DEE-11000 Piirianalyysi Silmukkavirta- ja solmupistemenetelmä 1
Verkon systemaattinen ratkaisu Solmupisteiden lukumäärä n (node) Haarojen lukumäärä b (branch) 2
Verkon systemaattinen ratkaisu Muodostetaan suljettuja silmukoita siten, että jokaisessa uudessa silmukassa on vähintään yksi uusi haara mukana ja että lopulta jokainen haara kuuluu vähintään yhteen silmukkaan. 3
Piiriyhtälöiden lukumäärä Muuttujia yhteensä (kunkin haaran virta ja jännite) Jokaiselle haaralle U x = f (I x ) 2b b Virtayhtälöitä n-1 Jänniteyhtälöitä b-n+1 4
Silmukkavirtamenetelmä Valitaan silmukat (b-n+1 kpl) ja muuttujiksi kuvitellut kiertävät silmukkavirrat. b-n+1 yhtälöä riittää. Kaikkien haarojen virrat voidaan lausua edellä mainittujen silmukkavirtojen avulla. Elementtiyhtälöistä haarojen jänniteet. Täydellinen ratkaisu. 5
Esimerkki Muodosta lineaarinen yhtälöryhmä oheisen kytkennän silmukkavirroille. Minkälainen systematiikka kyseisiin yhtälöihin liittyy? 6
Matriisiyhtälö RI = E R ii silmukan i resistanssien summa, kaikki positiivisina. R ij silmukoiden i ja j yhteisen haaran resistanssi positiivisena, jos silmukoiden kiertosuunnat kulkevat samaan suuntaan resistanssin kautta, muutoin negatiivisena. I i silmukan i virta. E i silmukkaan i kuuluvien lähdejännitteiden, kiertosuunnan määräämä, oikealla etumerkillä varustettu summa. 7
Matriisiyhtälö RI = E Riippumattomia lähteitä ja resistansseja sisältävän piirin resistanssimatriisi on symmetrinen. 2 3 4 3 5 6 4 6 7 8
Silmukkavirtamenetelmä (Cont.) Muunnetaan verkon mahdolliset virtalähteet ekvivalenttisiksi jännitelähteiksi. Poistetaan ylimääräiset rinnankytkennät. Kiinnitetään silmukat. Kirjoitetaan lineaarinen yhtälöryhmä silmukkavirroille. Suoritetaan ratkaisu. Esimerkki 9
REVIEW QUESTION 6 Oheissa kytkennässä vastuksen R 2 kautta kulkeva virta on 0 A. Onko virtalähteen J arvo tällöin A) B) 1 A 2 A C) 3 A D) 4 A 10
Solmupistemenetelmä Valitaan referenssisolmu, jonka potentiaali voidaan ajatella nollaksi. Valitaan muuttujiksi muiden solmujen potentiaalit referenssisolmuun nähden. Ns. solmujännitteitä näin ollen n-1 kappaletta. Kaikkien haarojen jännitteet voidaan lausua em. solmujännitteiden avulla. Tällöin haaravirrat voidaan laskea, koska elementtiyhtä-öt tunnetaan. Täydellinen ratkaisu. 11
Esimerkki Muodosta lineaarinen yhtälöryhmä oheisen verkon solmujännitteille. Minkälainen logiikka / systematiikka on todennettavissa kyseisistä yhtälöistä? 12
Matriisiyhtälö GU = J G ii solmuun i liittyvien konduktanssien summa, kaikki positiivisina. G ij solmujen i ja j välinen konduktanssi negatiivisena. U i solmun i potentiaali referenssisolmuun nähden J i solmuun i kuuluvien lähdevirtojen summa, läh-de positiivisena jos sen virta on solmuun päin. 13
Review Question 7 Onko oheisessa kytkennässä solmun 1 yhtälö A) 6U 1-2U 2-4U 3 =3 B) 3U 1-2U 2 -U 3 =12 C) 6U 1-6U 2-12U 3 =-3 14
Solmupistemenetelmä (Cont.) Muunnetaan jännitelähteet virtalähteiksi. Poistetaan ylimääräiset rinnankytkennät. Numeroidaan solmut ja valitaan referenssisolmu. Kirjoitetaan yhtälöt. Suoritetaan ratkaisu. Mitoita oheisessa piirissä lähdejännite E siten, että kuvaan merkitty jännite v 2W on 4 V. 15
Ennakkotehtävä 5 Mitoita solmupistemenetelmää hyväksikäyttäen kytkennän jännitelähteen E arvo siten, että virta I 3 saa arvon 0.1 A. 16
Silmukkavirta- vs solmupistemenetelmä Valitaan se menetelmä, jolla työmäärä minimoituu. Verkko, jossa b haaraa ja n solmua. Esimerkiksi silmukkavirtamenetelmä on edullisempi, mikäli b n 1 n 1 n b 2 1 17