BS-kaava ja lama. Lama 2007. Johdannaiset ja BS-kaava. Matematiikka finanssikriisin syyllisenä. Tommi Sottinen



Samankaltaiset tiedostot
Black ja Scholes ilman Gaussia

Aloitamme yksinkertaisella leluesimerkillä. Tarkastelemme yhtä osaketta S. Oletamme että tänään, hetkellä t = 0, osakkeen hinta on S 0 = 100=C.

Wiener-prosessi: Tarkastellaan seuraavanlaista stokastista prosessia

Black Scholes-hinnoittelumallin robustisuus ja tyylitellyt tosiseikat

= X s + IE[X t X s ] = 0, s ja sitä, että ehdollinen odotusarvo on tavallinen odotusarvo silloin, kun satunnaismuuttuja

1 Sovelluksia. Sovelluksia 1

OPTIOT Vipua ja suojausta - mutta mitä se maksaa? Remburssi Investment Group

Projektin arvon määritys

Rahoitusriskit ja johdannaiset Matti Estola. luento 8 Optioiden hinnoittelusta

Finanssisitoumusten suojaamisesta

) + T (r + ) + T (r. ) Ke rt Φ( log( s σ2. (1.1) sφ( log( s σ2 2 E. VALKEILA 2 )

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Pääoman vapauttaminen muihin sijoituksiin johdannaisten avulla. Johannes Ankelo Equity Derivatives - Public Distribution

Rahoitusriskit ja johdannaiset Matti Estola Luento 5. Termiinihinnan määräytyminen

Millaisia ovat finanssipolitiikan kertoimet

Rahoitusriskit ja johdannaiset Luentokurssi kevät 2011 Lehtori Matti Estola

klo Selvitä vakuutustekniseen vastuuvelkaan liittyvät riskit ja niiltä suojautuminen.

r = r f + r M r f (Todistus kirjassa sivulla 177 tai luennon 6 kalvoissa sivulla 6.) yhtälöön saadaan ns. CAPM:n hinnoittelun peruskaava Q P

SUBSTANTIIVIT 1/6. juttu. joukkue. vaali. kaupunki. syy. alku. kokous. asukas. tapaus. kysymys. lapsi. kauppa. pankki. miljoona. keskiviikko.

Talousmatematiikan perusteet: Luento 17. Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa

Mat Investointiteoria. Tentti Mitd

Ito-prosessit. Määritelmä Geometrinen Brownin liike Keskiarvoon palautuvat prosessit Iton lemma. S ysteemianalyysin. Laboratorio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Rahoitusriskit ja johdannaiset Matti Estola. luento 2 Termiini- ja futuurihintojen määräytyminen

laskuperustekorkoisia ja ns. riskihenkivakuutuksia), yksilöllisiä eläkevakuutuksia, kapitalisaatiosopimuksia sekä sairauskuluvakuutuksia.

laskuperustekorkoisia ja ns. riskihenkivakuutuksia), yksilöllisiä eläkevakuutuksia, kapitalisaatiosopimuksia sekä sairauskuluvakuutuksia.

Todellinen prosentti

Lisätuottoa Bull- ja Bear-sertifikaateilla

Black-Scholes-optiohinnoittelumalli

Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.

Mat Investointiteoria Laskuharjoitus 3/2008, Ratkaisut

Tietoa hyödykeoptioista

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F

r1 2 (1 0,02) 1 0, (1 0, 0125) A250A0100 Finanssi-investoinnit 6. harjoitukset Futuuri, termiinit ja swapit

KAUPANKÄYNTIVARASTON POSITIORISKIN LASKEMINEN

Kansainvälinen rahatalous Matti Estola. Termiinikurssit ja swapit valuuttariskien hallinnassa

Valuuttariskit ja johdannaiset

A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä. 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä.

Suojaa ja tuottoa laskevilla markkinoilla. Johannes Ankelo Arvopaperi Aamuseminaari

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto

Vastakeitettyä erikoiskahvia missä tahansa, milloin tahansa! Hyvien ulkoilmaelämysten tulisi alkaa liikkeestäsi!

