x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

Samankaltaiset tiedostot
x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

LINEAARIALGEBRA. Harjoituksia/Exercises 2017 Valittuja ratkaisuja/selected solutions

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

LINEAARIALGEBRA. Harjoituksia/Exercises 2019 Valittuja ratkaisuja/selected solutions

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.

802320A LINEAARIALGEBRA OSA II/PART II

802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II

802320A LINEAARIALGEBRA OSA II/PART II

802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II

802320A LINEAARIALGEBRA OSA II

1 Sisätulo- ja normiavaruudet

802320A LINEAARIALGEBRA OSA I

1 Lineaariavaruus eli Vektoriavaruus

802320A LINEAARIALGEBRA OSA I LINEAR ALGEBRA PART I

802320A LINEAARIALGEBRA OSA I LINEAR ALGEBRA PART I

802320A LINEAARIALGEBRA OSA III

802320A LINEAARIALGEBRA OSA III

802320A LINEAARIALGEBRA OSA III LINEAR ALGEBRA PART III

802320A LINEAARIALGEBRA OSA III

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.

LINEAARIALGEBRA A 2016 TOMI ALASTE EDITED BY T.M. FROM THE NOTES OF

pdfmark=/pages, Raw=/Rotate 90 1 Lineaariavaruus eli Vektoriavaruus Sisätuloavaruus Lineaarikuvaus Ominaisarvo 0-68

Lineaarialgebra II P

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

1. Normi ja sisätulo

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?

Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2.

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Hilbertin avaruudet, 5op Hilbert spaces, 5 cr

Insinöörimatematiikka D

Kertausta: avaruuden R n vektoreiden pistetulo

JAKSO 2 KANTA JA KOORDINAATIT

(1.1) Ae j = a k,j e k.

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Alkeismuunnokset matriisille, sivu 57

Matemaattinen Analyysi / kertaus

Kanta ja dimensio 1 / 23

Sisätuloavaruudet. 4. lokakuuta 2006

Ortogonaalisen kannan etsiminen

Kuvaus. Määritelmä. LM2, Kesä /160

MS-C1340 Lineaarialgebra ja

5 Ominaisarvot ja ominaisvektorit

1 Ominaisarvot ja ominaisvektorit

Insinöörimatematiikka D

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Avaruuden R n aliavaruus

6. OMINAISARVOT JA DIAGONALISOINTI

Kertausta: avaruuden R n vektoreiden pistetulo

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Insinöörimatematiikka D

2 / :03

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310

TOOLS. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO TOOLS 1 / 28

4. LINEAARIKUVAUKSET

Lineaarialgebra ja matriisilaskenta I

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Mathematicians are like Frenchmen: whatever you say to them they translate into their own language and forthwith it is something entirely

Matemaattinen Analyysi, k2011, L2

i=1 Näistä on helppo näyttää ominaisuudet (1)-(4). Ellei toisin mainita, käytetään R n :ssä

Demorastitiedot saat demonstraattori Markus Niskaselta Lineaarialgebra (muut ko) p. 1/104

Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi

Kantavektorien kuvavektorit määräävät lineaarikuvauksen

Kanta ja Kannan-vaihto

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Metriset avaruudet 2017

Insinöörimatematiikka D

Neliömuodoista, matriisin ominaisarvoista ja avaruuden kierroista

Ominaisvektoreiden lineaarinen riippumattomuus

Harjoitusten 4 ratkaisut Topologiset vektoriavaruudet 2010

LINEAARIALGEBRA P. LUENTOMONISTE ja HARJOITUSTEHTÄVÄT

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/66

1 Avaruuksien ja lineaarikuvausten suora summa

Yleiset lineaarimuunnokset

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

Lineaarialgebra b, kevät 2019

Insinöörimatematiikka D

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218

Insinöörimatematiikka D

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Lineaariset mollit, kl 2017, Harjoitus 1

Tällä viikolla viimeiset luennot ja demot. Lineaarialgebra (muut ko) p. 1/162

MS-C1340 Lineaarialgebra ja

Lineaarikuvauksen R n R m matriisi

Ortogonaalinen ja ortonormaali kanta

6. Lineaariset operaattorit

Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21.

