1 Ominaisarvot ja ominaisvektorit

Samankaltaiset tiedostot
5 Ominaisarvot ja ominaisvektorit

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja

6 MATRIISIN DIAGONALISOINTI

5 OMINAISARVOT JA OMINAISVEKTORIT

Ortogonaalisen kannan etsiminen

Matematiikka B2 - Avoin yliopisto

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

Jouni Sampo. 4. maaliskuuta 2013

MS-C1340 Lineaarialgebra ja

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.

Alkeismuunnokset matriisille, sivu 57

Matematiikka B2 - TUDI

Ominaisarvo ja ominaisvektori

Ortogonaaliset matriisit, määritelmä 1

Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.

Insinöörimatematiikka D

Matemaattinen Analyysi / kertaus

Lineaarikuvauksen R n R m matriisi

Insinöörimatematiikka D

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät

Insinöörimatematiikka D

MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42

BM20A0700, Matematiikka KoTiB2

1 Matriisit ja lineaariset yhtälöryhmät

MS-A0004/A0006 Matriisilaskenta

Ominaisarvo ja ominaisvektori

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

6. OMINAISARVOT JA DIAGONALISOINTI

Ominaisarvo-hajoitelma ja diagonalisointi

Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit

Lineaarialgebra II P

Luento 8: Epälineaarinen optimointi

Ortogonaalinen ja ortonormaali kanta

Ominaisvektoreiden lineaarinen riippumattomuus

Kertausta: avaruuden R n vektoreiden pistetulo

OMINAISARVOISTA JA OMINAISVEKTOREISTA

1 Sisätulo- ja normiavaruudet

802320A LINEAARIALGEBRA OSA II

1.1. Määritelmiä ja nimityksiä

Similaarisuus. Määritelmä. Huom.

Kertausta: avaruuden R n vektoreiden pistetulo

MS-A0003/A Matriisilaskenta Laskuharjoitus 6

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Luento 8: Epälineaarinen optimointi

Lineaarialgebra, kertausta aiheita

Insinöörimatematiikka D

Matriisit ja vektorit Matriisin käsite Matriisialgebra. Olkoon A = , B = Laske A + B, , 1 3 3

1 Lineaariavaruus eli Vektoriavaruus

802320A LINEAARIALGEBRA OSA I

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

MS-C1340 Lineaarialgebra ja

Sisätuloavaruudet. 4. lokakuuta 2006

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.

Lineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg

Esimerkki 4.4. Esimerkki jatkoa. Määrää matriisin ominaisarvot ja -vektorit. Ratk. Nyt

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

Yleiset lineaarimuunnokset

Insinöörimatematiikka D

Numeeriset menetelmät

i=1 Näistä on helppo näyttää ominaisuudet (1)-(4). Ellei toisin mainita, käytetään R n :ssä

1. Normi ja sisätulo

Demorastitiedot saat demonstraattori Markus Niskaselta Lineaarialgebra (muut ko) p. 1/104

2.5. Matriisin avaruudet ja tunnusluvut

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Insinöörimatematiikka D

Matriisipotenssi. Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: ja A 0 = I n.

C = {(x,y) x,y R} joiden joukossa on määritelty yhteen- ja kertolasku seuraavasti

LINEAARIALGEBRA A 2016 TOMI ALASTE EDITED BY T.M. FROM THE NOTES OF

(1.1) Ae j = a k,j e k.

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Ominaisarvot ja ominaisvektorit 140 / 170

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48

pdfmark=/pages, Raw=/Rotate 90 1 Lineaariavaruus eli Vektoriavaruus Sisätuloavaruus Lineaarikuvaus Ominaisarvo 0-68

ominaisvektorit. Nyt 2 3 6

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

LINEAARIALGEBRA P. LUENTOMONISTE ja HARJOITUSTEHTÄVÄT

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28

Kanta ja Kannan-vaihto

ja F =

Käänteismatriisi 1 / 14

Johdatus lineaarialgebraan

Tällä viikolla viimeiset luennot ja demot. Lineaarialgebra (muut ko) p. 1/162

Matriisihajotelmat. MS-A0007 Matriisilaskenta. 5.1 Diagonalisointi. 5.1 Diagonalisointi

1 Avaruuksien ja lineaarikuvausten suora summa

Johdatus lineaarialgebraan

Matriisilaskenta (TFM) MS-A0001 Hakula/Vuojamo Ratkaisut, Viikko 48, , c)

