TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
|
|
- Sakari Sala
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen syksy 2010
2 Käytännön optimointiongelmien ratkaiseminen
3 Käytännön optimointiongelmien ratkaiseminen Käytännössä tulee kiinnittää huomiota ainakin seuraaviin asioihin 1. Tehtävän mallinnus 2. Optimointitehtävän muotoilu 3. Soveltuvan optimointiohjelmiston valinta 4. Optimointiohjelmiston ja mallinnustyökalun kytkeminen 5. Optimointi ja saadun ratkaisun analysointi Käydään tarkemmin läpi esimerkkitehtävän avulla
4 Esimerkkisovellus Jätevedenpuhdistamon optimaalinen suunnittelu
5 Optimointitehtävän muotoilu Optimoinnin tarkoitus tulee olla selvä mitä oikeasti halutaan? Tavoitteiden/objektifunktioiden määrittely Muuttujien valinta ja rajojen asettaminen pyritään rajaamaan kiinnostava alue Rajoitteiden määrittely Optimoinnin ja sovellusalan asiantuntijoiden yhteistyötä
6 1. Aktiivilieteprosessi Biokemialliset reaktiot käyttävät paljon happea ja alkaliteettia Happea tuotetaan ilmastuskompressoreilla ja alkaliteettia saadaan käsiteltävän jäteveden lisäksi lisäämällä kemikaaleja Ilmastus kuluttaa paljon energiaa ja kemikaalit maksavat Biomassan konsentraatio tulisi pitää mahdollisimman alhaalla (prosessi toimii paremmin)
7 1. Aktiivilieteprosessi Kolme (ristiriitaista) minimoitavaa objektifunktiota ammoniumtypen määrä vedessä käytetyn alkaliteettikemikaalin määrä ilmastuksen kuluttama energia Kolme päätösmuuttujaa biomassan konsentraatio käytetyn alkaliteettikemikaalin määrä O 2 -konsentraatio reaktorin viimeisessä osassa Rajoite: puhdistetun jäteveden alkaliteetti tulee olla annetuissa rajoissa (ala- ja yläraja)
8 2. Toiminta-asetusten optimointi Kokonaistavoite on minimoida typen määrä puhdistetussa jätevedessä ja minimoida käyttökustannukset Käyttökustannukset koostuvat 4 eri objektifunktiosta minimoi ilmastuksen tarve aktiivilieteprosessissa minimoi ylimääräisen hiilen lähteen käyttö denitrifikaatiossa minimoi ylimääräisen lietteen tuotto maksimoi biokaasun tuotto yhteensä 5 objektifunktiota
9 2. Toiminta-asetusten optimointi Viisi ristiriitaista objektifunktiota Neljä päätösmuuttujaa fermentointiin menevän lietteen pumppaus ylimääräisen lietteen pumppaus O 2 -konsentraatio valitussa reaktorin osassa lisä hiilenlähteen käyttö (metanoli) Rajoitteita (ala- ja ylärajat) puhdistetun veden ammonium pitoisuudelle biomassan konsentraatiolle kokonaistypenpoistolle (%)
10 Soveltuvan optimointiohjelmiston valinta Mitä tehtävän luonteesta tiedetään? Onko gradientteja saatavilla? Onko tehtävä mahdollisesti epäkonveksi? Onko funktioiden arvojen laskeminen (=tehtävän simulointi) aikaa vievää? Useita tavoitteita, onko päätöksentekijä käytettävissä?
11 Projektissa käytetyt työkalut Käytettiin interaktiivista lähestymistapaa Prosessi mallinnettiin käyttäen GPS-X prosessisimulaattoria GPS-X kytkettiin IND-NIMBUS optimointiohjelmistoon yksitavoitteisessa optimoinnissa käytettiin globaalin optimoinnin menetelmiä Päätöksentekijä oli asiantuntija puhdistamojen suunnittelussa
12 Optimointiohjelmiston ja mallinnustyökalun kytkeminen Mitä ohjelmistoja on saatavilla? optimointimenetelmien eri toteutukset Mitä tietoa ohjelmistojen välillä pitää kulkea? Mitkä ovat rajapinnat? rajapintojen muokkausmahdollisuus auttaa kaupallisten mallinnustyökalujen kytkeminen usein hankalaa, ei mahdollista vaikuttaa rajapintaan Kokonaisuuden testaaminen kytkemisen jälkeen ennen optimointia esim. yksinkertaisilla tehtävillä
13 Kytkeminen projektissa Käytössä kaupallinen simulaattori (GPS-X) ja JY:ssä kehitetty optimointityökalu (IND- NIMBUS) Mahdollisuus vaikuttaa ainoastaan optimointiohjelmiston rajapintaan Simulaattorin rajapinnasta ja sen käytöstä tietoa tekniseltä tuelta
14 Kytkeminen projektissa Simulaattori tekee mallista suoritettavan tiedoston (.exe) Input simulaattorille komentojonotiedosto (.cmd), joka lukee muuttujien arvot tekstitiedostosta komentojonotiedostolle oma formaatti Output simulaattorille tekstitiedosto sisältäen simuloidut arvot
15 Kytkeminen projektissa Optimoija haluaa laskea funktioiden arvot (objektit ja rajoitteet) tietyillä muuttujien arvoilla muuttujien arvot kirjoitetaan tekstitiedostoon (values.in) simulointi käynnistetään suorittamalla simulointi systeemikutsuna simulaattori lukee muuttujien arvot ja suorittaa simuloinnin tulokset kirjoitetaan tekstitiedostoon (values.out) optimoija lukee simuloidut arvot tiedostosta
