Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä.



Samankaltaiset tiedostot
Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä.

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.

Olkoon R X Y. Sen käänteisrelaatio R 1 on joukosta Y joukkoon X määritelty relaatio, jonka laki on. yr 1 x xry.

Olkoon R X Y. Sen käänteisrelaatio R 1 on joukosta Y joukkoon X määritelty relaatio, jonka laki on. yr 1 x xry.

811120P Diskreetit rakenteet

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.

Joukot. Georg Cantor ( )

Sanomme, että kuvaus f : X Y on injektio, jos. x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2.

Lause 5. (s. 50). Olkoot A ja B joukkoja. Tällöin seuraavat ehdot ovat

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi

Relaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.

Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,

Diskreetin Matematiikan Paja Tehtäviä viikolle 2. ( ) Jeremias Berg

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

JOUKKO-OPIN ALKEITA. Veikko Rantala Ari Virtanen

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

Matematiikan peruskäsitteitä

Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }?

Johdatus matemaattiseen päättelyyn

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.

Matemaatiikan tukikurssi

Otanta ilman takaisinpanoa

MS-A0402 Diskreetin matematiikan perusteet

X R Matematiikan johdantokurssi, syksy 2016 Harjoitus 5, ratkaisuista

DISKREETTIÄ MATEMATIIKKAA.

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

(2n 1) = n 2

Joukko-oppi. Joukko-oppi. Joukko-oppi. Joukko-oppi: Mitä opimme? Joukko-opin peruskäsitteet

Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 2, malliratkaisut

Diskreetin Matematiikan Paja Ratkaisuehdotuksia viikolle 2. ( ) Jeremias Berg

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.

Johdatus todennäköisyyslaskentaan Joukko-oppi. TKK (c) Ilkka Mellin (2005) 1

8 Joukoista. 8.1 Määritelmiä

Topologia Syksy 2010 Harjoitus 4. (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N,

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Ratkaisu: a) Kahden joukon yhdisteseen poimitaan kaikki alkiot jotka ovat jommassakummassa joukossa (eikä mitään muuta).

Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne.

Johdatus matemaattiseen päättelyyn (5 op)

1 Perusasioita joukoista

1.1 Funktion määritelmä

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

1. Logiikan ja joukko-opin alkeet

Johdatus lineaarialgebraan

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT

Relaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde.

811120P Diskreetit rakenteet

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.

Matematiikan tukikurssi, kurssikerta 2

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I

Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38

Yhdistetty funktio. Älä sekoita arvo- eli kuvajoukkoa maalijoukkoon! (wikipedian ongelma!)

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim.

MS-A0401 Diskreetin matematiikan perusteet

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I

Kuinka määritellään 2 3?

Lineaarikuvauksen R n R m matriisi

Luonnollisten lukujen ja kokonaislukujen määritteleminen

a) Mitkä seuraavista ovat samassa ekvivalenssiluokassa kuin (3, 8), eli kuuluvat joukkoon

a b 1 c b n c n

67-x x 42-x. Matematiikan johdantokurssi, syksy 2016 Harjoitus 3, ratkaisuista

Johdatus yliopistomatematiikkaan. JYM, Syksy2015 1/195

T Syksy 2003 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (opetusmoniste, kappaleet )

Johdatus matemaattiseen päättelyyn

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton.

Funktioista. Esimerkki 1

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon.

Johdatus yliopistomatematiikkaan. JYM, Syksy /197

isomeerejä yhteensä yhdeksän kappaletta.

Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei.