Tyyppi metalli puu lasi työ I II III

800350A / S Matriisiteoria

Lineaariset mollit, kl 2017, Harjoitus 1

Lineaarialgebra ja matriisilaskenta I

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset

Lineaarikuvaukset. 12. joulukuuta F (A r ) = F (A r ) r .(3) F (s) = s. (4) Skalaareille kannattaa määritellä lisäksi seuraavat tulot:

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila

Matriisialgebra harjoitukset, syksy 2016

Insinöörimatematiikka D

2.8. Kannanvaihto R n :ssä

Transkriptio:

1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A ominaisarvoksi (eigenvalue). Vastaavasti ratkaisut x 0 ovat A:n ominaisarvoa λ vastaavia ominaisvektoreita. Ominaisarvojen joukko = A:n spektri. Ominaisarvoon λ liittyvät ominaisvektorit yhdessä vektorin 0 kanssa muodostavat tähän ominaisarvoon liittyvän A:n ominaisavaruuden (eigenspace). Matriisin ominaisarvojen ja vektorien määräämistä kutsutaan ominaisarvo ongelmaksi (eigenvalue problem).

Ominaisarvoyhtälö voidaan kirjoittaa muotoon (A λi)x = 0 (2) 2 Tällä yhtälöllä on nollasta poikkeavia ratkaisuja jos ja vain jos a 11 λ a 12 a 1n a 21 a 22 λ a 2n D(λ) = det(a λi) =..... = 0. a n1 a n2 a nn λ (3) Yo. yhtälö on matriisin A karakteristinen yhtälö, ja D(λ) karakteristinen determinantti. Kun D(λ) kehitetään, saadaan λ:n suhteen n:nnen asteen polynomi, joka on matriisin A karakteristinen polynomi.

n n matriisilla on siis vähintään yksi ominaisarvo ja enintään n erilaista ominaisarvoa. 3 Jos ajatellaan matriisia A lineaarimuunnoksena, ominaisvektorit ovat niitä vektoreita jotka säilyttävät suuntansa tässä kuvauksessa. Näissä tapauksissa kuvaus on siis vain tietyn skalaarin sanelema pituuden skaalaus, ja tämä skalaari on kyseistä ominaisvektoria vastaava ominaisarvo. Suurille matriiseille ominaisarvot lasketaan yleensä tietokoneella. Ominaisarvot laskettava ensin, sen jälkeen voidaan laskea ominaisvektorit esim. Gaussin eliminoinnilla.

Jos x on matriisin A ominaisarvoa λ vastaava ominaisvektori, niin on myös kx k 0. Jos matriisin A ominaisarvo λ on karakteristisen yhtälön M λ :nnen kertaluvun juuri, M λ on λ:n algebrallinen kertaluku (algebraic multiplicity). 4 Ominaisarvoon λ liittyvien lineaarisesti riippumattomien ominaisvektorien lukumäärä m λ on λ:n geometrinen kertaluku (geometric multiplicity). Huom. reaalisen matriisin ominaisarvot ja vektorit voivat olla kompleksisia. Esim. 0 1 (4) 1 0 Matriisin A ja sen transpoosin A T ominaisarvot ovat samat.

2 Ortogonaaliset, symmetriset ja vinosymmetriset matriisit Reaalinen neliömatriisi A = [a jk ] on symmetrinen, jos A T = A (5) 5 vinosymmetrinen, jos ja ortogonaalinen, jos A T = A (6) A T = A 1 (7) Jokainen reaalinen neliömatriisi A voidaan esittää symmetrisen matriisin R = 1 2 (A + AT ) ja vinosymmetrisen matriisin S = 1 2 (A AT ) summana.

6 Symmetrisen matriisin ominaisarvot ovat reaalisia. Vinosymmetrisen matriisin ominaisarvot ovat puhtaasti imaginäärisiä.