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset

Investointimahdollisuudet ja investoinnin ajoittaminen

1 Aritmeettiset ja geometriset jonot

Tietoja osakeoptioista

Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,

1 Komparatiivinen statiikka ja implisiittifunktiolause

Päiväkohtaista vipua Bull & Bear -sertifikaateilla

Pääsykoe 2001/Ratkaisut Hallinto

Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Päätöksentekijä on riskipakoinen, jos hyötyfunktio on konkaavi. a(x) = U (x) U (x)

Öljysäiliö maan alla

OPTIMAALINEN INVESTOINTIPÄÄTÖS

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Osamaksukauppa, vakiotulovirran diskonttaus, L8

V ar(m n ) = V ar(x i ).

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen

Talousmatematiikan perusteet

Optiot 1. Tervetuloa webinaariin!

4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C =

Vihaaja. Itsenäinen ajattelija

x 4 e 2x dx Γ(r) = x r 1 e x dx (1)

Matematiikan tukikurssi

Rahoitusriskit ja johdannaiset Matti Estola. luento 7 Swap sopimuksista lisää

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Kappale 9: Raha ja rahapolitiikka KT34 Makroteoria I. Juha Tervala

RBS Warrantit NOKIA DAX. SIP Nordic AB Alexander Tiainen Maaliskuu 2011

Nykyarvo ja investoinnit, L14

Mat Investointiteoria - Kotitehtävät

Nollasummapelit ja bayesilaiset pelit

MS-A0102 Differentiaali- ja integraalilaskenta 1

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu

Monte Carlo -menetelmä optioiden hinnoittelussa (valmiin työn esittely)

Copyright (C) 2012 Matias Savolainen & Marko Kaarto

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

r = n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

KIRJANPITO 22C Ulkomaan rahan määräiset erät kirjanpidossa

Matematiikan tukikurssi, kurssikerta 2

Oletko Bull, Bear vai Chicken?

Markkinoilla kaupattavia sijoituskohteita (1/2)

Solvenssi II:n markkinaehtoinen vastuuvelka

Distance to Default. Agenda. listaamattomien yritysten analysoinnissa Riku Nevalainen HSE

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause

Korkojen aikarakenne

Black Scholes-malli ja volatiliteettihymy

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Raha taseessa. Talousdemokratian keskustelutilaisuus Old Bankissa, Turussa Patrizio Lainà Suomen Talousdemokratia ry:n puheenjohtaja

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 6, Kevät 2018

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1

Korko ja inflaatio. Makrotaloustiede 31C00200 Kevät 2016

Fourier-analyysi, I/19-20, Mallivastaukset, Laskuharjoitus 7

Ammatinharjoittaja - Asteri mallitilikartta (am11)

DESIGN THINKINGILLÄ MENESTYSTARINA: TAPIOLA PRIVATE Tommi Elomaa Yksikönjohtaja Yksityistalousasiakkaat

, tuottoprosentti r = X 1 X 0

SÄÄNNÖT [1] Sijoitusrahasto. Rahaston voimassa olevat säännöt on vahvistettu Säännöt ovat voimassa alkaen.

Hyödykebarrieroptioiden hinnoittelu

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

Riski ja velkaantuminen

Velkakriisi ei ole ohi. Miten suojautua kriisin edessä?

Raha kulttuurimme sokea kohta

Transkriptio:

Tommi Sottinen BS-kaava ja lama Lama 007 Countries don t owe money to each other, countries owe money to banks. If the countries owe money to banks how stupid are the countries to pay. Like the country has an army. The bank has four cashiers and a cleaning lady. Näin sanoi Ismo Leikola, maailman hauskin henkilö vuonna 04. Palaan tähän vitsiin kirjoitukseni lopussa. Muuten kirjoitukseni käsittelee johdannaisia ja erityisesti niin sanottua BS-kaavaa ja sen roolia mm. vuonna 007 alkaneessa ja yhä riehuvassa finanssikriisissä. Yritän argumentoida, että kriisin syy ei ole BS, eli johdannaisten hinnoittelukaava, jonka Fischer Black ja Myron Scholes esittivät vuonna 973 julkaisussaan []. Tai jos onkin, niin sitä syytetään aivan virheellisesti. Kirjoitukseni lopuksi esitän röyhkeästi oman nöyrän näkemykseni kärsimämme laman pääsyyllisestä. Matematiikka finanssikriisin syyllisenä Nykyinen finanssikriisimme alkoi asuntoluotoista ja niihin liitetyistä johdannaisista Yhdysvalloissa vuonna 007. Sitten romahtivat Islannin pankit vuonna 008. EU:ssa oli jo aiemminkin ongelmia monien valtioiden velkojen kanssa, mutta vasta 00 Kreikan velat läsähtivät tapetille. Monia muitakin skandaaleja on nähty vuosien 007 ja 04 välillä, ja varmaan on lisää tulossa. Johdannaisia on esitetty laman syyksi. Erityisesti on kritisoitu niihin liittyvää matematiikkaa, kuten BS-kaavaa () esimerkiksi lehtiartikkelissa [8] sekä David X. Lin niin sanottua gaussista kopulakaavaa lehtiartikkelissa [6]. Kopulakaavaa en puolusta, mutta BS-kaavaa kylläkin. Johdannaiset ja BS-kaava Rahoituksessa johdannaisella tarkoitetaan arvopaperia, jonka arvo määräytyy, eli on johdettu, jonkin kohde-etuuden mukaan. Tässä kirjoituksessa tarkastelemme vain niin sanottuja eurooppalaisia vaniljaoptioita. Matemaattisesti kyseessä on tällöin arvopaperi, jonka arvo juoksuajan T jälkeen on f(s T ), missä S T on kohde-etuuden arvo juoksuajan T jälkeen. Esimerkiksi osto-optiolle f(s) = (S K) +. Toisin sanoen osto-option haltija voi juoksuajan T päätyttyä ostaa kohde-etuuden lunastushinnalla K. Jos kohde-etuuden hinta juoksuajan päätyttyä, eli S T, on korkeampi kuin lunastushinta K, niin osto-option haltijan voitto on S T K. Muussa tapauksessa ostooptio on arvoton. Kuinka sitten johdannaiset, kuten vaikkapa osto-optio, tulee hinnoitella? Vastauksen kysymykseen antoivat Black ja Scholes []. Heidän hinnoitteluperiaate on suojaaminen seuraavilla niin sanotuilla BS-markkinoilla. Olettakaamme, että meillä on kaksi hyödykettä. Ensimmäinen hyödyke on raha tai yleisemmin numerääri. Tälle käytetään symbolia B kuten bond. Kirjoittaja Tommi Sottinen on talousmatematiikan professori Vaasan yliopistossa. 6 ARKHIMEDES /05

Numerääri on riskitön, hillitysti käyttäytyvä ja toteuttaa dynamiikan db = rb dt () Hillitysti käyttäytyvä tarkoittaa tässä sitä, että DY:n () ratkaisu on se, minkä me kaikki koulussa opimme ja minkä jokainen asuntolainainen tietää: B t = B 0 e rt. () Riskittömyys tarkoittaa sitä, että r on deterministinen, mutta tällä ei ole mitään merkitystä: r voisi ihan yhtä hyvin olla stokastinenkin. Itse asiassa B:n ei tarvitsisi olla edes hillitysti käyttäytyvä, mutta klassisesti näin oletetaan, joten en tässä tee triviaalia yleistystä. Toinen hyödyke on kohde-etuus. Tälle käytetään symbolia S kuten stock. Kohde-etuus käyttäytyy hillittömästi ja on stokastinen. Klassisesti oletetaan, että se toteuttaa dynamiikan ds = µs dt + σs dw, (3) missä W on Brownin liike. Tällöin DY:n (3) ratkaisu saadaan Itô-kalkyylillä ja se on viettävä geometrinen Brownin liike St S e µ ( σ ) = t + σ Wt. 0 ( 4) seuraa siis Itôn kaavasta (5) yhdistettynä Brownin liikkeen neliöheilahteluun (6). Entä sitten johdannaisen hinta? Paradigmana on niin sanottu suojausperiaate. Johdannaisen myyjä saa myydessään pääoman v. Tämän pääoman myyjä sijoittaa BS-markkinoilla noudattaen strategiaa (Π B, Π S ), missä Π B =Π B (t, S) ja Π S =Π S (t, S) tarkoittavat kuinka paljon johdannaisen myyjä ostaa tai myy numerääriä B ja kohde-etuutta S juoksuajan hetkellä t. Sijoituksen tulee olla omavarainen. Toisin sanoen kaikki sijoitettava varallisuus tulee johdannaisen myynnistä saadusta alkupääomasta ja sijoituskohteiden arvojen muutoksesta. Matemaattisesti tämä tarkoittaa budjettirajoitusta dv =Π B db + Π S ds, (7) missä V = V (t, S) on sijoitussalkun arvo juoksuajan hetkellä t, kun kohde-etuuden arvo on S. Suojausperiaate sanoo, että alkupääoma v on johdannaisen f(s) oikea hinta, jos omavaraisuusehtoa (7) noudattavan sijoitussalkun (Π B, Π S ) varallisuus toteuttaa V (0, S 0 ) = v, V (T, S T ) = f(s T ). Miten tämä suojaushinta sitten lasketaan? Olkoon sijoitussalun arvo V = V (t, S), missä S on annettu kaavalla (3). Tällöin Itô-kalkyyli antaa kaavan Itô-kalkyyli tarkoittaa tässä Itôn kaavaa, eli toisen kertaluvun (Taylorin mielessä) muuttujanvaihtokaavaa F df = t dt F W dw F + + W dw ( ), ( 5) missä F = F (t, W ) ja Brownin liikkeen neliöheilahtelulle pätee V V dv dt d d t S S V = + + σ S t, S sillä kohde-etuuden S neliöheilahtelu on (ds) = (µs dt + σs dw) = µ S (dt) + µs σ dtdw + σ S (dw) = σ S (dw) = σ S dt. ( 8) (dw ) =dt. (6) Kohde-etuuden määräävän DY:n (3) ratkaisu (4) Yhdistämällä kaava (7) kaavaan (8) sekä sijoituskohteiden B ja S kaavoihin () ja (4) saamme BS:n takaperoisen ODY:n ARKHIMEDES /05 7