16 Optimointi ja saadun ratkaisun analysointi Sopivien parametrien määrittäminen (mallinnustyökalu, optimointiohjelmisto) Sovellusalan ammattilaisen hyödyntäminen (mm. päätöksentekijänä) Tehtävän käyttäytymisestä oppiminen Optimointia voidaan myös käyttää mallin testaamisessa Analysoi ja varmista saatujen tulosten järkevyys (yhdessä ammattilaisen kanssa)
17 Päätöksentekoprosessi Voidaan jakaa kahteen osaan oppimisvaihe päätösvaihe Interaktiivisessa monitavoiteoptimoinnissa oppimisvaiheessa tutustutaan tehtävän käyttäytymiseen antamalla eri preferenssejä ja arvioidaan näiden pohjalta tuotettuja ratkaisuja nähdään mitä voidaan saavuttaa, mitkä ovat kiinnostavia alueita PO joukossa päätösvaiheessa haetaan paras kompromissi kiinnostavalta alueelta tarkennetuilla preferensseillä
18 1. Aktiivilieteprosessi
19 1. Aktiivilieteprosessi Kaikkiaan laskettiin 11 PO ratkaisua Viisi näistä oli käytännössä relevanttia (eli nitrifiointi toimii) Pienimmän ammoniumnitraatti pitoisuuden ratkaisu käytti liian paljon energiaa ja kemikaaleja antamatta riittävää parannusta veden laatuun Jäljelle jäävät 4 ratkaisua olivat käytännössä yhtä hyviä energian ja kemikaalien kulutuksen suhteen (mikä tahansa voitaisiin valita) Näistä valittiin ratkaisu, jossa biomassan konsentraatio oli pienin parempi prosessin käytettävyys
20 1. Aktiivilieteprosessi Hakanen, J., Miettinen, K., Sahlstedt, K., Wastewater Treatment: New Insight Provided by Interactive Multiobjective Optimization, Decision Support Systems, To appear
21 2. Toiminta-asetusten optimointi
22 2. Toiminta-asetusten optimointi Alussa DM käytti insinööritietoon perustuvia arvoja tavoitteille ( alustava referenssipiste ) DM pystyi tutkimaan käyttökustannusten välisiä riippuvuuksia (4 eri objektifunktiota) Kaikkiaan laskettiin 10 PO ratkaisua Kokeiltiin IND-NIMBUkSen tarjoamia eri (globaaleja) yksitavoiteoptimoijia Paras kompromissi antoi selvästi paremmat arvot kolmelle objektifunktiolle (11, 15 and 45%) ja vain vähän huonommat arvot muille kahdelle (13 and 7%) verrattuna insinööritietoon Selkein parannus saatiin kemikaalien kulutuksessa
23 2. Toiminta-asetusten optimointi K. Sahlstedt, J. Hakanen & K. Miettinen, Interactive Multiobjective Optimization in Wastewater Treatment Plant Operation and Design, In Proceedings of ECWATECH 2010, IWA Specialist Conference: Water and Wastewater Treatment Plants in Towns and Communities of the XXI Century: Technologies, Design and Operation, Moscow, Russia
24 MO kirjallisuutta esim. V. Changkong & Y. Haimes, Multiobjective Decision Making: Theory and Methodology, 1983 Y. Sawaragi, H. Nakayama & T. Tanino, Theory of Multiobjective Optimization, 1985 R.E. Steuer, Multiple Criteria Optimization: Theory, Computation and Applications, 1986 K. Miettinen, Nonlinear Multiobjective Optimization, 1999 K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, 2001
25 MO kirjallisuutta esim. M. Ehrgott, Multicriteria Optimization, 2005 J. Branke, K. Deb, K. Miettinen & R. Slowinski (eds): Multiobjective Optimization: Interactive and Evolutionary Approaches, 2008 G.P. Rangaiah (editor), Multi-Objective Optimization: Techniques and Applications in Chemical Engineering, 2009 E. Talbi, Metaheuristics: from Design to Implementation, 2009
TIES483 Epälineaarinen optimointi
TIES483 Epälineaarinen optimointi Käytännön optimointiongelmien ratkaiseminen jussi.hakanen@jyu.fi Syksy 2012 Käytännön optimointiongelmien ratkaiseminen Käytännössä tulee kiinnittää huomiota ainakin seuraaviin
LisätiedotTIES483 Epälineaarinen optimointi. Syksy 2012
TIES483 Epälineaarinen optimointi jussi.hakanen@jyu.fi Syksy 2012 Yleistä Tietotekniikan syventävä kurssi, 5 op Pakollinen laskennallisten tieteiden FMopinnoissa (ent. simulointi ja optimointi) https://korppi.jyu.fi/kotka/r.jsp?course=134562
LisätiedotTIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Käytännön optimointiongelmien ratkaiseminen Käytännön optimointiongelmien ratkaiseminen
LisätiedotTIES483 Epälineaarinen optimointi. Monitavoiteoptimointi Syksy 2012