2.1 Ortogonaalimuunnokset Ortogonaalimuunnos on muunnos y = Ax, (8) missä A on ortogonaalinen matriisi. 7 Jokaista vektoria x avaruudessa R n vastaa vektori y R n :ssä, jolle muunnos on voimassa. Esimerkki muunnoksesta: Kierto tasossa. Tärkeä ominaisuus: Ortogonaalimuunnos säilyttää vektorien sisätulon a b = a T b (9) ja normin a = a a = a T a (10)

Lauseen (9) todistus: Olkoon u = Aa ja v = Ab. Tällöin u v = u T v = (Aa) T Ab = a T A T Ab = a T Ib = a T b = a b (11) 8 Reaalinen neliömatriisi on ortogonaalinen jos ja vain jos sen pysty (sarake )vektorit (ja myös vaakavektorit) muodostavat ortonormaalin järjestelmän, eli a j a k = a T 0 j k j a k = (12) 1 j = k Ortogonaalisen matriisin determinantin arvo on +1 tai 1. Ortogonaalisen matriisin ominaisarvot ovat reaalisia tai pareittain kompleksikonjugaatteja ja niiden itseisarvo on 1.

2.2 Ominaiskanta, diagonalisointi, neliömuoto n n matriisin ominaisarvot saattavat muodostaa R n :n kannan. Näin muodostettua kantaa kutsutaan matriisin ominaiskannaksi (eigenbase). 9 Jos n n matriisilla on n toisistaan eroavaa ominaisarvoa, tällöin A:n ominaisvektorit {x 1,, x n } muodostavat lineaarisesti riippumattoman joukon. Edellisestä lauseesta seuraa, että jos A:lla on n keskenään erilaista ominaisarvoa, A:n ominaisvektorit muodostavat R n :n kannan. (Jos ominaisarvoja on alle n, ominaisvektorit joko muodostavat tai eivät muodosta R n :n kantaa.) Symmetrisen matriisin ominaisvektorit muodostavat R n :n ortonormaalin kannan (kanta on ortogonaalinen, ja kaikkien kantavektorien pituus on 1).

n n matriisit  ja A ovat similaarisia (similar), jos  = T 1 AT (13) 0 jollekin ei singulaariselle matriisille T. Tätä muunnosta kutsutaan similaarisuusmuunnokseksi. Jos  ja A ovat similaarisia, niillä on samat ominaisarvot. Jos x on A:n ominaisvektori, y = T 1 x on Â:n samaa ominaisarvoa vastaava ominaisvektori.

Näin ollen muunnos y = Ax voidaan esittää ominaisvektorien x 1, x n avulla muodossa y = Ax = A(c 1 x 1 + + c n x n ) = c 1 Ax 1 + + c n Ax n = c 1 λ 1 x 1 + + c n λ n x n (14) 1 Jos n n matriisilla A on ominaisvektorien muodostama kanta, D = X 1 AX (15) on diagonaalinen, A:n ominaisarvot ovat D:n päälävistäjällä. X on matriisi, jossa A:n ominaisvektorit ovat pystyvektoreina. Pätee myös D m = X 1 A m X (16)

Tarkastellaan neliömuotoa Q = x T Ax (17) 2 Oletetaan, että matriisi A on reaalinen ja symmetrinen. Tällöin A:lla on n:n ortonormaalin ominaisvektorin kanta. Näiden vektorien muodostama matriisi X on ortogonaalinen ja X 1 = X T. Näin ollen A = XDX 1 = XDX T ja Q = x T XDX T x (18) Asettamalla X T x = y, saadaan (X 1 = X T ) x = Xy, (19) jolloin Q tulee muotoon Q = y T Dy = λ 1 y1 2 + λ 2 y2 2 + + λ n yn 2 (20)

Näin ollen on voimassa pääakselilause: Muunnos (19) muuntaa neliöllisen muodon n n Q = x T Ax = a jk x j x k (21) j=1 k=1 3 pääakselimuotoon (20), missä λ 1,, λ n ovat symmetrisen matriisin A ominaisarvoja ja X on ortogonaalinen matriisi, jonka pystyvektorit ovat vastaavia ominaisvektoreita x 1,, x n. Esim. Muuta pääakselimuotoon neliömuoto Mitä käyrää neliömuoto esittää? Q = 17x 2 1 30x 1 x 2 + 17x 2 2 = 128. (22)

