KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Samankaltaiset tiedostot
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Luento 7: Pyörimisliikkeen dynamiikkaa

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike

kertausta Esimerkki I

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

Luento 7: Pyörimisliikkeen dynamiikkaa

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Mekaniikan jatkokurssi Fys102

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

Luento 9: Pyörimisliikkeen dynamiikkaa

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /

Luento 3: Käyräviivainen liike

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Luvun 10 laskuesimerkit

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Luento 3: Käyräviivainen liike

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 5: Käyräviivainen liike

Luento 5: Käyräviivainen liike

KIERTOHEILURI JA HITAUSMOMENTTI

KJR-C1001: Statiikka L3 Luento : Jäykän kappaleen tasapaino

Fysiikan valintakoe , vastaukset tehtäviin 1-2

Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 2016

(ks. kuva) ja sen jälkeen x:n ja y:n suhteen yli xy-tasossa olevan alueen projektion G:

KJR-C1001: Statiikka L2 Luento : voiman momentti ja voimasysteemit

Harjoitus 7. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016

Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja

Sovellutuksia Pinta-alan ja tilavuuden laskeminen Keskiö ja hitausmomentti

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE

Mekaniikka, osa 2. Perttu Lantto. Luentokalvot

Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten)

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria

DYNAMIIKKA II, LUENTO 6 (SYKSY 2015) Arttu Polojärvi

KJR-C1001: Statiikka L5 Luento : Palkin normaali- ja leikkausvoima sekä taivutusmomentti

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017

nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora.

Torsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473

DYNAMIIKKA II, LUENTO 2 (SYKSY 2015) Arttu Polojärvi

Perusopintojen Laboratoriotöiden Työselostus 1

Harjoitus 4. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa a) ja b) sekä laske c) kohdan tehtävä.

Numeerinen integrointi

ELEC C4140 Kenttäteoria (syksy 2016)

RTEK-2000 Statiikan perusteet. 1. välikoe ke LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa

x n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4

KJR-C2002 Kontinuumimekaniikan perusteet

A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1

Suhteellisuusteorian perusteet 2017

Harjoitus 6. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

5.9 Voiman momentti (moment of force, torque)

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Tällaisessa tapauksessa on usein luontevaa samaistaa (u,v)-taso (x,y)-tason kanssa, jolloin tason parametriesitys on *** VEKTORIANALYYSI.

dx = L2 (x + 1) 2 dx x ln x + 1 = L 2 1 L + 1 L ( = 1 ((L + 1)ln(L + 1) L) L k + 1 xk+1 = 1 k + 2 xk+2 = 1 10k+1 k + 2 = 7.

y 1 x l 1 1 Kuva 1: Momentti

Ei-inertiaaliset koordinaatistot

Tehtävänä on määrittää fysikaalisen heilurin hitausmomentti heilahdusajan avulla.

Exam III 10 Mar 2014 Solutions

DYNAMIIKKA II, LUENTO 7 (SYKSY 2015) Arttu Polojärvi

KJR-C1001 Statiikka ja dynamiikka

Fysiikka ei kerro lopullisia totuuksia. Jokin uusi havainto voi vaatia muuttamaan teorioita.

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

g-kentät ja voimat Haarto & Karhunen

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE

Theory Finnish (Finland)

MS-A0202 Di erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Täydennetään ja kerrataan Fitzpatrickin lukujen 18 ja 19 esitystä.

Transkriptio:

KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme

Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin käsite Osata määrittää hitausmomentti kappaleelle integroimalla Osata määrittää hitausmomentti säännöllisistä kappaleista koostuvalle kappalesysteemille Osata soveltaa liikeyhtälöitä kiinteän akselin ympäri pyörivän jäykän kappaleen liikkeen ja voimien ratkaisemiseen Sisältö Hitausmomentti Esimerkkejä hitausmomentin laskemisesta Liikeyhtälöt kiinteän akselin ympäri pyörivälle jäykälle kappaleelle Esimerkki sovelluksesta

Hitausmomentti (Kirjan luku 17.1) Liikeyhtälö translaatioliikkeessä F = ma Liikeyhtälö rotaatioliikkeessä on muotoa M = Iα