TIES483 Epälineaarinen optimointi Monitavoiteoptimointi jussi.hakanen@jyu.fi Syksy 2012 Sisältö Johdanto monitavoiteoptimointiin Monitavoiteoptimoinnin käsitteitä Menetelmätyypit Käytännön sovellusesimerkkejä
LisätiedotTIES483 Epälineaarinen optimointi
TIES483 Epälineaarinen optimointi Käytännön optimointiongelmien ratkaiseminen jussi.hakanen@jyu.fi Syksy 2012 Käytännön optimointiongelmien ratkaiseminen Käytännössä tulee kiinnittää huomiota ainakin seuraaviin
LisätiedotMonitavoiteoptimointi
Monitavoiteoptimointi Useita erilaisia tavoitteita, eli useita objektifunktioita Tavoitteet yleensä ristiriitaisia ja yhteismitattomia Optimaalisuus tarkoittaa yleensä eri asiaa kuin yksitavoitteisessa
LisätiedotTIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Optimaalisuus: objektiavaruus f 2 min Z = f(s) Parhaat arvot alhaalla ja vasemmalla
LisätiedotTIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Evoluutiopohjainen monitavoiteoptimointi MCDM ja EMO Monitavoiteoptimointi kuuluu
LisätiedotTIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Tasaväliset PO pisteet? Painokerroinmenetelmä: muutetaan painoja systemaattisesti
LisätiedotTIEA382 Lineaarinen ja diskreetti optimointi
TIEA382 Lineaarinen ja diskreetti optimointi Jussi Hakanen Tietotekniikan laitos jussi.hakanen@jyu.fi AgC 426.3 Yleiset tiedot Tietotekniikan kandidaattiopintojen valinnainen kurssi http://users.jyu.fi/~jhaka/ldo/
LisätiedotTIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Yleistä https://korppi.jyu.fi/kotka/r.jsp?course=96762 Sisältö Johdanto yksitavoitteiseen
LisätiedotTIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 PO pisteiden määräämismenetelmät Idea: tuotetaan erilaisia PO ratkaisuita, joista
LisätiedotTIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 NSGA-II Non-dominated Sorting Genetic Algorithm (NSGA) Ehkä tunnetuin EMO-menetelmä
LisätiedotTIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Monitavoiteoptimointi Mitä monitavoitteisuus tarkoittaa? Halutaan saavuttaa
LisätiedotOPTIMOINNIN JA PÄÄTÖKSENTEON MAISTERI- KOULUTUS (OPTI)
OPTIMOINNIN JA PÄÄTÖKSENTEON MAISTERI- KOULUTUS (OPTI) 24.10.2013 JYVÄSKYLÄN YLIOPISTO INFORMAATIOTEKNOLOGIAN TIEDEKUNTA 2013 1. AJANKOHTAISUUS Kilpailu kiristyy kaikilla elämänalueilla koko ajan asiat
LisätiedotLineaaristen monitavoiteoptimointitehtävien
Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Jerri Nummenpalo 17.09.2012 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.
LisätiedotHarjoitus 4: Matlab - Optimization Toolbox
Harjoitus 4: Matlab - Optimization Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen
LisätiedotLineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla
Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla Juho Andelmin 21.01.2013 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Raimo P. Hämäläinen Työn saa tallentaa ja julkistaa Aalto-yliopiston
LisätiedotEpätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu (aihe-esittely)
Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu (aihe-esittely) Vilma Virasjoki 23.01.2012 Ohjaaja: Jouni Pousi Valvoja: Raimo P. Hämäläinen Työn saa tallentaa
LisätiedotTypenja fosforintalteenotto
Typenja fosforintalteenotto jätevesistä - rejekti Surendra Pradhan Riku Vahala Anna Mikola Juho Kaljunen 29.03.2017 Sisällys Typen talteenoton tarpeellisuus NPHarvest-projekti lyhyesti Laboratoriotestien
LisätiedotLuento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu
Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) vasemman puolen
LisätiedotMat Optimointiopin seminaari kevät Monitavoiteoptimointi. Tavoitteet
Mat-2.142 Optimointiopin seminaari kevät 2000 Monitavoiteoptimointi Optimointiopin seminaari - Kevät 2000 / 1 Tavoitteet Monitavoitteisten optimointitehtävien ratkaisukäsitteet ja soveltamismahdollisuudet
LisätiedotOptimointi. Etsitään parasta mahdollista ratkaisua annetuissa olosuhteissa. Ongelman mallintaminen. Mallin ratkaiseminen. Ratkaisun analysointi
Optimointi Etsitään parasta mahdollista ratkaisua annetuissa olosuhteissa Ongelman mallintaminen Mallin ratkaiseminen Ratkaisun analysointi 1 Peruskäsitteitä Muuttujat: Sallittu alue: x = (x 1, x 2,...,
Lisätiedotmonitavoitteisissa päätöspuissa (Valmiin työn esittely) Mio Parmi Ohjaaja: Prof. Kai Virtanen Valvoja: Prof.