Ensimmäinen induktioperiaate

802320A LINEAARIALGEBRA OSA I

1 Johdanto, Tavoitteet 2. 2 Lähteitä 2. 3 Propositiologiikkaa 2. 4 Karnaugh'n kartat Predikaattilogiikkaa Relaatiot 42.

Ensimmäinen induktioperiaate

8 KANNAT JA ORTOGONAALISUUS. 8.1 Lineaarinen riippumattomuus. Vaasan yliopiston julkaisuja 151

T Kevät 2009 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (Predikaattilogiikka )

Ominaisvektoreiden lineaarinen riippumattomuus

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Kertausta: avaruuden R n vektoreiden pistetulo

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

T Syksy 2005 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (opetusmoniste, kappaleet )

1 Peruslaskuvalmiudet

Insinöörimatematiikka IA

Ominaisarvo ja ominaisvektori

1 Lineaariavaruus eli Vektoriavaruus

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Transkriptio:

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. Kaksi järjestettyä paria ovat samat, jos niillä on samat ensimmäiset alkiot ja samat toiset alkiot: (x, y) = (u, v) (x = u y = v).

Järjestetty pari ajatellaan usein primitiivisenä käsitteenä, mutta sille voidaan antaa myös joukko-opillinen määritelmä. Seuraava esimerkki osoittaa, että järjestettyä paria (x, y) ei voi kuitenkaan määritellä joukkona {x, y}. Esimerkki. (a) Jos x y, niin {x, y} = {y, x}, mutta (x, y) (y, x). (b) {x, x} = {x}, mutta (x, x) (x), missä oikea puoli tarkoittaa jonoa, jonka ensimmäisellä ja ainoalla paikalla on x.

Järjestetty pari määritellään yleensä seuraavasti: (x, y) = { {x}, {x, y} }. Siis järjestetty pari (x, y) on joukko, jonka alkioina ovat joukot {x} ja {x, y}! Osoitetaan seuraavaksi, että tämä järjestetyn parin määritelmä toimii halutulla tavalla. Lause 1. (x, y) = (u, v) (x = u y = v). Todistus. Taululla.

Joukkojen A ja B tulojoukko eli karteesinen tulo on A B = { (x, y) x A y B }. Siis A B koostuu kaikista niistä järjestetyistä pareista (x, y), joilla x A ja y B. Esimerkki. Olkoon A = {1, 2} ja B = {3, 4}. Tällöin Taululla. A B B A. Siis karteesinen tulo ei ole vaihdannainen!

Karteesinen tulo ei ole liitännäinenkään: Esimerkki. Olkoot A = {1}, B = {2} ja C = {3}. Tällöin (A B) C = {((1, 2), 3)} ja A (B C) = {(1, (2, 3))}. Nämä joukot eivät ole samat, sillä ((1, 2), 3) (1, (2, 3)). (Tämä nähdään kirjoittamalla ((1, 2), 3) ja (1, (2, 3)) auki järjestetyn parin määritelmän mukaan.)

Karteesinen tulo voidaan yleistää useammalle joukolle: joukkojen A 1,..., A n tulojoukko eli karteesinen tulo on A 1 A n = { (x 1,..., x n ) x 1 A 1 x n A n }. Vastaavasti merkitsemme A n = n kertaa { }} { A A A. Näissä määritelmissä tarvitaan järjestetyn n-jonon (x 1,..., x n ) käsitettä. Se voidaan määritellä usealla eri tavalla.

1. tapa. Määritellään (x 1, x 2, x 3 ) = ((x 1, x 2 ), x 3 ), (x 1, x 2, x 3, x 4 ) = (((x 1, x 2 ), x 3 ), x 4 ) jne. Siis yleisesti (x 1,..., x n+1 ) = ((x 1,..., x n ), x n+1 ). Tällä määritelmällä pätee A 1 A 2 A 3 = (A 1 A 2 ) A 3, ja yleisemmin A 1 A n+1 = (A 1 A n ) A n+1. Vastaavasti A n+1 = A n A.

2. tapa. Määritellään, että (x 1,..., x n ) tarkoittaa funktiota f : {1,..., n} X, jolla pätee ehto: f (i) = x i jokaisella i {1,..., n}. Tässä X on sopivasti valittu perusjoukko, jonka alkioita komponentit x i ovat.