Hitausmomentti (Kirjan luku 17.1) Partikkelin hitausmomentti m r F O a t Hitausmomentti kappaleelle, joka koostuu partikkeleista dm, saadaan summaamalla kaikkien partikkeleiden hitausmomentit I = m r 2 dm Massa = tiheys * tilavuus F = m a t I = V r 2 ρ dv M = r F = rm a t a t = rα M = r 2 m α = I α Kun tiheys on vakio I = ρ V r 2 dv

Hitausmomentti (Kirjan luku 17.1) Integrointi tilavuuden yli on kolmoisintegraali V = V dv = z y x dxdydz m = I = V V ρdv = r 2 ρdv = z y x z y x ρ dxdydz r 2 ρ dxdydz Se tarkoittaa, että kappale koostuu kuutioelementeistä, joiden sivujen pituudet ovat dx, dy ja dz. Koko kappaleen tilavuus saadaan, kun summataan kaikki nämä kuutioelementit. Koska pituudet dx, dy ja dz ovat infinitesimaalisia, kuutioelementtien summaus on integrointia.

Hitausmomentti (Kirjan luku 17.1) Kuutioelementin dxdydz sijasta voidaan käyttää esim. putken muotoista tilavuuselementtiä, jolla on vain yksi infinitesimaalinen mitta. Silloin tarvitaan vain yksi integrointi. Putkielementin tilavuus on dv = 2πy z dy Ympyrän kehä Paksuus Sylinterin korkeus Koska elementti on ohut, sen kaikki pisteet sijaitsevat samalla etäisyydellä z-akselista, y = r. Siten se soveltuu hitausmomentin määrittämiseen z-akselin ympäri.

Esimerkki I = ρ V r 2 dv Lasketaan sylinterin hitausmomentti, kun tiheys on vakio Käytetään putkielementtiä dv = 2πy z dy = 2πrh dr I z = ρ r r 3 2πh dr = ρ 0 R r 3 2πh dr I z = 1 2 r4 ρπh R 0 = 1 2 R4 ρπh Lausutaan hitausmomentti massan avulla m = ρ V dv = ρ2πh r r dr = ρπhr 2 I z = 1 2 mr2

Esimerkki I = ρ V r 2 dv Käytetään putkielementtiä dv = 2πy z dy = 2πrh dr Lasketaan onton sylinterin hitausmomentti. Tiheys on vakio. z Integroidaan nyt välillä r-r I z = ρ r R r 3 2πh dr = 1 2 r4 ρπh R r R r h = 1 2 R4 ρπh 1 2 r4 ρπh = 1 2 ρπh(r4 r 4 ) x O 2 h 2 y Lausutaan hitausmomentti massan avulla m = ρ V dv = ρ2πh r R r dr = ρπh(r 2 r 2 ) I z = 1 2 ρπh R2 r 2 R 2 + r 2 = 1 2 m R2 + r 2

Hitausmomentti Kun kappale koostuu useista yksinkertaisista muodoista, sen kokonaishitausmomentti voidaan laskea summaamalla kaikkien osien hitausmomentit saman akselin suhteen. Siten onton sylinterin hitausmomentti oltaisiin voitu laskea myös vähentämällä umpinaisen sylinterin hitausmomentista reiän kokoisen sylinterin hitausmomentti. I z = 1 2 R4 ρπh 1 2 r4 ρπh = 1 2 ρπh(r4 r 4 ) z z z r r x R h 2 h 2 y x R h 2 h 2 y x h 2 h 2 y

Hitausmomentti Säännöllisille kappaleille hitausmomentti löytyy usein taulukoista (esim. kirjan lopusta) Hitausmomentti voidaan määrittää myös hitaussäteen (radius of gyration) avulla I = mk 2 k = I m Jos halutaan määrittää kappaleen hitausmomentti jonkin muun, kuin massakeskipisteen kautta kulkevan akselin suhteen, voidaan soveltaa yhdensuuntaisten akseleiden sääntöä (Steinerin sääntö). I G m d I = I G + md 2 on hitausmomentti massakeskipisteen kautta kulkevan akselin suhteen, on kappaleen massa ja on kohtisuora etäisyys yhdensuuntaisten akseleiden välillä.