V + V S + rs V σ t S S rv = 0 ( 9 ) reunaehdolla V (T, S T )= f (S T ). (0) ODY:n (9) reunaehdolla (0) voi ratkaista monellakin tavalla. Fyysikko varmaankin huomaisi yhteyden lämpöyhtälöön ja stokastikko käyttäisi varmaankin martingaaliteoriaa. Oli sitten ratkaisutapa mikä vaan, niin ratkaisu V = V (t, S) on gaussinen integraali ( r σ ) θ + σ θ x rθ V = e f Se γ ( d x), () missä θ = T t on jäljellä oleva juoksuaika ja γ(dx) on standardigaussinen mitta x γ ( dx) = e dx. π Kaava () on se kuuluisa BS-kaava, joskin olen esittänyt sen tässä yleiselle eurooppalaiselle vaniljaoptiolle f(s). Sen erikoistapausta eurooppalaiselle osto-optiolle f(s)=(s K) + kutsutaan myös BS-kaavaksi. Hinnoittelukaavan () voi tulkita myös satunnaismuuttujan f(s) diskontattuna gaussisena odotusarvona niin sanotun riskineutraalin todennäköisyysmitan suhteen. Tällainen tulkinta on esitetty mm. tämän lehden numerossa 3/99 [5]. Tämä on matemaattisesti miellyttävää, mutta muuten sääli. Riskineutraali todennäköisyysmitta on ainoastaan matemaattinen artefakti ja se johtaa harhaiseen intuitioon, kuten kohta perustelen. BS-kaavan kritiikki BS-kaavaa on kritisoitu mm. siksi, että se olettaa, että. ostaa ja myydä voi jatkuva-aikaisesti,. markkinoilla ei ole kitkaa, eli transaktiokuluja, 3. kohde-etuutta voi ostaa ja myydä rajattomasti, esimerkiksi lyhyeksi myynti on sallittua, 4. osto-ja myyntikorko on kaikille sama, 5. suojausostot tai -myynnit eivät vaikuta kohdeetuuden hintoihin, 6. volatiliteetti on vakio, 7. logaritmiset tuotot ovat riippumattomia, 8. logaritmiset tuotot ovat normaalisti jakautuneita. Kritiikit 5 ovat toki perusteltuja, mutta eivät kriittisiä. BS-malli on näiltä osin idealisoitu malli, joka kuvaa todellisuutta varsin usein riittävällä tarkkuudella ja lisäksi käytännössä on helppoa ja ilmeistä nähdä nämä rajoitukset ja sopeutua niihin asiaan kuuluvalla tavalla. Kritiikki 6 on sikäli asiaton, että käytännössä käytetään BS-mallin versioita, joissa volatiliteetti ei ole vakio. Tällöin matematiikasta tulee hieman sotkuisempaa, mutta periaate on täysin sama kuin vakiovolatiliteettisessakin BS-mallissa. Kritiikit 7 8 ovat olleet julkisuuden eniten esillä. Ne periaatteessa olisivatkin oleellisia BS-kaavan ongelmia, sillä niistä johtuisi että BS-kaava mallintaa kohde-etuutta fundamentaalisti väärällä tavalla. Kritiikit 7 8 ovat kuitenkin täysin asiattomia ja johtunevat siitä, että BS-kaava johdetaan perinteisissä alan oppikirjoissa täysin onnettomalla tavalla. Seuraavassa osiossa johdamme BS-kaavan niin, että kritiikeiltä 7 8 putoaa pohja täysin. BS-kaavan apologia BS-kaava johdetaan perinteisesti edellä esitetyllä tavalla lähtien liikkeelle geometrisesta Brownin liikkeestä. Tästä lähtökohdasta kritiikit 7 8 ovat perusteltuja. Mutta BS-kaavan voi johtaa myös vetoamatta ollenkaan Brownin liikkeeseen. Nimittäin Hans Föllmer huomasi artikkelissaan [3], että Itôn kaava (5) pätee mille tahansa jatkuvalle polulle W, jolle vain neliöheilahtelu (dw ) on olemassa. Stokastiikalla ei ole mitään tekemistä asian kanssa! Föllmerin johto Itôn kaavalle oli äärimmäisen yksinkertainen: hän käytti ainoastaan toisen kertaluvun Taylorin kaavaa 8 ARKHIMEDES /05