Epätäydellisen preferenssiinformaation hyödyntäminen monitavoitteisissa päätöspuissa (Valmiin työn esittely) Mio Parmi 15.1.2018 Ohjaaja: Prof. Kai Virtanen Valvoja: Prof. Kai Virtanen Tausta Päätöspuu
LisätiedotPROSESSIMALLINNUKSEN HYÖDYNTÄMINEN KAKOLANMÄEN JÄTEVEDENPUHDISTAMON PROSESSIAJOSSA
PROSESSIMALLINNUKSEN HYÖDYNTÄMINEN KAKOLANMÄEN JÄTEVEDENPUHDISTAMON PROSESSIAJOSSA Vesihuoltopäivät 10.5.2017 KAKOLANMÄEN JÄTEVEDENPUHDISTAMO 14 kunnan omistama osakeyhtiö AVL 300 000 keskivirtaama noin
LisätiedotLuento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu
Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) on voimassa
LisätiedotOsakesalkun optimointi. Anni Halkola Turun yliopisto 2016
Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.
LisätiedotLentotiedustelutietoon perustuva tykistön tulenkäytön optimointi (valmiin työn esittely)
Lentotiedustelutietoon perustuva tykistön tulenkäytön optimointi (valmiin työn esittely) Tuukka Stewen 1.9.2017 Ohjaaja: DI Juho Roponen Valvoja: prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston
LisätiedotLineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla
Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla Juho Andelmin 21.1.213 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Raimo P. Hämäläinen Työn saa tallentaa ja julkistaa Aalto-yliopiston
LisätiedotAircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization
Aircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization 7.5.2011 Ohjaaja: Ville Mattila Valvoja: Raimo Hämäläinen Tausta Ilmavoimilla tärkeä rooli maanpuolustuksessa Rauhan aikana
LisätiedotProjektiportfolion valinta
Projektiportfolion valinta Mat-2.4142 Optimointiopin seminaari kevät 2011 Portfolion valinta Käytettävissä on rajallinen määrä resursseja, joten ne on allokoitava mahdollisimman hyvin eri projekteille
LisätiedotParempaa äänenvaimennusta simuloinnilla ja optimoinnilla
Parempaa äänenvaimennusta simuloinnilla ja optimoinnilla Erkki Heikkola Numerola Oy, Jyväskylä Laskennallisten tieteiden päivä 29.9.2010, Itä-Suomen yliopisto, Kuopio Putkistojen äänenvaimentimien suunnittelu
LisätiedotIlmastuksen energiankulutuksen ja typenpoiston optimointi Turun Kakolanmäen jätevedenpuhdistamolla
Ilmastuksen energiankulutuksen ja typenpoiston optimointi Turun Kakolanmäen jätevedenpuhdistamolla Envieno, Turun seudun puhdistamo Oy, Esa Malmikare Jouko Tuomi Vesihuolto 2015 KAKOLANMÄEN JÄTEVEDENPUHDISTAMO
LisätiedotMALLIT VESIJÄRJESTELMIEN TUTKIMUKSESSA
MALLIT VESIJÄRJESTELMIEN TUTKIMUKSESSA Hannu Poutiainen, FT PUHDAS VESI JA YMPÄRISTÖ TUTKIMUSAVAUKSIA MAMKISSA Mikpoli 8.12.2016 Mitä mallit ovat? Malli on arvioitu kuvaus todellisuudesta joka on rakennettu
LisätiedotOsakesalkun optimointi
Osakesalkun optimointi Anni Halkola Epäsileä optimointi Turun yliopisto Huhtikuu 2016 Sisältö 1 Johdanto 1 2 Taustatietoja 2 3 Laskumetodit 3 3.1 Optimointiongelmat........................ 4 4 Epäsileän
LisätiedotKURSSIEN POISTOT JA MUUTOKSET LUKUVUODEKSI
Liite 6.5/2/2016 Aalto-yliopisto Insinööritieteiden korkeakoulu KURSSIEN POISTOT JA MUUTOKSET LUKUVUODEKSI 2016-2017 RAKENNE- JA RAKENNUSTUOTANTOTEKNIIKAN KOULUTUSOHJELMA Valmistelija Seppo Hänninen (Päivi
LisätiedotTTY Porin laitoksen optimointipalvelut yrityksille
TTY Porin laitoksen optimointipalvelut yrityksille Timo Ranta, TkT Frank Cameron, TkT timo.ranta@tut.fi frank.cameron@tut.fi Automaation aamukahvit 28.8.2013 Optimointi Tarkoittaa parhaan ratkaisun valintaa
LisätiedotOPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAN JA FYSIIKAN LAITOS/ LUKUVUOSI
OPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAN JA FYSIIKAN LAITOS/ LUKUVUOSI 2008-2009 Muutokset on hyväksytty teknillisen tiedekunnan tiedekuntaneuvostossa 13.2.2008 ja 19.3.2008. POISTUVAT OPINTOJAKSOT:
LisätiedotKohti energiaomavaraista jätevesilaitosta. Vesi ja vihreä talous - seminaari
Kohti energiaomavaraista jätevesilaitosta Vesi ja vihreä talous - seminaari 11.9. 2013 1 Konsernirakenne 2013 Econet-konserni Econet Oy Econet Consulting Oy 100 % Oy Slamex Ab 100 % Dewaco Oy 100 % Econet
LisätiedotKon Konepajojen tuotannonohjaus: ILOG CPLEX Studion käyttö
Kon-15.4199 Konepajojen tuotannonohjaus: ILOG CPLEX Studion käyttö 22.1.2016 Harjoituksessa 1. Varmistetaan että kaikilla on pari! Ilmoittautukaa oodissa etukäteen! 2. Tutustutaan ensimmäiseen tehtävään
LisätiedotTalousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla
Talousmatematiikan perusteet: Luento 12 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,
LisätiedotKandidaatintyön esittely: Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu
Kandidaatintyön esittely: Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu Vilma Virasjoki 19.11.2012 Ohjaaja: DI Jouni Pousi Valvoja: Professori Raimo P.