Ratkaisun eteneminen: Esimerkki Kuvan kappale koostuu ympyrälevystä, jonka massa on 6 kg ja kahdesta ohuesta sauvasta, joiden massa on 2 kg/m. Kun L on 0.75 m, määritä kappaleen hitausmomentti pisteen O kautta kulkevan tasoa vastaan kohtisuoran akselin suhteen. 1. Katsotaan taulukosta ohuen levyn ja ohuen sauvan hitausmomentit massakeskipisteiden kautta kulkevien akseleiden suhteen. 2. Sovelletaan yhdensuuntaisten akseleiden sääntöä ja lasketaan kaikkien osien hitausmomentit pisteen O kautta kulkevan akselin suhteen. 3. Summataan kaikkien osien hitausmomentit, jotta saadaan koko kappaleen hitausmomentti. 1. Osien hitausmomentit. Ohut ympyrälevy. I G = 1 2 mr2 I G = 1 2 6 kg 0.2m 2 = 0.12 kg m 2 Ohut sauva. I G = 1 I G,AB = 1 12 ml2 = 1 12 (2.6kg) 1.3m 2 = 0.366 kg m 2 12 ml2 I G,CD = 1 12 ml2 = 1 12 (1.5kg) 0.75m 2 = 0.07 kg m 2

1.1 Levyn hitausmomentti. *) Esimerkki Jos taulukoituja hitausmomentteja ei ole saatavilla, ne voidaan määrittää integroimalla tilavuuden yli. Tämä on hyvä tehdä myös harjoituksen vuoksi. (Ei käyty luennolla) Levy on tasomainen kappale, jonka paksuuden ajatellaan olevan 1. Umpinaisen sylinterin hitausmomentti laskettiin edellä, ja se ei massan avulla lausuttuna riipu sylinterin korkeudesta h. Siten sylinterin hitausmomentti on myös ohuen ympyrälevyn hitausmomentti (Katso umpinaisen sylinterin hitausmomentin laskeminen luennon alusta). I G = 1 2 mr2 1.2 Sauvan hitausmomentti. Sauva on yksiulotteinen kappale, eli sillä ajatellaan olevan vain yksi merkittävä dimensio, pituus. Sauvan hitausmomentti saadaan siis integroimalla pituuden yli. Ajatellaan sauvan koostuvan partikkeleista, joiden massa on dm ja pituus dx. Partikkeleiden etäisyys massakeskipisteestä on r = x. Summataan jokaisen partikkelin hitausmomentti massakeskipisteen kautta kulkevan akselin ympäri. y dm dx G x l/2 l/2

*) Esimerkki y G dm dx x Jos taulukoituja hitausmomentteja ei ole saatavilla, ne voidaan määrittää integroimalla tilavuuden yli. Tämä on hyvä tehdä myös harjoituksen vuoksi. (Ei käyty luennolla) l/2 Yhden partikkelin massa on dm = I = m r 2 dm = l/2 x x 2 ( m l )dx I G = ( m l ) x 2 dx = ( m l/2 l ) 1 3 m l l 2 l/2 dx, missä m on sauvan massa. 3 l 2 3 = m l 1 3 l 3 8 + l3 8 = 1 12 ml2 I G = 1 12 ml2

Esimerkki Kuvan kappale koostuu ympyrälevystä, jonka massa on 6 kg ja kahdesta ohuesta sauvasta, joiden massa on 2 kg/m. Kun L on 0.75 m, määritä kappaleen hitausmomentti pisteen O kautta kulkevan tasoa vastaan kohtisuoran akselin suhteen. 2. Lasketaan kaikkien osien hitausmomentit pisteen O kautta kulkevan akselin suhteen. Levy: I G = 0.12 kg m 2 I O = I G + md 2 I O,levy = 0.12 kg m 2 + 6kg ( 0.8 + 0.2 m) 2 = 6.12 kg m 2 Sauva AB: I G = 0.366 kg m 2 d = 0.8 m AB 2 = 0.15 m I O,AB = 0.366 kg m 2 + 2.6kg (0.15m) 2 = 0.425 kg m 2 Sauva CD: d = 0.5 m I G = 0.07 kg m 2 I O,CD = 0.07 kg m 2 + 1.5kg (0. 5m) 2 = 0.445 kg m 2

Esimerkki Kuvan kappale koostuu ympyrälevystä, jonka massa on 6 kg ja kahdesta ohuesta sauvasta, joiden massa on 2 kg/m. Kun L on 0.75 m, määritä kappaleen hitausmomentti pisteen O kautta kulkevan tasoa vastaan kohtisuoran akselin suhteen. 3. Koko kappaleen hitausmomentti pisteen O kautta kulkevan akselin suhteen. I O = I O,levy + I O,AB + I O,CD = 6.12 + 0.425 + 0.445 kg m 2 = 6.99 kg m 2