ja oletti a priori neilöheilahtelun olemassaolon. Tämä poikkeaa perinteisestä Itôn kaavan perustelusta ainoastaan siinä, että neliöheilahtelun olemassaolo oletettiin; Brownin liikkeelle neliöheilahtelun olemassaolo voidaan todistaa. Teknisesti siis ei tapahtunut suurtakaan muutosta, mutta ajattelutavan muutos oli radikaali: niin radikaali, että se edelleen lähes loistaa poissaolollaan moderneissakin stokastisen analyysin tai matemaattisen rahoitusteorian oppikirjoissa. Ensimmäisenä tätä Föllmerin huomiota sovelsivat johdannaisten hinnoitteluun John Schoenmakers ja Peter Kloeden artikkelissaan [7] ja myöhemmin tämä neliöheilahtelulähestymistapa sovitettiin matemaattisen rahoitusteorian ortodoksiaan artikkelissa []. Näin ollen BS-kaava () pätee, jos ja vain jos kohdeetuuden S neliöheilahtelu toteuttaa DY:n (ds) = σ S dt. () Tällaisia malleja on paljon. On esimerkiksi täysin mahdollista, että kohde-etuuden S logaritmiset tuotot ovat riippuvia toisistaan ja paljon paksuhäntäisempiä, kuin normaalijakauma, mutta silti neliöheilahtelu on sama kuin Brownin liikkeellä. Itse asiassa (melkein) mille tahansa jakaumalle voidaan rakentaa stokastinen malli, jonka poluille pätee (). Finanssikriisin todellinen syyllinen: oma spekulaationi Esitän lopuksi oman yksinkertaistetun ja poleemisen näkemykseni finanssikriisin keskeisimmästä syystä. Johdannaiskaupalla on epäilemättä osuutensa finanssikriisiin jo pelkästään laajuutensa vuoksi: jossain on arvioitu, että johdannaiskaupan volyymi esimerkiksi vuonna 00 oli 600 biljoonaa dollaria. En tiedä, miten arvio on tehty, enkä osaa ottaa kantaa edes sen suuruusluokkaan. Kohtalaisen kohtuuttomasta summasta lienee kuitenkin kyse. Lisäksi johdannaissopimukset usein ovat varsin monimutkaisia. Sen sijaan, että olisi annettu funktio f(s), voi sopimus olla 00 sivua lakimiesjargonia. En usko, että tällaisia sopimuksia on hinnoiteltu alkuunkaan oikein. En edes usko, että niihin voi soveltaa suojausperiaatetta. Vieläpä on niin, että johdannaiset mahdollistavat ostaa palovakuutuksen yhden naapurin saunaan ja samalla myydä toisen naapurin pyromaanille tulitikkuja, ainakin kuvaannollisesti. En tietenkään väitä, että näin olisi tehty. Johdannaisten puolustukseksi on sanottava, että ne myös mahdollistavat suojautumisen riskiä vastaan ja yleisemmin riskitason säätämisen itselleen sopivaksi. Oma näkemykseni kuitenkin on, että nykyinen finanssikriisi tai lama on ennen kaikkea velkakriisi, joka johtuu rahan luonteesta. Nimittäinen rahajärjestelmämme on pyramidihuijaus. Toisin kuin yleisesti luullaan rahaa ei tehdä keskuspankeissa ja pankit eivät lainaa heillä olevaa rahaa. Tosiasiassa pankit luovat lainaamansa rahan tyhjästä [4]. Tämän rahan ne sitten vaativat takaisin korkojen kera. Koska lähes kaikki raha kuitenkin luodaan lainatessa, niin korkorahaa ei luoda juuri missään. Tämä johtaa velkapyramidiin. Kuinka sitten pankeilta voi loppua raha? Siten että pankit, vaikkakin luovat rahan tyhjästä, eivät voi luoda sitä loputtomasti. Koska korkorahoja ei lähtökohtaisesti luoda tyhjästä, ja pyramidia ei voi rakentaa loputtomiin, seuraa luottotappioita. Nämä vaikuttavat pankin taseeseen niin, että enää sen ei ole sallittua luoda rahaa tyhjästä. Tällöin keskuspankit astuvat kuvaan ja antavat pankeille lisää rahaa, tai pikemminkin rahanluontivaltaa. Tämä ei kuitenkaan näytä auttavan: korot ovat alhaalla, eli rahaa on tarjolla, mutta kuluttajat (valtiot mukaan lukien!) ovat korviaan myöten veloissa. Siten he eivät halua ottaa enää lisää velkaa. Pyramidi on saavuttanut saturaatiopisteen; ainakin Euroopassa. Yhdysvalloissa keskuspankki on tunkenut markkinoille niin paljon rahaa, että pyramidin rakentaminen on päässyt jatkumaan. Minulla ei tietenkään ole ratkaisua lamaan, mutta saattaisi olla parempi, jos keskuspankit eivät ARKHIMEDES /05 9