Esimerkki. (a) Joukko R 2 on järjestettyjen reaalilukuparien joukko. Sen geometrinen vastine on taso. (b) Joukko R 3 on järjestettyjen reaalilukukolmikoiden joukko. Sen geometrinen vastine on kolmiulotteinen avaruus. (c) Joukko R n on järjestettyjen reaaliluku n-jonojen joukko. Sen vastine on n-ulotteinen avaruus. (d) Olkoon A = [a, b] koordinaatiston x-akselilla ja B = [c, d] y-akselilla. Joukon A B geometrinen merkitys on suorakulmio. Taululla.

Tulojoukon muodostaminen ei siis noudata vaihdantalakia eikä liitäntälakia. Sen sijaan osittelulait yhdisteen, leikkauksen ja erotuksen suhteen ovat voimassa: Lause 2. Olkoot A 1, A 2 ja B joukkoja. (1) (A 1 A 2 ) B = (A 1 B) (A 2 B), (2) (A 1 A 2 ) B = (A 1 B) (A 2 B), (3) (A 1 \ A 2 ) B = (A 1 B) \ (A 2 B). Todistus. Taululla. Vastaavat tulokset ovat voimassa joukolle A (B 1 B 2 ) jne.

Jos R X Y (X, Y ), niin sanomme, että R on relaatio joukkojen X ja Y alkioiden välillä. Lyhyemmin: R on joukkojen X ja Y relaatio. R on relaatio joukosta X joukkoon Y (huomaa sijamuodot). Joukkoa X sanotaan relaation R lähtöjoukoksi ja joukkoa Y maalijoukoksi.

Merkitsemme xry tarkoittamaan sitä, että (x, y) R. Vastaavasti merkitsemme x Ry tarkoittamaan, että (x, y) R. Siis seuraavat ovat yhtäpitäviä: Alkiot x X ja y Y ovat keskenään relaatiossa R xry (pätee) (x, y) R Huom. Jokaiseen relaatioon R voidaan liittää vastaava predikaatti R(x, y), joka on tosi joss (x, y) R. Merkinnän xry sijasta voidaan siis käyttää myös merkintää R(x, y).

Myös useampipaikkainen relaatio voidaan määritellä (ja myös yksipaikkainen). Yleisesti osajoukko R X 1 X 2 X n on joukkojen X 1, X 2,..., X n ( ) alkioiden välinen relaatio. Myös useampipaikkaisten relaatioiden kohdalla voidaan käyttää vastaavaa predikaattia R(x 1, x 2,..., x n ), joka on tosi joss (x 1, x 2,..., x n ) R.

Olkoon R relaatio joukosta X joukkoon Y, jolloin X on sen lähtöjoukko ja Y maalijoukko. Relaation R määrittelyjoukko M R on joukon X niiden alkioiden joukko, jotka ovat relaatiossa joukon Y jonkin alkion kanssa eli M R = { x X y Y : xry }. Arvojoukko A R on joukon Y niiden alkioiden joukko, jotka ovat relaatiossa joukon X jonkin alkion kanssa eli A R = { y Y x X : xry }.

Esimerkki. Kaikkein yksinkertaisimmat relaatiot joukkojen X ja Y alkioiden välillä ovat ja X Y. Jälkimmäisessä relaatiossa ovat keskenään kaikki alkiot x ( X ) ja y ( Y ), ja edellisessä eivät mitkään.

Jos relaation R lähtöjoukko ja maalijoukko ovat kumpikin X, niin sanomme, että R on joukossa X määritelty relaatio (tai joukon X relaatio). Esimerkki. Joukon X identtinen relaatio on I X = { (x, x) x X }. Jokainen alkio on identtisessä relaatiossa itsensä kanssa eikä minkään muun kanssa.

Esitystapoja: Nuolikuvio Polkukuvio eli digraafi Esitys koordinaatistossa Esitys matriisina