RTEK-2000 Statiikan perusteet 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat
Osaamistavoitteet 2 Opiskelija: tuntee mekaniikan peruslait ja peruskäsitteet. osaa koota mielivaltaisen voimasysteemin mahdollisimman yksinkertaiseen muotoon. osaa ratkaista partikkelin ja jäykän kappaleen isostaattisia tasapainotehtäviä osaa määrittää isostaattisen palkin ja kehän rasitukset osaa soveltaa Coulombin liukukitkalakia kappalesysteemien statiikan ongelmiin. osaa soveltaa virtuaalisen työn periaatetta jäykän kappaleen statiikan ongelmissa.
http://webhotel2.tut.fi/mec_tme 3
Oppikirja Sivumäärä: 400 Kirjoittaja: Tapio Salmi (Tappi) Kustantaja: Pressus Oy Kirjan kieli: suomi Asu: Kovakantinen kirja Painos: 3. painos Julkaisuvuosi: 2005 Tarjoushinta 33 saatavissa kirjakaupasta
5
Oppialat 6 Mekaniikka (Mechanics) on fysiikan osa, joka käsittelee voimien vaikutusten alaisten kappaleiden lepoa ja liikettä. Mekaniikka voidaan jakaa liiketilan mukaan kahteen osaan: statiikkaan (Statics) eli tasapaino-oppiin ja dynamiikkaan (Dynamics) eli liikeoppiin. Materiaalin olomuodon perusteella voidaan tehdä toinen jako: solidien (solids) eli kiinteiden kappaleiden ja fluidien (fluids) eli nesteiden ja kaasujen mekaniikkaan. Statiikka tutkii levossa oleviin kappaleisiin vaikuttavia voimasysteemejä. Kursssilla käsitellään lähinnä vain sellaisia kappaleita, jotka ovat ehdottoman jäykkiä (rigid). Tällaisia kappaleita ei tietenkään todellisuudessa ole olemassa, vaan kaikki kappaleet ovat deformoituvia. Kappaletta kuormittavien voimien aiheuttamat muodonmuutokset eli deformaatiot ovat kuitenkin usein hyvin pieniä eivätkä käytännöllisesti katsoen vaikuta kappaleen lepo- tai liiketilaan.
Staattisuuden laatu Isostaattinen Statiikan tehtäviä, jotka voidaan ratkaista pitämällä kappaleita ehdottoman jäykkinä, kutsutaan isostaattisiksi (staattisesti määrätyiksi). Hyperstaattinen Jos tehtävää ratkaistaessa muodonmuutokset on pakko ottaa huomioon, sanotaan tehtävää hyperstaattiseksi (staattisesti määräämättömäksi). Tässä kurssissa rajoitutaan käsittelemään vain isostaattisia statiikan ongelmia, kun taas hyperstaattisia tehtäviä käsitellään lujuusopissa ja rakenteiden statiikassa.
Mekaniikan peruskäsitteitä Mekaniikan peruskäsitteitä (basic concepts) ovat avaruus (space) ja materiaalinen kappale (body). Fysikaalisella avaruudella tarkoitetaan euklidista, homogeenista ja isotrooppista (kaikkiin suuntiin samanarvoista) tilaa, jossa materiaaliset kappaleet ovat. Pisteen paikka avaruudessa esitetään koordinaatiston avulla. Valitaan jokin avaruuden piste origoksi, johon asetetaan koordinaattiakselit, jotka yleensä valitaan suoraviivaisiksi. Tällaista koordinaatistoa nimitämme karteesiseksi koordinaatistoksi. Usein koordinaattiakselit valitaan toisilleen kohtisuoriksi, jolloin koordinaatistoa kutsutaan ortogonaaliseksi karteesiseksi koordinaatistoksi. luonnollinen kanta
Materiaaliset kappaleet Partikkeli eli hiukkanen (particle) on kappale, jonka mitat ovat epäoleellisia kyseessä olevan tehtävän kannalta. Esimerkiksi autoa voidaan pitää partikkelina silloin, kun tutkitaan sen kiihtyvyysominaisuuksia suoralla tiellä, mutta sitä täytyy käsitellä kappaleena, kun tutkitaan esimerkiksi sen ominaisuuksia kaarreajossa. Jäykkä kappale (rigid body) on äärellisestä määrästä partikkeleita koostuva kiinteä partikkelisysteemi, jossa partikkelien kaikki keskinäiset välimatkat säilyvät muuttumattomina kuormitetaan kappaletta miten tahansa. Deformoituva kappale on äärellisestä määrästä partikkeleita koostuva partikkelisysteemi, jossa partikkelien väliset keskinäiset etäisyydet muuttuvat kappaletta kuormitettaessa. Jos partikkelien välimatkat palautuvat täysin ennalleen, kun kuormitus poistetaan, sanotaan kappaletta kimmoiseksi. Jos partikkelien välimatkat jäävät muuttuneeseen tilaan, kappaletta sanotaan plastiseksi.