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Lineaarialgebra b, kevät 2019

2 1/ /2 ; (a) Todista, että deg P (x)q(x) = deg P (x) + deg Q(x). (b) Osoita, että jos nolla-polynomille pätisi. deg 0(x) Z, Z 10 ; Z 10 [x];

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.

Lineaarialgebra ja matriisilaskenta I

Transkriptio:

LINEAARIALGEBRA Harjoituksia/Exercises 2017 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla kertominen määritellään koordinaateittain/show that the set is a vector space when we set identity relation, addition and multiplication by a real number coordinate-wise: x = y x i = y i i = 1,..., n; x + y = (x 1 + y 1,..., x n + y n ); λ x = (λx 1,..., λx n ), aina, kun x 1,..., x n ; y 1,..., y n ; λ R. 2. Osoita, että (R 2, +, ) ei ole vektoriavaruus, kun vektoreiden x = (x 1, x 2 ), y = (y 1, y 2 ) laskutoimitukset on annettu seuraavasti/show that the set is not a vector space with the binary operations: x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); λ x = (λx 1, 0), λ R. 3. Osoita, että (R 2,, ) ei ole lineaariavaruus, kun vektoreiden x = (x 1, x 2 ), y = (y 1, y 2 ) laskutoimitukset on annettu seuraavasti: x = y x i = y i i = 1, 2; x y = (x 1 y 1, x 2 + y 2 ); λ x = (λx 1, λx 2 ), λ R. 4. Olkoon K kunta ja 0, 1 K sen nolla- ja ykkösalkiot. Olkoon V lineaariavaruus kunnan K yli sekä 0 V sen nolla-alkio. Osoita lineaariavaruuden aksiomeja käyttäen, että/show by using the axioms of linear space that: (a) λ 0 = 0 kaikilla λ K. (b) λ v = ( λ) v = λ ( v) kaikilla λ K, v V ; (c) Jos λ v = λ w ja λ 0, niin v = w; 5. Olkoot W 1 = {(x, y, z, t) R 4 : x y + z t = 0}; W 2 = {(x, y, z, t) R 4 : x y + z = 0}; W 3 = {(x, y, z, t) R 4 : x y + z 1 = 0}

(a) Osoita, että W 1 on vektoriavaruuden R 4 aliavaruus/show that W 1 is a subspace of the vector space R 4. (b) Onko W 2 on vektoriavaruuden W 1 aliavaruus/is W 2 a subspace of the vector space W 1? (c) Onko W 2 on vektoriavaruuden R 4 aliavaruus? (d) Miksi W 3 ei ole vektoriavaruuden R 4 aliavaruus/why W 3 is not a subspace of the vector space R 4? 6. Olkoon V lineaariavaruus kunnan K yli ja v, v 1, v 2 V sekä W 1 = {αv α K}; W 2 = {αv 1 + βv 2 α, β K}. (a) Määritä lineaarinen verho/determine the linear hull v K. (b) Määritä lineaarinen verho v 1, v 2 K. (c) Osoita, että W 1 on vektoriavaruuden V aliavaruus/show that W 1 is a subspace of the vector space V. (d) Onko W 2 on avaruuden V aliavaruus? (e) Onko W 1 on avaruuden W 2 aliavaruus, jos v = v 1 v 2? 7. Olkoon K kunta ja V = K n, n Z +. Merkitään/Let us denote e k = (0,..., 1,..., 0) K n, missä k:s koordinaatti on 1 ja muut nollia aina, kun k = 1, 2,..., n./where the kth coordinate is 1 and the others are zero. Osoita, että vektorit e 1,..., e n ovat lineaarisesti vapaita kunnan K yli./show that the vectors e 1,..., e n are linearly independent over the field K. 8. Olkoot F 1 = {f F(R, R) : f(t) = f(t + 2π) t R}; F 2 = {f C(R, R) : f = f}; F 3 = {f F(R, R) : f(π) = 0}. (a) Onko F 1 avaruuden F(R, R) aliavaruus? (b) Onko F 2 on avaruuden C(R, R) aliavaruus? Tässä f on funktion f derivaatta. (c) Onko F 3 avaruuden F(R, R) aliavaruus? 9. Kuuluuko polynomi x 2 joukon/does the polynomial x 2 belong to the linear hull of {x, x 3, x + 2x 2 + 3x 3 } Pol 3 (R, R) lineaariseen verhoon? 10. Olkoon S = {1, x, x 2,..., x k } Pol k (R, R). (a) Osoita, että S on lineaarisesti vapaa/show that S is linearly independent.

