Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään yksi nollakohta Esimerkki 18 Tutki onko f injektio kun a) f (x) = (x 1) 3 b) f (x) = x 2 2 x Esimerkki 19 Olkoon f ja g injektioita. Osoita että f g on injektio.
Injektio (2/3) Graafisia esimerkkejä injektioista
Injektio (3/3) Graafisia esimerkkejä funktioista jotka eivät ole injektioita
Käänteisfunkti graafisesti (1/3) Jos funktio f (x) on injektio, käänteisfunktio f 1 (x) voidaan graafisesti määrittää xy-koordinaatistossa peilaamalla f (x) suoran y = x suhteen. Funktioita ja niiden käänteisfunktioita
Käänteisfunktio graafisesti (2/3) Jos funktio f (x) ei ole injektio, peilaamalla suoran y = x suhteen ei saada aikaiseksi funktiota.
Käänteisfunktio graafisesti (3/3) Jos f (x) ei ole injektio D(f ):ssä, täytyy käänteisfunktiota määrittäessä rajoittaa D(f ) alueeseen jossa f (x) on injektiivinen.
Käänteisfunktio (1/2) Lause Jos f : D(f ) R(f ) on injektio, niin on olemasa käänteisfunktio f 1 : R(f ) D(f ) jolle y = f 1 (x) x = f (y), x D ( f 1) Käänteisfunktion lausekkeen määrittäminen: 1 Vaihdetaan y:n ja x:n roolit lausekkeessa y = f (x), eli kirjoitetaan x = f (y). (Tämä on sama kuin peilaaminen suoran y = x suhteen.) 2 Lausekkeesta x = f (y) ratkaistaan y. (Tämä voi olla kaikkea muuta kuin triviaalia)
Käänteisfunktio (2/2) Esimerkki 20 Ratkaise käänteisfunktio f 1 (x) kun f (x) on a) 4x + 1 b) (x 1) 3 c) x 2 2x Voit joutua rajoittamaan f :n määrittelyjoukkoa. Käänteisfunktion ominaisuuksia: D(f 1 ) = R(f ) ja R(f 1 ) = D(f ). f ( f 1 (x) ) = x ja ( f 1) 1 (x) = f (x)
Raja-arvo (1/3) Edellä näimme että jos sievennämme murtolauseketta, saamme joskus lausekkeen joka voitaisiin laskea myös pisteessä jossa alkuperäisen lausekkeen jakaja olisi nolla. Yleisemmin voimme puhua raja-arvosta. Jatkossa x:n oletetaan aina kuuluvän luonnollisesti käsiteltävän funktion määrittelyjoukkoon. Määritelmä Funktion f raja-arvo kohdassa a on L, joss jokaista ε > 0 kohti on olemassa δ ε > 0 s.e. 0 < x a < δ ε f (x) L < ε. Merkitsemme tätä lim x a f (x) = L. Siis käytännössä: Jos x ja a ovat hyvin lähellä toisiaan voidaan päätellä että f (x) on hyvin lähellä arvoa L.
Raja-arvo (2/3) Esimerkki 21 Osoita raja-arvon määritelmän avulla a) lim x 3 (4x + 1) = 13 b) lim x 0 e 1/ x = 0 Monimutkaisempia lausekkeita voidaan sieventää ja päätellä seuraavien ominaisuuksien avulla: Oletetaan että lim x a f (x) = L ja lim x a g(x) = M. Summa: lim x a (f (x) + g(x)) = L + M Erotus: lim x a (f (x) g(x)) = L M Tulo: lim x a f (x)g(x) = LM
Raja-arvo (3/3) f (x) Osamäärä: lim x a g(x) = L M (M 0) Vakiolla kertominen: lim x a kf (x) = kl Käytännössä raja-arvoja laskettaessa lausekkeet voidaan ensin (yrittää) sieventää ja sitten sijoittaa x = a, jollei seuraa epämääräisiä muotoja kuten 0 0,, 0/0, /,... Esimerkki 22 Laske raja-arvo lim x 2 x 2 +x 6 x 2
Toispuoleinen raja-arvo Määritellän myös toispuoleiset raja-arvot. Jos normaalin raja-arvon määritelmässä asetetaan lisäehto x > a saadaan raja-arvo lähestyttäessä pistettä a oikealta puolelta. Vastaavasti lisäehdolla x < a saadaan raja-arvo lähestyttäessä pistettä a vasemmalta puolelta. Merkitsemme näitä lim f (x), x a+ lim f (x). x a Seuraava lause on ilmeinen mutta tärkeä jatkossa funktion jatkuvuutta tarkasteltaessa Lause lim f (x) = lim f (x) = L lim f (x) = L x a+ x a x a
Jatkuvuus Funktion jatkuvuus voidaan määritellä raja-arvon avulla. Määritelmä Funktio f on jatkuva avoimella välillä välillä ]a, b[ jos jokaiselle c ]a, b[ on olemassa äärellinen raja-arvo lim x c f (x) = f (c). Jos lisäksi lim x a+ f (x) = f (a) ja lim x b f (x) = f (b) niin f on jatkuva suljetulla välillä [a, b]. Edellisestä määritelmästä on syytä huomata että jos f on jatkuva välillä [a, b] niin molemmin puoliset raja-arvot pisteissä a ja b eivät välttämättä ole määriteltyjä. Valitsimme tämän määritelmän koska jos vain [a, b] väli kiinnostaa niin esim. vasemmanpuoleisella raja-arvolla pisteessä a ei ole käytännön kannalta mitään merkitystä.