Mekaniikan peruslait 1. On olemassa absoluuttinen, euklidinen avaruus ja absoluuttinen aika. 2. Voiman suunnikaslaki: Jos kaksi voimaa vaikuttaa samaan pisteeseen, niin niiden yhteinen vaikutus eli summa voidaan esittää suuntaisjanalla, jonka pituus ja suunta yhtyvät sen suunnikkaan lävistäjään, jonka sivuina ovat annettuja voimia esittävät suuntaisjanat. 3. Voiman siirtolaki: Jos voima, joka vaikuttaa jäykkään kappaleeseen, siirretään pitkin omaa vaikutussuoraansa, niin sen ulkoinen vaikutus kappaleeseen pysyy muuttumattomana. 4. Hitauden laki eli Newtonin I laki: Partikkeli on levossa tai tasaisessa suoraviivaisessa liikkeessä aina, kun siihen ei vaikuta voimia tai siihen vaikuttavien voimien summa eli resultantti on nolla. 5. Dynamiikan peruslaki eli Newtonin II laki: Jos partikkeliin vaikuttavien voimien resultantti on R, niin partikkeli saa kiihtyvyyden a, siten että on voimassa R = ma. Kerrointa m sanotaan massaksi. 6. Voiman ja vastavoiman laki eli Newtonin III laki: Jos partikkeli A vaikuttaa partikkeliin B ilman muiden partikkelien välitystä jollakin voimalla, niin partikkeli B vaikuttaa aina takaisin partikkeliin A partikkelien yhdysjanan suuntaisella, yhtä suurella mutta vastakkaissuuntaisella voimalla. 7. Yleinen gravitaatiolaki eli Newtonin IV laki: Kaksi partikkelia, joiden massat m 1 ja m 2, vetävät aina toisiaan puoleensa partikkelien yhdysjanan suuntaisella voimalla, jonka suuruus on suoraan verrannollinen partikkelien massoihin ja kääntäen verrannollinen partikkelien välisen etäisyyden neliöön. mm 1 2 F 2 r
Voima Kappaleen vuorovaikutuksen voimakkuutta toiseen kappaleeseen kuvataan käsitteellä voima (force). Kappaleiden koskettaessa toisiaan puhutaan kosketusvoimista, mutta kappaleet voivat vaikuttaa toisiinsa myös välimatkan päästä, jolloin puhutaan kaukovoimista. Esimerkiksi gravitaatiovoima käsitetään klassillisessa mekaniikassa kaukovoimaksi. Kun kappaleet koskettavat toisiaan, niiden välille syntyy kosketusvuorovaikutus, josta aiheutuu koskettaviin kappaleisiin yhtä suuret vastakkaissuuntaiset kosketusvoimat (contact forces). Makroskooppiselta kannalta katsottuna kosketusvoimat ilmenevät kosketuspintojen jännitysjakautumina ja usein kosketusvoimilla tarkoitetaankin näiden jakautumien yhdistystuloksia, joita puolestaan kuvataan pistevoimilla. Myöskin kappaleeseen kohdistuva gravitaatiovoima voidaan käsittää pistevoimaksi, jonka vaikutuspisteenä on kappaleen painokeskiö
Pistevoima
Pistevoima F Kokemuksen perusteella pistevoiman käsitteeseen liitetään suunta, suuruus ja vaikutuspiste. Tällöin voimaa voidaan kuvata geometrishavainnollisella suuntaisjanakäsitteellä kuvan mukaisesti. F 2 R Peruslaki 2 eli suunnikaslaki antaa voimalle tärkeän ominaisuuden: Voimavektoria R, jolla on sama ulkoinen vaikutus kappaleeseen kuin kahdella samaan pisteeseen vaikuttavalla voimalla yhdessä, sanotaan näiden voimien resultantiksi. Alkuperäisiä voimia sanotaan resultantin komponenteiksi. Voimien yhteisvaikutus eli yhteenlasku tehdään siis suunnikaslain mukaan. P F 1
Esimerkki 21.1, kirjan sivulla 21 15
Useita voimia
Esimerkki 23.1 17