LisätiedotSIMO-seminaari. 23.3.2007 Helsinki
SIMO-seminaari 23.3.2007 Helsinki Ohjelma Tässä ollaan nyt: SIMO-demo Kahvi Jotain erilaistakin: Tapion Suokanta Jatkokuviot SIMO-demo Datana Metsähallituksen H_alueelta 240, T_piiristä 5, osastosta 181
LisätiedotJätevesiprosessien monitoroinnin ja ohjauksen tulevaisuus
Jätevesiprosessien monitoroinnin ja ohjauksen tulevaisuus Kolme havaintoesimerkkiä Henri Haimi Sisältö Case 1: Viikinmäen jälkisuodatusprosessin nitraattipitoisuuksien estimointi n malliprediktiivinen
LisätiedotRUKAN UUDEN JÄTEVEDENPUHDISTAMON KÄYNNISTYS- JA KÄYTTÖKOKEMUKSIA Kristian Sahlstedt, osastopäällikkö Pöyry Finland Oy
RUKAN UUDEN JÄTEVEDENPUHDISTAMON KÄYNNISTYS- JA KÄYTTÖKOKEMUKSIA Kristian Sahlstedt, osastopäällikkö Pöyry Finland Oy Vesihuolto 2017 10.5.2015 JOHDANTO Rukan alueen jätevedenpuhdistuksen uudistamista
LisätiedotTalousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla
Talousmatematiikan perusteet: Luento 11 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,
LisätiedotJoonas Haapala Ohjaaja: DI Heikki Puustinen Valvoja: Prof. Kai Virtanen
Hävittäjälentokoneen reitin suunnittelussa käytettävän dynaamisen ja monitavoitteisen verkko-optimointitehtävän ratkaiseminen A*-algoritmilla (valmiin työn esittely) Joonas Haapala 8.6.2015 Ohjaaja: DI
Lisätiedot4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä
JYVÄSKYLÄN YLIOPISTO 4. Luennon sisältö Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä kevät 2012 TIEA382 Lineaarinen ja diskreetti optimointi Lineaarinen optimointitehtävä Minimointitehtävä
LisätiedotMonitavoiteoptimoinnin ja erityisesti NIMBUS-menetelmän hyödyntäminen monitavoitteisessa päätöksenteossa.
Monitavoiteoptimoinnin ja erityisesti NIMBUS-menetelmän hyödyntäminen monitavoitteisessa päätöksenteossa. Ellemari Teinilä Pro gradu -tutkielma Heinäkuu 2019 MATEMATIIKAN JA TILASTOTIETEEN LAITOS TURUN
Lisätiedot1 Kertaus. Lineaarinen optimointitehtävä on muotoa:
1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n
LisätiedotKEHÄ. Tutkimusongelmia ja pilotteja. Harri Mattila,
KEHÄ Tutkimusongelmia ja pilotteja Harri Mattila, 3.5.2017 Energia, ravinteet, digitaalisuus, tulevaisuus Energian tuotanto ja kulutus on sidoksissa ilmastonmuutokseen Fosfori on ehtyvä ja strategisesti
LisätiedotHarjoitus 8: Excel - Optimointi
Harjoitus 8: Excel - Optimointi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Lineaarisen optimointimallin muodostaminen
LisätiedotOPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAn JA FYSIIKAN LAITOS LUKUVUOSI
OPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAn JA FYSIIKAN LAITOS LUKUVUOSI 007-008 POISTUVAT OPINTOJAKSOT: Ti41010 Matematiikka EnA1 op Ti41010 Matematiikka KeA1 op Ti410170 Matematiikka SäA1 op Ti410140
LisätiedotKimppu-suodatus-menetelmä
Kimppu-suodatus-menetelmä 2. toukokuuta 2016 Kimppu-suodatus-menetelmä on kehitetty epäsileiden optimointitehtävien ratkaisemista varten. Menetelmässä approksimoidaan epäsileitä funktioita aligradienttikimpulla.