(b) Osoita, että S R = Pol k (R, R). (c) Osoita, että S on polynomiavaruuden Pol k (R, R) kanta/ Show that S is a base of the polynomial space Pol k (R, R). (d) Määritä dim R Pol k (R, R). 11. Olkoon W = {p Pol 3 (R, R) : p(1) = p( 1) = 0}. Osoita, että W on avaruuden Pol 3 (R, R) aliavaruus ja määrää dim R W. 12. Olkoon Sym 2 2 (R) = {A M 2 2 (R) : A = A T } symmetristen matriisien joukko/the set of symmetric matrices. (a) Osoita, että Sym 2 2 (R) on avaruuden M 2 2 (R) aliavaruus. (b) Laske dim R M 2 2 (R). (c) Laske dim R Sym 2 2 (R). 13. Olkoon V reaalinen sisätuloavaruus. Osoita, että reaaliselle sisätulolle pätee/show that for a real inner product holds aina, kun α, β R ja v, u, w, z V. v αw + βz = α v w + β v z, 14. Olkoon n Z +. Määritellään kuvaus asettamalla/let us define a mapping by setting n z w = z w = z k w k k=1 aina, kun z = (z 1,..., z n ), w = (w 1,..., w n ) C n. (a) Osoita, että (C n, ) on kompleksinen sisätuloavaruus. (b) Olkoon z = (i,..., i). Laske z z. 15. Määritellään kuvaus asettamalla aina, kun x = (x 1, x n ), y = (y 1, y n ). x y = 5 x 1 y 1 + 3x 2 y2 (a) Onko (R 2, ) on reaalinen sisätuloavaruus? (b) Onko (C 2, ) on kompleksinen sisätuloavaruus? 16. Määritellään kuvaus asettamalla aina, kun x = (x 1, x n ), y = (y 1, y n ). x y = 5x 1 y 1 + 3x 2 y 2

(a) Onko (R 2, ) on reaalinen sisätuloavaruus? (b) Onko (C 2, ) on kompleksinen sisätuloavaruus? 17. Määritellään kuvaus asettamalla p q = 2 p(k)q(k) k=0 aina, kun p, q Pol 2 (R, R). (a) Osoita, että näin saatu kuvaus on avaruuden Pol 2 (R, R) sisätulo. (b) Onko kuvaus avaruuden Pol 3 (R, R) sisätulo? 18. Olkoot n = (1, 0, 1) ja W = {w R 3 : w n = 0}. (a) Osoita, että W on avaruuden R 3 aliavaruus. (b) Määrää aliavaruudelle W jokin kanta/determine a basis for the subspace W. (c) Laske dim R W. 19. Olkoon V kompleksinen sisätuloavaruus, λ C ja v, w V. (a) Osoita, että (b) Määrää (c) Onko tulo v w w v reaaliluku? v λw = λ v w. i v w + v i w. 20. Onko joukko A k ortogonaalinen, ja jos, niin onko se ortonormaali, kun/is the set A k orthogonal, and if, is it orthonormal (a) A 1 = {(1, 1, 1), (2, 0, 2), (1, 2, 1)}? (b) A 2 = {(i, 0, 0), (0, i, 0), (0, 0, i)}? (c) A 3 = {( 3, 0, 4, 0, 0), (0, 1, 0, 3, 0), (0, 0, 0, 0, 1)}? 5 5 2 2 21. Määritellään kuvaus 1 : R 2 R asettamalla x 1 = x 1 + x 2 kaikilla x = (x 1, x 2 ) R 2. Osoita, että 1 on normi. Piirrä joukko {x R 2 : x 1 1}. 22. Olkoon (V, ) normiavaruus. Osoita, että x y x y kaikilla x, y V. 23. Olkoon V reaalinen sisätuloavaruus ja x, y V. Osoita, että x y x + y 2 = x 2 + y 2.