Funktion jatkuva laajennus Jos raja-arvo lim x a f (x) on olemassa äärellisenä mutta a / D(f ) ei ole määritelty pisteessä a, luonnollinen ajatus on tehdä laajennus { f (x), x D(f ) F (x) = lim x x f (x ), x = a Tällöin jos f (x) oli jatkuva, on myös F (x) jatkuva. Esimerkki 23 x 2 x 2 +x 6 Voidaanko f (x) = pisteen 2 ympäristössä? laajentaa siten että se on jatkuva Esimerkki 24 Laajenna funktio f (x) = x2 x x 1 jatkuvaksi koko R:ssä.
Äärettömät raja-arvot ja raja-arvot äärettömyydessä (1/3) Raja-arvolle äärettömyydessä annamme oman määritelmän Määritelmä Funktiolla f (x) on raja-arvo lim x f (x) = L joss kaikkia ε > 0 kohti on M ε < siten että x > M ε f (x) L < ε. Tämä sanoo siis että f (x) on hyvin lähellä raja-arvoa L jos x on hyvin suuri. Samoin määrittelmemme äärettömät raja-arvot: Määritelmä lim x a f (x) = joss kaikille 0 < M < on olemassa δ M s.e. x a < δ M f (x) > M. Edellinen sanoo siis että f (x) saa hyvin suuren arvon jos x on hyvin lähellä pistettä a.
Äärettömät raja-arvot ja raja-arvot äärettömyydessä (2/3) Loogisesti helpoin tapaus, ääretön raja-arvo äärettömyydessa Määritelmä lim x f (x) = joss kaikille 0 < M < on olemassa N M < siten että x > N M f (x) > M. Eli kaikille hyvin suurille x:n arvoille f (x) on hyvin suuri. Huomioita: Jos raja-arvo on ääretön, sanomme yleensä ettei funktiolla ole raja-arvoa (kyseisessä pisteessä tai äärettömyydessä).. Edellä on käytetty usein ilmaisua hyvin.... Tämä olisi itseasiassa hyvä korvata ilmaisuilla mielivaltaisen..., viitaten siihen että mitään selvää rajaa tai rajoitusta ei ole. Aivan vastaavat määritelmät voidaan tietysti kirjoittaa raja-arvoille lim x f (x) = L ja lim x a f (x) =, ja nämä kaikki voidaan käsitellä myös toispuoleisina raja-arvoina
Äärettömät raja-arvot ja raja-arvot äärettömyydessä (3/3) Esimerkki 25 Osoita määritelmiin perustuen että 1 a) lim = ± b) lim 1/x = 0 c) lim x 1± x 1 x 2 = x x
Käytännön laskentaa raja-arvojen kanssa (1/4) Käytännössä raja-arvon laskeminen suoraan määritelmiä käyttäen ei ole tarpeen. Itseasiassa se ei ole aina suoraan edes mahdollista koska määritelmiä käyttääksemme tarvitsemme hyvän arvauksen sille mitä raja-arvon numeerinen arvo mahtaisi olla. Raja-arvojen määritelmiä tarvitaan erityisesti kun tahdotaan osoittaa helpottavien laskukaavojen oikeellisuutta (esim. lim x a g(x)f (x) = lim x a g(x) lim x a f (x)) tai osoittaa muita teoreettisempia tuloksia.
Käytännön laskentaa raja-arvojen kanssa (2/4) Käytännön laskentaa voidaan tehdä seuraavien mm. edellä esitettyjen (summa, erotus,...) ja seuraavien sääntöjen mukaan 1 Jos lim x a g(x) = b niin lim f (g(x)) = lim f (g(x)) = lim f (x) x a g(x) b x b 2 lim x a = f (a) jos a D(f ) ja f jatkuva. 3 lim x 0± 1/x = ±, lim x ± x = ±. 4 Jos a > 0, { 0, a < 1 lim x ax =, a > 1 5 Ja kaikki muut maalaisjärjellä selvät raja-arvot kuten lim x x a = (kun a > 0), lim x 0+ ln(x) =,...
Käytännön laskentaa raja-arvojen kanssa (3/4) Esimerkki 26 Laske raja-arvot x 2 + 3 a) lim x x 3 + 2 x c) lim x 1 1 x 2 ( b) lim x 2 + x x) x d) lim x 0 e 1/ x
Käytännön laskentaa raja-arvojen kanssa (4/4) Lause Olkoon g(x) f (x) h(x) kun x ]a, ε], jollakin ε > a. Tällöin lim h(x) = lim g(x) = L lim f (x) = L x a+ x a+ x a+ Lukujen a ja L ei tarvitse olla äärellisiä. Edellistä lausetta siis käytetään siten että etsitään g ja h joilla on sama raja-arvo (oikealta) pisteessä a ja joiden väliin f jää pisteen a läheisyydessä. Vastaavantyyppinen lause pätee myös raja-arvolle vasemmalta sekä normaalille raja-arvolle Esimerkki 27 Laske raja-arvo x 2 + sin(x) lim x x 2 + cos(x)