jakaisi rahaa yksityisille pankeille, vaan sirottelisivat rahaa mustista helikoptereista asutuskeskusten yllä. Saksalle tämä ei taida sopia, koska sillä muutenkin menee hyvin ja 90-luvun haamuista ei ole päästy vieläkään eroon. Viitteet [] Bender, C., Sottinen, T. ja Valkeila, E. (008) Pricing by hedging and no-arbitrage beyond semi-martingales. Finance Stoch., 44 468. [] Black, F. ja Scholes, M. (973) The pricing of options and corporate liabilities. J. Political Economy 8, 637 659. [3] Föllmer, H. (98) Calcul d Itô sans probabilités. Séminaire de Probabilités XV, 43 50. [4] Kauko, K. (0) Lyhyt johdatus rahaan, BoF Online 5, http://www.suomenpankki. fi/pdf/699.pdf [5] Salminen, P. ja Valkeila, E. (999) Matemaattisen rahoitusteorian peruselementti: Black Scholesin kaava. Arkhimedes 3/99, 4. [6] Salmon, F. (009) Recipe for Disaster: The Formula That Killed Wall Street. Wired Magazine 7.03, http://archive.wired.com/techbiz/it/ magazine/7-03/wp_quant?currentpage=all [7] Schoenmakers, J. ja Kloeden, P. (999) Robust option replication for a Black-Scholes model extended with nondeterministic trends. J. Appl. Math. Stochastic Anal., no., 3 0. [8] Stewart, I. (0) The mathematical equation that caused the banks to crash. The Guardian, Sunday February 0, http://www.theguardian.com/science/0/ feb//black-scholes-equation-credit-crunch 30 ARKHIMEDES /05