24. Olkoon V reaalinen sisätuloavaruus ja x, y V sellaiset vektorit, joille pätee x = 2, y = 2 ja x + y = 3. Laske vektoreiden x ja y välinen etäisyys x y /Compute the distance x y. 25. Olkoot H äärellinen sisätuloavaruus/finite inner product space ja S sen ortogonaalinen kanta. (a) Olkoon u H sellainen vektori, että u v kaikilla v S. Osoita, että u = 0. (b) Olkoon A aliavaruuden A H ortogonaalikomplementti. Todista, että A A = {0}. 26. Etsi Gram-Schmidtin menetelmällä aliavaruudelle/find an orthonormal basis for the subspace H = ( 1, 1, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1) ortonormaali kanta. Mitkä ovat vektorin x = (1, 2, 3, 11) koordinaatit löytämässäsi kannassa/what are the coordinates of the vector x = (1, 2, 3, 11) in the base you found? 27. Olkoon L lineaarikuvaus/let L be a linear mapping. Osoita, että L(0) = 0. 28. Osoita, että nollakuvaus ja identtinen kuvaus ovat lineaarisia/show that zeroand identity mappings are linear. 29. Määritellään kuvaus/let us define L : R 3 R 2, asettamalla/by setting L(x, y, z) = (x, y + z) aina, kun (x, y, z) R 3. Osoita, että kuvaus L lineaarinen? 30. Onko L : R 2 R, L(x 1, x 2 ) = e x 1+x 2 lineaarinen? 31. Onko L : R 2 R, L(x 1, x 2 ) = πx 1 lineaarinen? 32. Olkoon L : R R sellainen lineaarikuvaus, että L( 7) = 14. Laske L(100). 33. Määritellään kuvaus L : R 2 Pol 2 (R, R), asettamalla aina, kun (a, b) R 2. L(a, b) = a + bx (a) Osoita, että kuvaus L on lineaarinen? (b) Määrää Ker L. (c) Onko L injektio? (d) Määrää Im L. (e) Onko L surjektio? (f) Onko L bijektio?

(g) Määrää dim Ker L ja dim Im L ja vertaa tulosta dimensiokaavaan/ Determine dim Ker L and dim Im L and compare to the dimension formula. 34. Olkoon V reaalinen sisätuloavaruus, dim K V = k Z + ja n V annettu. Määritellään kuvaus L : V R, asettamalla aina, kun x V. L(x) = n x (a) Osoita, että kuvaus L on lineaarinen. (b) Määrää dim Im L. (c) Määrää dim Ker L. 35. Määritellään lineaarikuvaus L : R 3 R 4, asettamalla L(x) = (x 1 + x 2, x 2 + x 3, x 1 + x 3, x 1 x 2 + x 3 ) aina, kun x = (x 1, x 2, x 3 ) R 3. (a) Määrää Ker L. (b) Onko L injektio? (c) Määrää dim Ker L ja dim Im L (käytä/use dimensiokaavaa). (d) Onko L surjektio? (e) Onko L bijektio? (f) Määrää L:n matriisi [L] E3,E 4 luonnollisten kantojen E 3 = {e 1, e 2, e 3 } R 3 ja E 4 = {e 1, e 2, e 3, e 4 } R 4 suhteen/determine the matrix with respect to standard bases. 36. Lineaarikuvaksen L matriisi on 0 1 [L] E2,E 4 = 1 0 2 1. 1 2 Anna kuvaus L muodossa/give the mapping in the form L(x, y) = (a, b, c, d) = ae 1 + be 2 + ce 3 + de 4. 37. Lineaarikuvaus L : R 3 R 3 toteuttaa ehdot/satisfies the conditions Lu 1 = u 1 u 2 + u 3, L(u 1 u 2 ) = u 1, ja L(u 1 u 2 + u 3 ) = 2u 2 u 3, missä {u 1, u 2, u 3 } on avaruuden R 3 kanta. Laske Lu 2 ja Lu 3. 38. Olkoon S = sin x, cos x R ja s = {sin x, cos x}. Tutkitaan lineaarikuvausta L : S S, L = D 2 + 2D + I, missä D on derivaattakuvaus/derivative mapping ja I on avaruuden S identtinen kuvaus. Määritä [L] s,s.

39. Näytä, että pisteen t kohtisuora projektio PROJ A (t) = p aliavaruudelle A on yksikäsitteinen/ Show that orthogonal projection PROJ A (t) = p of the point t to the subspace A is unique.