jos tapahtumat B 1, B 2,, B n muodostavat otosavaruuden S osituksen, täsmälleen yksi tapahtumista B 1, B 2,, B n sattuu aina, kun se satunnaisilmiö, jonka tulosvaihtoehtoja otosavaruus S kuvaa, esiintyy. TKK (c) Ilkka Mellin (2005) 20

Kokonaistodennäköisyyden kaava Otosavaruuden osituksen indusoima ositus Olkoon A S, A otosavaruuden S osajoukko. Olkoon B 1, B 2,, B n otosavaruuden Sositus. Ositus B 1, B 2,, B n indusoi osituksen joukkoon A: (A B i ) (A B j ) =, i j ja A = (A B 1 ) (A B 2 ) (A B n ) B 1 B 2 A B 2 A B 3 A B 4 B 3 B 4 A S TKK (c) Ilkka Mellin (2005) 21

Kokonaistodennäköisyyden kaava Kokonaistodennäköisyyden kaava: Määritelmä 1/2 Olkoon A S, A otosavaruuden S osajoukko. Olkoon B 1, B 2,, B n otosavaruuden Sositus. Olkoon (A B 1 ), (A B 2 ),,(A B n ) osituksen B 1, B 2,, B n indusoima ositus joukkoon A. Yhteenlaskusäännön perusteella n Pr( A) = Pr( A Bi ) (1) i= 1 B 1 B 2 A B 2 A B 3 A B 4 B 3 B 4 A S TKK (c) Ilkka Mellin (2005) 22

Kokonaistodennäköisyyden kaava Kokonaistodennäköisyyden kaava: Määritelmä 2/2 Yleisen tulosäännön perusteella Pr( A Bi) = Pr( Bi)Pr( A Bi) i = 1, 2,, n Sijoittamalla nämä lausekkeet kaavaan (1), saadaan kokonaistodennäköisyyden kaava n Pr( A) = Pr( Bi) Pr( A Bi) i= 1 B 1 B 2 A B 2 A B 3 A B 4 B 3 B 4 A S TKK (c) Ilkka Mellin (2005) 23

Kokonaistodennäköisyyden kaava Kokonaistodennäköisyyden kaava: Kommentteja Kokonaistodennäköisyyden kaava ilmaisee otosavaruuden S osajoukon A todennäköisyyden Pr(A) otosavaruuden S osituksen B 1, B 2,, B n määräämien todennäköisyyksien Pr(B i ) ja ehdollisten todennäköisyyksien Pr(A B i ) avulla. Kokonaistodennäköisyyden kaava on käyttökelpoinen sellaisissa tilanteissa, joissa todennäköisyydet Pr(B i ) ja ehdolliset todennäköisyydet Pr(A B i ) ovat tunnettuja. TKK (c) Ilkka Mellin (2005) 24

Kokonaistodennäköisyyden kaava Riippumattomuus ja kokonaistodennäköisyyden kaava Jos tapahtuma A on riippumaton jokaisesta tapahtumasta B 1, B 2,, B n, kokonaistodennäköisyyden kaavasta ei ole hyötyä tapahtuman A todennäköisyyttä määrättäessä. TKK (c) Ilkka Mellin (2005) 25

Kokonaistodennäköisyyden kaava Riippumattomuus ja kokonaistodennäköisyyden kaava: Perustelu Jos A B i, i = 1, 2,, n niin Tällöin koska Pr( A B ) = Pr( A) Pr( B ), i = 1,2,, n n Pr( A) = Pr( A B ) = Pr( A) Pr( B ) n i= 1 i i i= 1 i= 1 n = Pr( A) Pr( B ) = Pr( A) Pr( B ) = 1 i i= 1 i i n i TKK (c) Ilkka Mellin (2005) 26