LisätiedotOnline-oppiva ilmavalvontajärjestelmän suorituskykymalli
Online-oppiva ilmavalvontajärjestelmän suorituskykymalli MATINE:n tutkimusseminaari 16.11.2017 Juha Jylhä ja Marja Ruotsalainen Tampereen teknillinen yliopisto Signaalinkäsittelyn laboratorio Hankkeelle
LisätiedotMalliratkaisut Demo 4
Malliratkaisut Demo 4 1. tehtävä a) () = 2+1. Funktio on lineaarinen, joten se on unimodaalinen sekä maksimoinnin että minimoinnin suhteen. Funktio on konveksi ja konkaavi. b) () = (suurin kokonaisluku
LisätiedotMatemaattinen optimointi I, demo
Matemaattinen optimointi I, demo 3 29.1.2015 Demo 3 järjestetään Quantumin mikroluokassa normaaleina demoaikoina. Tavoitteena on harjoitella kurssilla tarvittavien optimointiohjelmistojen käyttöä. Demopisteet
LisätiedotRAVITA TM. Fosforin ja Typen talteenottoa jätevesistä
RAVITA TM Fosforin ja Typen talteenottoa jätevesistä 1 Mikä on RAVITA TM? Fosforin ja typen talteenottoon perustuva prosessikokonaisuus jätevedenpuhdistamolle Fosfori erotetaan jälkisaostamalla Typpi erotetaan
Lisätiedot6. Luennon sisältö. Lineaarisen optimoinnin duaaliteoriaa
JYVÄSKYLÄN YLIOPISTO 6. Luennon sisältö Lineaarisen optimoinnin duaaliteoriaa työkalu ratkaisun analysointiin Jälki- ja herkkyysanalyysiä mitä tapahtuu optimiratkaisulle, jos tehtävän vakiot hieman muuttuvat
LisätiedotHarjoitus 9: Optimointi I (Matlab)
Harjoitus 9: Optimointi I (Matlab) SCI-C0200 Fysiikan ja matematiikan menetelmien studio SCI-C0200 Fysiikan ja matematiikan menetelmien studio 1 Harjoituksen aiheita Optimointimallin muodostaminen Optimointitehtävien
LisätiedotProjektiportfolion valinta
Projektiportfolion valinta Mat-2.4142 Optimointiopin seminaari kevät 2011 Kotitehtävän 1 ratkaisu Kotitehtävä Kirkwood, G. W., 1997. Strategic Decision Making: Multiobjective Decision Analysis with Spreadsheets,
Lisätiedot1 Johdanto LP tehtävän luonteen tarkastelua Johdanto herkkyysanalyysiin Optimiarvon funktio ja marginaalihinta
Sisältö Johdanto 2 LP tehtävän luonteen tarkastelua 3 Johdanto herkkyysanalyysiin 5 2 Optimiarvon funktio ja marginaalihinta 5 3 Johdanto duaaliteoriaan 6 2 LP-tehtävän standardimuoto 9 Johdanto Optimoinnista
LisätiedotPanosprosessien integroitu hallinta
Panosprosessien integroitu hallinta Jari Hämäläinen VTT Tuotteet ja tuotanto jari.hamalainen@vtt.fi Panosprosessien integroitu hallinta - PINHA 1.10.1999-31.1.2003 Kehitettiin uusia simulointiin ja optimointiin
LisätiedotOptimaalisuusehdot. Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0
Optimaalisuusehdot Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0 i = 1,..., m j = 1,..., l missä f : R n R, g i : R n R kaikilla i = 1,..., m, ja h j : R n R kaikilla j = 1,..., l
LisätiedotRAKENNUSTEN ENERGIANKÄYTÖN OPTIMOINTI. Kai Sirén Aalto yliopisto
RAKENNUSTEN ENERGIANKÄYTÖN OPTIMOINTI Kai Sirén Aalto yliopisto LVI-tekniikan tutkimusryhmä Henkilökunta Laitteistot 2 Professoria 3 post-doc tutkijaa 1 vieraileva post-doc (Japan) 5 tohtoriopiskelijaa
LisätiedotMiksi kompromissi on parempi kuin optimi? Uusia monitavoiteoptimoinnin menetelmiä päätöksentekoon
Miksi kompromissi on parempi kuin optimi? Uusia monitavoiteoptimoinnin menetelmiä päätöksentekoon Kaisa Miettinen Johdantoa optimointiin Optimointi tarkoittaa systemaattisia tapoja taata parhaan mahdollisen
LisätiedotEi ole olemassa jätteitä, on vain helposti ja hieman hankalammin uudelleen käytettäviä materiaaleja
Jätehuolto Ei ole olemassa jätteitä, on vain helposti ja hieman hankalammin uudelleen käytettäviä materiaaleja Jätteiden käyttötapoja: Kierrätettävät materiaalit (pullot, paperi ja metalli kiertävät jo
LisätiedotLineaarisen kokonaislukuoptimointitehtävän ratkaiseminen
Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Jos sallittuja kokonaislukuratkaisuja ei ole kovin paljon, ne voidaan käydä kaikki läpi yksitellen Käytännössä tämä ei kuitenkaan ole yleensä mahdollista
LisätiedotENON JÄTEVEDENPUHDISTAMON VELVOITETARKKAILUJEN YHTEENVETO 2018
ENON JÄTEVEDENPUHDISTAMON VELVOITETARKKAILUJEN YHTEENVETO 218 1 JOENSUUN VESI Enon jätevedenpuhdistamo VELVOITETARKKAILUJEN YHTEENVETO 218 1. YLEISTÄ Enon taajaman jätevedenpuhdistamo on tyypiltään biologis-kemiallinen
LisätiedotLineaarisen ohjelman määritelmä. Joonas Vanninen
