Mittausepävarmuuden laskeminen Mittausepävarmuuden laskemisesta on useita standardeja ja suosituksia Yleisimmin hyväksytty on International Organization for Standardization (ISO): Guide to the epression of uncertainty in measurement (1993) Akkreditoiduille kalibrointilaboratorioille käytössä yksinkertaisempi versio EA-4/0 (linkki kurssin webbisivulla) Petri Kärhä 30.3.005 Luento 8: Mittausepävarmuuden laskeminen 1
Epävarmuuslaskelma vai virhearvio? Virhearvio: Virhearviossa määritetään estimaatit mittauksen virhelähteille, ja lasketaan ne yhteen Antaa ylärajan mittausvirheelle Ei sovellu kalibrointitoimintaan Epävarmuuslaskelma: Määritetään estimaatit mittauksen virhelähteille ja korjataan ne tuloksiin Lasketaan korjausten epävarmuudet neliöllisesti yhteen Antaa luotettavuusvälin, jolla mitattava suure on tietyllä tilastollisella todennäköisyydellä (Yleensä 95%). Petri Kärhä 30.3.005 Luento 8: Mittausepävarmuuden laskeminen
Epävarmuusanalyysin kulku 1. Esitä matemaattisesti mittaussuureen riippuvuus lähtösuureista. Identifioi ja tee merkittävät korjaukset 3. Luetteloi epävarmuuslähteet 4. Laske standardiepävarmuus toistettavasti mitatuille suureille (tyypin A epävarmuudet) 5. Arvioi tyypin B epävarmuudet muilla keinoilla 6. Laske epävarmuuskomponenttien vaikutukset mittaussuureen epävarmuuteen 7. Laske saadut epävarmuuskomponentit neliöllisesti yhteen (yhdistetty standardiepävarmuus u. 8. Laske laajennettu epävarmuus kertomalla halutulla kattavuuskertoimella k (yleensä k= => 95% luotettavuusväli) Petri Kärhä 30.3.005 Luento 8: Mittausepävarmuuden laskeminen 3
Tyypillisiä epävarmuuskomponentteja Mittalaitteesta aiheutuvat Kalibrointi Aika kalibroinnista Lineaarisuus Taajuusriippuvuus Resoluutio Mittalaitteen stabiilius Käyttöedellytykset Lämpötila, kosteus, paine Sähköiset häiriöt Verkkojännite Erityisesti näiden vaihtelu mittauksen aikana! Käyttäjästä johtuvat (Lähinnä analogisissa mittalaitteissa) Mittarin asento Lukematarkkuus Alkuasetukset Mittauskohteesta aiheutuvat Mittarin vaikutus mittauskohteeseen Kuormitus Maasilmukat, vuotovirrat, mittajohdot, epäsovitukset Mitattavan ilmiön stabiilius Petri Kärhä 30.3.005 Luento 8: Mittausepävarmuuden laskeminen 4
Mittausepävarmuuden luokittelu Tyypin A epävarmuus: Epävarmuus, joka voidaan määrittää tilastollisin menetelmin Tyypin B epävarmuus: Epävarmuus, jota ei voida määrittää tilastollisin menetelmin. Voidaan saada esim: Laitteen kalibrointitodistuksesta Laitteen spesifikaatioista Aikaisemmasta mittauskokemuksesta Arvioimalla Epävarmuuskomponenttien merkintätapoja Standardiepävarmuus: u(), s, Suhteellinen standardiepävarmuus: u()/, s /, / Yhdistetty standardiepävarmuus: u c, Laajennettu epävarmuus: U Petri Kärhä 30.3.005 Luento 8: Mittausepävarmuuden laskeminen 5
Epävarmuuskomponenteista Epävarmuuskomponenteista on tunnettava jakauma Useimmat epävarmuuskomponentit noudattavat normaalijakaumaa tai tasajakumaa. Jotta epävarmuuskomponentteja voidaan yhdistää on niistä selvitettävä varianssi (tai keskihajonta), joko laskemalla tai arvioimalla Tasajakautuneesta (välillä 1 ) suureesta saadaan varianssi ja keskihajonta kaavoilla 1 s = ( 1 ) s = 1 1 3 Petri Kärhä 30.3.005 Luento 8: Mittausepävarmuuden laskeminen 6
Epävarmuuskomponenttien vaikutus mittaustulokseen Epävarmuuskomponentin vaikutus mittaustulokseen voidaan arvioida mittausyhtälöstä osittaisdifferentiaaleilla Useinmiten helpoin tapa on käyttää suhteellisia epävarmuuksia Kerrottavien ja jaettavien suureiden suhteelliset epävarmuudet aiheuttavat samansuuruisen suhteellisen epävarmuuden mittaustulokseen ( ) u ( ) uy Y = Mikäli suure on mittausyhtälössä korotettu potenssiin n on aiheutuva suhteellinen epävarmuus n-kertainen Petri Kärhä 30.3.005 Luento 8: Mittausepävarmuuden laskeminen 7
Esimerkki mittausepävarmuuskomponenttien vaikutuksista Mittaustulos Y riippuu mitattavista suureista i seuraavasti: ( 1,, 3, 4) Y Suureet 1, ja 3 aiheuttavat kukin Y:hyn yhtäsuuren epävarmuuskomponentin. Esim. 0,5 % epävarmuus 1 :ssä aiheuttaa 0,5 % epävarmuuden Y:hyn. 4 :n aiheuttama epävarmuuskomponentti = ( ) ( 4 ) uy Y = n u 4 Lähes kaikki mittausyhtälöt koostuvat kerto- jako ja potenssilaskuista! 1 ( ) n 3 4 Petri Kärhä 30.3.005 Luento 8: Mittausepävarmuuden laskeminen 8
Epävarmuuskomponenttien yhdistäminen Kun epävarmuuskomponenttien vaikutukset mittaustulokseen on selvitetty, voidaan kokonaisepävarmuus laskea suhteellisten epävarmuuskomponenttien neliösummana ( ) u k ( ) u ( ) u ( ) u i ( ) 1 ( 4 ) u Y c Y = n i i= 1 i = Epävarmuuskomponenttien on oltava toisistaan riippumattomia Laajennettu epävarmuus U saadaan kertomalla kattavuuskertoimella k: U=k*u c 1 + + n u + 4 Petri Kärhä 30.3.005 Luento 8: Mittausepävarmuuden laskeminen 9
Kattavuuskertoimen valinta Kattavuuskerroin valitaan siten että mittaustulos on tietyllä todennäköisyydell epävarmuusrajojen sisällä Eri epävarmuuskomponenteista voidaan laskea mittaustuloksen efektiivinen vapausasteiden määrä ν eff = u 4 c ( y) N i= 1 u 4 i ( y) ν N kertaa mitatulle tulokselle ν= N-1. Tyypin B epävarmuuksille ν= Haluttu kattavuuskerroin saadaan Studentin t-jakaumasta i Käytännössä käytetään lähes aina k=, joka vastaa likimain 95% luotettavuutta Petri Kärhä 30.3.005 Luento 8: Mittausepävarmuuden laskeminen 10