Kokonaistodennäköisyys ja Bayesin kaava Kokonaistodennäköisyys ja Bayesin kaava: Johdanto Kokonaistodennäköisyyden kaava >> Bayesin kaava Kokonaistodennäköisyyden ja Bayesin kaavojen systeemiteoreettinen tulkinta TKK (c) Ilkka Mellin (2005) 27

Bayesin kaava Avainsanat Bayesin kaava Ehdollinen todennäköisyys Indusoitu ositus Kokonaistodennäköisyyden kaava Käänteistodennäköisyys Ositus Posteriori-todennäköisyys Priori-todennäköisyys Riippumattomuus TKK (c) Ilkka Mellin (2005) 28

Bayesin kaava Bayesin kaava: Määritelmä 1/2 Olkoon A S, A otosavaruuden S osajoukko. Olkoon B 1, B 2,, B n otosavaruuden Sositus. Ehdollisen todennäköisyyden määritelmän mukaan Pr( B A) = i = Pr( A Bi ) Pr( A) Pr( Bi) Pr( ABi) Pr( A) B 1 B 2 A B 2 A B 3 A B 4 B 3 B 4 A S TKK (c) Ilkka Mellin (2005) 29

Bayesin kaava Bayesin kaava: Määritelmä 2/2 Soveltamalla nimittäjään kokonaistodennäköisyyden kaavaa saadaan Bayesin kaava: Pr( Bi)Pr( ABi) Pr( Bi A) = n Pr( B )Pr( AB) i= 1 i i B 1 B 2 A B 2 A B 3 A B 4 B 3 B 4 A S TKK (c) Ilkka Mellin (2005) 30

Bayesin kaava Bayesin kaava: Kommentteja 1/3 Bayesin kaavan todennäköisyyttä Pr(B i ) kutsutaan tavallisesti priori-todennäköisyydeksi. prior (lat.), edeltävä, aikaisempi Todennäköisyyttä Pr(B i ) kutsutaan prioritodennäköisyydeksi, koska se kuvaa ennakkokäsitystä tapahtuman B i todennäköisyydestä, ennen kuin on saatu tietää, että tapahtuma A on sattunut. TKK (c) Ilkka Mellin (2005) 31

Bayesin kaava Bayesin kaava: Kommentteja 2/3 Bayesin kaavan todennäköisyyttä Pr(B i A) kutsutaan tavallisesti posteriori-todennäköisyyksiksi. posterior (lat.), jälkeen tuleva, myöhempi Todennäköisyyttä Pr(B i A) kutsutaan posterioritodennäköisyydeksi, koska se kuvaa sitä miten ennakkokäsitystä tapahtuman B i todennäköisyydestä kannattaa muuttaa sen jälkeen, kun on saatu tietää, että tapahtuma A on sattunut. Posteriori-todennäköisyyttä Pr(B i A) kutsutaan usein käänteistodennäköisyydeksi, koska se on käänteinen tunnettuun todennäköisyyteen Pr(A B i ) nähden. TKK (c) Ilkka Mellin (2005) 32

Bayesin kaava Bayesin kaava: Kommentteja 3/3 Bayesin kaava kertoo miten ennakkokäsitystä tapahtuman B i todennäköisyydestä on järkevää korjata sen jälkeen, kun tapahtuma A on havaittu. Bayesin kaava kertoo miten tietoa tapahtuman A sattumisesta voidaan käyttää hyväksi tapahtuman B i todennäköisyyden arvioinnissa. Bayesin kaava on käyttökelpoinen sellaisissa tilanteissa, joissa todennäköisyydet Pr(B i ) ja ehdolliset todennäköisyydet Pr(A B i ) ovat tunnettuja. TKK (c) Ilkka Mellin (2005) 33

Bayesin kaava Riippumattomuus ja Bayesin kaava Jos tapahtuma A on riippumaton jokaisesta tapahtumasta B 1, B 2,, B n, tieto tapahtuman A sattumisesta ei muuta priori-todennäköisyyksiä Pr(B i ): Jos A B 1, B 2,, B n, niin Pr( B A) = Pr( B ), i = 1,2,, n i i TKK (c) Ilkka Mellin (2005) 34