Lineaarisen ohjelman määritelmä Joonas Vanninen Sisältö Yleinen optimointitehtävä Kombinatorinen tehtävä Optimointiongelman tapaus Naapurusto Paikallinen ja globaali optimi Konveksi optimointitehtävä Lineaarinen
LisätiedotKuvioton metsäsuunnittelu Paikkatietomarkkinat, Helsinki Tero Heinonen
Paikkatietomarkkinat, Helsinki 3.11.2009 Tero Heinonen Sisältö Kuvioton metsäsuunnittelu Optimointi leimikon suunnittelumenetelmänä Verrataan optimointi lähestymistapaa diffuusiomenetelmään Muuttuvat käsittely-yksiköt
LisätiedotTuotannon simulointi. Teknologiademot on the road -hanke
Tuotannon simulointi Teknologiademot on the road -hanke Simulointi Seamkissa Tuotannon simulointia on tarjottu palvelutoimintana yrityksille 90-luvun puolivälistä lähtien. Toteutettuja yritysprojekteja
LisätiedotWP3 Decision Support Technologies
WP3 Decision Support Technologies 1 WP3 Decision Support Technologies WP Leader: Jarmo Laitinen Proposed budget: 185 000, VTT 100 000, TUT 85 000. WP3 focuses in utilizing decision support technologies
LisätiedotRinnakkaissaostuksesta biologiseen fosforinpoistoon
Rinnakkaissaostuksesta biologiseen fosforinpoistoon Sakari Pitkäjärvi Huittisten puhdistamo oy 1 1 Perinteinen rinnakkaissaostus Fosfori saostetaan jätevedestä kemiallisesti Esimerkiksi ferrisulfaattia
LisätiedotINFORS 1 / 2010. Suomen Operaatiotutkimusseuran jäsenlehti. FORS, Suomen Operaatiotutkimusseura ry. Finnish Operations Research Society
INFORS Suomen Operaatiotutkimusseuran jäsenlehti 1 / 2010 FORS, Suomen Operaatiotutkimusseura ry Finnish Operations Research Society www.operaatiotutkimus.fi Suomen Operaatiotutkimusseura ry:n jäsenlehti
LisätiedotOsaamiskeskus pk-yrityksen yhteistyökumppanina
Osaamiskeskus pk-yrityksen yhteistyökumppanina Watrec Oy Watrec Ltd, Wahreninkatu 11, 30100 Forssa. Tapionkatu 4 A 11, 40100 Jyväskylä, Finland Tel. +358 3 422 2444 Fax +358 3 422 2445 www.watrec.com 1
LisätiedotEUREFin vaikutukset organisaatioiden tietojärjestelmiin
EUREFin vaikutukset organisaatioiden tietojärjestelmiin EUREF-päivä 4.9.2012 ALEKSI LESKINEN Sisältö Tietojärjestelmät ja EUREF Keskeiset haasteet EUREF-muunnoksissa EUREF-muunnosprosessin vaiheet Yhteenveto
LisätiedotTyyppiluokat II konstruktoriluokat, funktionaaliset riippuvuudet. TIES341 Funktio-ohjelmointi 2 Kevät 2006
Tyyppiluokat II konstruktoriluokat, funktionaaliset riippuvuudet TIES341 Funktio-ohjelmointi 2 Kevät 2006 Alkuperäislähteitä Philip Wadler & Stephen Blott: How to make ad-hoc polymorphism less ad-hoc,
LisätiedotTIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
TIES592 Montavoteoptmont ja teollsten prosessen hallnta Ylassstentt Juss Hakanen juss.hakanen@jyu.f syksy 2010 Interaktvset menetelmät Idea: päätöksentekjää hyödynnetään aktvsest ratkasuprosessn akana
LisätiedotPiiri K 1 K 2 K 3 K 4 R R
Lineaarinen optimointi vastaus, harj 1, Syksy 2016. 1. Teollisuuslaitos valmistaa piirejä R 1 ja R 2, joissa on neljää eri komponenttia seuraavat määrät: Piiri K 1 K 2 K 3 K 4 R 1 3 1 2 2 R 2 4 2 3 0 Päivittäistä
Lisätiedot1. Lineaarinen optimointi
0 1. Lineaarinen optimointi 1. Lineaarinen optimointi 1.1 Johdatteleva esimerkki Esimerkki 1.1.1 Giapetto s Woodcarving inc. valmistaa kahdenlaisia puuleluja: sotilaita ja junia. Sotilaan myyntihinta on
LisätiedotTeollinen optimointi: avain yritysten kilpailukykyyn
Teollinen optimointi: avain yritysten kilpailukykyyn Professori Kaisa Miettinen, JY, virkaanastujaisesitelmä 14.5.2008 Johdattelu optimointiin Teollinen optimointi viittaa optimoinnin soveltamiseen erityisesti
Lisätiedot8h 30min PUHDISTUSPROSESSIN TOIMINNAT:
PUHDISTUSPROSESSIN TOIMINNAT: 5 ) Lietteenkäsittely Puhdistusprosessi tuottaa ylijäämälietettä. Lietettä poistetaan lietepumpulla (SP) prosessin loppuvaiheessa (8 h 25 min). Lietettä kerätään lietekoriin,
LisätiedotENERGIATEHOKAS AKTIIVILIETEPROSESSI Energiatehokas vesihuoltolaitos 1/2018
ENERGIATEHOKAS AKTIIVILIETEPROSESSI Energiatehokas vesihuoltolaitos 1/2018 ENERGIATEHOKAS AKTIIVILIETEPROSESSI Suodatus Muu 6 % Aktiivilieteprosessin energiankulutusta voi tehostaa oikealla laitemitoituksella
LisätiedotHarjoitus 9: Optimointi I (Matlab)