Jäykän kappaleen liikeyhtälöt (Kirjan luku 17.2) Kirjoitetaan liikeyhtälöt jäykän kappaleen tasoliikkeelle. Liikeyhtälöt kirjoitetaan kappaleen massakeskipisteelle. ΣF x = m(a G ) x ΣF y = m(a G ) y ΣM G = I G α Resultanttimomentti on joskus hyödyllistä laskea muun pisteen kuin massakeskipisteen ympäri (esim. piste P). Silloin pitää huomioida, että momenttiresultantti on yhtä suuri kuin voimien aiheuttama kineettinen momentti. Huomataan, että jos kulmakiihtyvyys on nolla, kappale ei pyöri, ja liikeyhtälöt ovat samat kuin jäykän kappaleen translaatioliikkeelle. ΣM P = Σ(M k ) P = y ma G x + x ma G y + I G α

Jäykän kappaleen liikeyhtälöt (Kirjan luku 17.4) Kun kappale pyörii kiinteän akselin ympäri, sen massakeskipiste on ympyräliikkeessä. Liikeyhtälöt on siis hyvä kirjoittaa normaali- ja tangentiaalikoordinaattien avulla. ΣF n = m(a G ) n ΣF t = m(a G ) t = mω 2 r G = mαr G ΣM G = I G α

Jäykän kappaleen liikeyhtälöt (Kirjan luku 17.4) Usein on järkevää summata momentit kiinteän pyörimisakselin O suhteen. Kineettisestä kuvasta: ΣM O = r G m(a G ) t +I G α (a G ) t = αr G : ΣM O = r G mαr G + I G α = (I G + mr G 2 ) α Yhdensuuntaisten akselien sääntö = I O α

Vapaakappalekuva. t Esimerkki 60 Nm Kuvan sauvalla on hetkellisesti kulmanopeus ω = 6 rad/s vastapäivään. Määritä tangentin ja normaalin suuntaiset tukireaktiot nivelessä O sekä sauvan kulmakiihtyvyys. Sauvan tiheys on vakio ja sen massa on 30 kg. O n O t Kineettinen kuva. G mg n r G m(a G ) t = mαr G G m(a G ) n I G α = mω 2 r G

Esimerkki Tukireaktiot sekä kulmakiihtyvyys saadaan ratkaistua liikeyhtälöistä: ΣF n = m(a G ) n = mω 2 r G Kuvan sauvalla on hetkellisesti kulmanopeus ω = 6 rad/s vastapäivään. Määritä tangentin ja normaalin suuntaiset tukireaktiot nivelessä O sekä sauvan kulmakiihtyvyys. Sauvan tiheys on vakio ja sen massa on 30 kg. ΣF t = m(a G ) t ΣM O = I O α Sauvan massakeskipisteen etäisyys pisteestä O: r G = 0.9 2 = mαr G 0.3 m = 0.15 m Sauvan hitausmomentti pisteen O suhteen I O = I G + mr G 2 = 1 12 30 kg 0.9m 2 + (30kg)(0.15m) 2 = 2.7kg m 2

Vapaakappalekuva. 60 Nm O n O t G mg Kulmakiihtyvyys saadaan alimmasta liikeyhtälöstä ΣM O = I O α α = ΣM O I O = 60 N m (30 9.81N)(0.15m) 2.7 kg m 2 = 5.87 rad/s 2 Tukireaktiot nivelessä O saadaan liikeyhtälöistä: Kineettinen kuva. + ΣF n = m(a G ) n + ΣF t = m(a G ) t = mω 2 r G = mαr G r G mαr G O n = mω 2 r G = 30 kg 6 rad/s 2 0.15 m = 162 N G O t mg = mαr G mω 2 r G I G α O t = 30 9.81N + 30 kg 5.87 rad s 2 0.15 m = 321 N

Yhteenveto Opimme laskemaan hitausmomentin kappaleelle integroimalla tilavuuden yli kappalesysteemille yhdensuuntaisten akseleiden säännön avulla Opimme, miten jäykän kappaleen liikeyhtälöitä sovelletaan kiinteän akselin ympäri pyörivän kappaleen liikkeen ja voimien ratkaisemiseen