3 Vektoriavaruudet, Sisätuloavaruudet, Lineaarimuunnokset 4 Ei tyhjä joukko V, jossa on alkiot a, b, on reaalinen vektoriavaruus (reaalinen lineaarinen avaruus) ja sen alkioita kutsutaan vektoreiksi, jos V :ssä on määritelty 1. Vektorien yhteenlasku: Jokaista vektoriparia a ja b vastaa yksikäsitteinen vektori a + b, joka toteuttaa aksiomat: (a) Vaihdannaisuus: a + b = b + a a, b (b) Liitännäisyys: (u + v) + w = u + (v + w) u, v, w (c) On olemassa yksikäsitteinen nollavektori s.e. a V, a + 0 = a (d) a V on olemassa yksikäsitteinen vektori a s.e. a + ( a) = 0

2. Skalaarilla kertominen: Jokaista reaalilukua (skalaaria) c ja vektoria a vastaa yksikäsitteinen V :hen kuuluva vektori ca, jota kutsutaan c:n ja a:n tuloksi, joka toteuttaa seuravat aksiomat: (a) Osittelulaki: Jokaiselle skalaarille c ja vektoreille a ja b V :ssä c(a + b) = ca + cb (23) 5 (b) Osittelulaki: Kaikille skalaareille c ja k ja jokaiselle vektorille a V :ssä (c + k)a = ca + ka (24) (c) Liitännäisyys: Kaikille skalaareille c ja k ja jokaiselle vektorille a V :ssä (d) Jokaiselle a avaruudessa V c(ka) = (ck)a (25) 1a = a (26)

3.1 Sisätuloavaruudet Reaalinen vektoriavaruus on reaalinen sisätuloavaruus, jos jokaiseen vektoripariin a ja b V :ssä liittyy reaaliluku, jota merkitään (a, b) ja jolla on seuraavat ominaisuudet: 1. Lineaarisuus: Kaikilla skalaareilla q 1 ja q 2 ja kaikilla vektoreilla a, b, c V :ssä on voimassa: 6 (q 1 a + q 2 b, c) = q 1 (a, c) + q 2 (b, c) (27) 2. Symmetria: Kaikilla a ja b V :ssä (a, b) = (b, a) (28) 3. Positiividefiniittisyys: Jokaiselle a:lle V :ssä (a, a) 0 (a, a) = 0 a = 0 (29)

Vektorit, joiden sisätulo on nolla, ovat ortogonaalisia. Vektorin normi (pituus) määritellään a = (a, a) (30) 7 Vektori, jonka normi = 1 on yksikkövektori Voidaan osoittaa myös Schwarzin epäyhtälö (a, b) a b, (31) kolmioepäyhtälö ja suunnikasyhtälö a + b a + b (32) a + b 2 a b 2 = 2( a 2 + b 2 ) (33)

3.2 Lineaarimuunnokset Jos jokaista vektoria x vektoriavaruudessa X vastaa yksikäsitteinen vektori y vektoriavaruudessa Y, kyseessä on kuvaus (tai muunnos tai opeaattori) X:stä Y :hyn, merkitään F (x) tai F x. Vektori y on vektorin x kuva. 8 F on lineaarinen kuvaus, jos kaikilla vektoreilla x ja v X:ssä ja skalaareille c F (v + x) = F (v) + F (x) F (cx) = cf (x) Jos X = R n ja Y = R m, reaalinen m n matriisi A = [a jk ] määrittelee muunnoksen R n :stä R m :ään: (34) y = Ax (35)

Matriisia A kutsutaan kuvauksen F esitykseksi R n :n ja R m :n kantojen suhteen. 9 Esimerkki standardikannasta: R 3 :n standardikanta = e (1) = i, e (2) = j, e (3) = k 1 0 0 i = 0 j = 1 k = 0 (36) 0 0 1 Jos A on ei singulaarinen neliömatriisi, voidaan määritellä käänteismuunnos x = A 1 x (37)

Kertauksen vuoksi: Olkoon A neliömatriisi (n n). Seuraavat väittämät ovat joko kaikki yhtäaikaa tosia, tai kaikki yhtäaikaa epätosia. A:lle löytyy käänteismatriisi. A T :lle löytyy käänteismatriisi. A:n determinantti ei ole nolla. 0 A:n sarakkeet (ja rivit) muodostavat R n :n kannan. ranka = n A:n nulliteetti (nolla-avaruuden dimensio) = 0. Yhtälöllä Ax = 0 on vain triviaaliratkaisu. A:n sarakkeet (ja rivit) muodostavat lineaarisesti riippumattoman joukon. Luku 0 ei ole A:n ominaisarvo.