Harjoitus 9: Optimointi I (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen Optimointitehtävien
LisätiedotUUSIUTUVA ENERGIA HELSINGIN ENERGIAN KEHITYSTYÖSSÄ. 4.11.2014 Atte Kallio Projektinjohtaja Helsingin Energia
UUSIUTUVA ENERGIA HELSINGIN ENERGIAN KEHITYSTYÖSSÄ 4.11.2014 Projektinjohtaja Helsingin Energia ESITYKSEN SISÄLTÖ Johdanto Smart City Kalasatamassa Aurinkovoimalan teknisiä näkökulmia Aurinkovoimalan tuotanto
LisätiedotMonitavoitteinen portfolio-optimointi tiestön päällystämishankkeiden valinnassa. Jaakko Dietrich,
!" # %$&')(+*" #,.-0/214365 798;:
LisätiedotMalliratkaisut Demo 4
Malliratkaisut Demo 4 1. tehtävä a) f(x) = 2x + 21. Funktio on lineaarinen, joten se on unimodaalinen sekä maksimoinnin että imoinnin suhteen. Funktio on konveksi ja konkaavi. b) f(x) = x (pienin kokonaisluku
LisätiedotLuento 6: Monitavoitteinen optimointi
Luento 6: Monitavoitteinen optimointi Monitavoitteisessa optimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f,,f m Esimerkki ortfolion eli arvopaperijoukon optimoinnissa: f
LisätiedotOptimal Harvesting of Forest Stands
Optimal Harvesting of Forest Stands (Presentation of the topic) 24 January 2010 Instructor: Janne Kettunen Supervisor: Ahti Salo Tausta Ass. Prof. Janne Kettunen käsitteli osana väitöskirjatyötään stokastisen
LisätiedotÄÄNENVAIMENTIMIEN MALLINNUSPOHJAINEN MONITAVOITTEINEN MUODONOPTIMOINTI 1 JOHDANTO. Tuomas Airaksinen 1, Erkki Heikkola 2
ÄÄNENVAIMENTIMIEN MALLINNUSPOHJAINEN MONITAVOITTEINEN MUODONOPTIMOINTI Tuomas Airaksinen 1, Erkki Heikkola 2 1 Jyväskylän yliopisto PL 35 (Agora), 40014 Jyväskylän yliopisto tuomas.a.airaksinen@jyu.fi
LisätiedotParetoratkaisujen visualisointi. Optimointiopin seminaari / Kevät 2000 Esitelmä 11 Petteri Kekäläinen 45305L
Paretoratkaisujen visualisointi Optimointiopin seminaari / Kevät 2000 Esitelmä 11 Petteri Kekäläinen 45305L 1. Johdanto Monitavoiteoptimointitehtävät ovat usein laajuutensa takia vaikeasti hahmotettavia
LisätiedotPoistuvat kurssit ja korvaavuudet (RRT ja YYT)
Poistuvat kurssit ja korvaavuudet 2016-2017 (RRT ja YYT) Rakenne- ja rakennustuotantotekniikka Rak-43.3001 Rakennuksen rungon suunnittelu I CIV-E1030 Fundamentals of Structural Design Rak-43.3111 Prestressed
LisätiedotTIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op. FT Ari Viinikainen
TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op FT Ari Viinikainen Tietokoneen rakenne Keskusyksikkö, CPU Keskusmuisti Aritmeettislooginen yksikkö I/O-laitteet Kontrolliyksikkö Tyypillinen Von Neumann
LisätiedotTilastolliset ohjelmistot 805340A. Pinja Pikkuhookana
Tilastolliset ohjelmistot 805340A Pinja Pikkuhookana Sisältö 1 SPSS 1.1 Yleistä 1.2 Aineiston syöttäminen 1.3 Aineistoon tutustuminen 1.4 Kuvien piirtäminen 1.5 Kuvien muokkaaminen 1.6 Aineistojen muokkaaminen
LisätiedotKonesalin jäähdytysjärjestelmän mallinnus, simulointi ja optimointi. To 4.6.2015 Merja Keski-Pere
Konesalin jäähdytysjärjestelmän mallinnus, simulointi ja optimointi To 4.6.2015 Merja Keski-Pere Konesaleista Digitalisaation lisääntyminen palvelinkapasiteettia lisää Eurooppaan arviolta jopa 60 uutta
LisätiedotTalousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta
Talousmatematiikan perusteet: Luento 14 Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Viime luennolla Tarkastelimme usean muuttujan funktioiden
LisätiedotJälki- ja herkkyysanalyysi. Tutkitaan eri kertoimien ja vakioiden arvoissa tapahtuvien muutosten vaikutusta optimiratkaisuun
Jälki- ja herkkyysanalyysi Tutkitaan eri kertoimien ja vakioiden arvoissa tapahtuvien muutosten vaikutusta optimiratkaisuun 1 Hinnat ja varjohinnat Objektifunktio c T x = Kerroin c j ilmoittaa, paljonko
LisätiedotSolidity älysopimus ohjelmointi. Sopimus suuntautunut ohjelmointi
Solidity älysopimus ohjelmointi Sopimus suuntautunut ohjelmointi Merkle puu Kertausta eiliseltä Solidity on korkean tason älysopimus ohjelmointikieli Muistuttaa olio-ohjelmointia Javalla Sopimuskoodi on
LisätiedotTypen ja fosforin alhainen kierrätysaste Suomessa
Typen ja fosforin alhainen kierrätysaste Suomessa Biolaitosyhdistys ry:n seminaari 16.11.2010 Riina Antikainen Suomen ympäristökeskus Kulutuksen ja tuotannon keskus Sisältö Miksi ravinteet tärkeitä? Miksi
Lisätiedot