Kokonaistodennäköisyys ja Bayesin kaava Kokonaistodennäköisyys ja Bayesin kaava: Johdanto Kokonaistodennäköisyyden kaava Bayesin kaava >> Kokonaistodennäköisyyden ja Bayesin kaavojen systeemiteoreettinen tulkinta TKK (c) Ilkka Mellin (2005) 35

Kokonaistodennäköisyyden ja Bayesin kaavojen systeemiteoreettinen tulkinta Avainsanat Alkutila Bayesin kaava Ehdollinen todennäköisyys Kokonaistodennäköisyyden kaava Lopputila Posteriori-todennäköisyys Priori-todennäköisyys Systeemi Verkkodiagrammi Välitila TKK (c) Ilkka Mellin (2005) 36

Kokonaistodennäköisyyden ja Bayesin kaavojen systeemiteoreettinen tulkinta Systeemiteoreettinen tulkinta kokonaistodennäköisyyden ja Bayesin kaavoille 1/4 Oletetaan, että systeemissä on alkutila L, välitilat B 1, B 2,, B n ja yksi sen lopputiloista on A. Oletetaan, että alkutilasta L voidaan päästä lopputilaan A vain käymällä jossakin välitiloista B 1, B 2,, B n. Olkoot Pr(B i ) = Pr(Käydään välitilassa B i ) Pr(A B i ) = Pr(Välitilasta B i päästään lopputilaan A) Pr(A) = Pr(Päästään lopputilaan A) Pr(B i A) = Pr(Lopputilaan A tullaan välitilan B i kautta) TKK (c) Ilkka Mellin (2005) 37

Kokonaistodennäköisyyden ja Bayesin kaavojen systeemiteoreettinen tulkinta Systeemiteoreettinen tulkinta kokonaistodennäköisyyden ja Bayesin kaavoille 2/4 Systeemiä voidaan havainnollistaa seuraavalla verkkodiagrammilla: L Pr(B 1 ) Pr(B i ) B 1 B i Pr(A B 1 ) Pr(A B i ) A Pr(B n ) Pr(A B n ) B n TKK (c) Ilkka Mellin (2005) 38

Kokonaistodennäköisyyden ja Bayesin kaavojen systeemiteoreettinen tulkinta Systeemiteoreettinen tulkinta kokonaistodennäköisyyden ja Bayesin kaavoille 3/4 Kokonaistodennäköisyyden kaavan mukaan n Pr( A) = Pr( A B) = Pr( B )Pr( A B) i i i i= 1 i= 1 Pr(A) on todennäköisyys sille, että päästään lopputilaan A. Kokonaistodennäköisyyden kaavan mukaan todennäköisyys Pr(A) saadaan laskemalla yhteen alkutilasta L lopputilaan A välitilojen B i, i = 1, 2,, n kautta kulkevien reittien todennäköisyydet Pr(A B i ) = Pr(B i )Pr(A B i ) n TKK (c) Ilkka Mellin (2005) 39

Kokonaistodennäköisyyden ja Bayesin kaavojen systeemiteoreettinen tulkinta Systeemiteoreettinen tulkinta kokonaistodennäköisyyden ja Bayesin kaavoille 4/4 Bayesin kaavan mukaan Pr( A Bi) Pr( A Bi) Pr( Bi A) = = n Pr( A) Pr( A B) Pr(B i A) on siis ehdollinen todennäköisyys sille, että on käyty välitilassa B i, kun ehtotapahtumana on se, että on päästy lopputilaan A. i= 1 Pr( Bi)Pr( ABi) Pr( Bi)Pr( ABi) = = n Pr( A) Pr( B )Pr( AB) i= 1 i i i TKK (c) Ilkka Mellin (2005) 40