TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

Koko: px
Aloita esitys sivulta:

Download "TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010"

Transkriptio

1 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen syksy 2010

2 Käytännön optimointiongelmien ratkaiseminen

3 Käytännön optimointiongelmien ratkaiseminen Käytännössä tulee kiinnittää huomiota ainakin seuraaviin asioihin 1. Tehtävän mallinnus 2. Optimointitehtävän muotoilu 3. Soveltuvan optimointiohjelmiston valinta 4. Optimointiohjelmiston ja mallinnustyökalun kytkeminen 5. Optimointi ja saadun ratkaisun analysointi Käydään tarkemmin läpi esimerkkitehtävän avulla

4 Esimerkkisovellus Jätevedenpuhdistamon optimaalinen suunnittelu

5 Optimointitehtävän muotoilu Optimoinnin tarkoitus tulee olla selvä mitä oikeasti halutaan? Tavoitteiden/objektifunktioiden määrittely Muuttujien valinta ja rajojen asettaminen pyritään rajaamaan kiinnostava alue Rajoitteiden määrittely Optimoinnin ja sovellusalan asiantuntijoiden yhteistyötä

6 1. Aktiivilieteprosessi Biokemialliset reaktiot käyttävät paljon happea ja alkaliteettia Happea tuotetaan ilmastuskompressoreilla ja alkaliteettia saadaan käsiteltävän jäteveden lisäksi lisäämällä kemikaaleja Ilmastus kuluttaa paljon energiaa ja kemikaalit maksavat Biomassan konsentraatio tulisi pitää mahdollisimman alhaalla (prosessi toimii paremmin)

7 1. Aktiivilieteprosessi Kolme (ristiriitaista) minimoitavaa objektifunktiota ammoniumtypen määrä vedessä käytetyn alkaliteettikemikaalin määrä ilmastuksen kuluttama energia Kolme päätösmuuttujaa biomassan konsentraatio käytetyn alkaliteettikemikaalin määrä O 2 -konsentraatio reaktorin viimeisessä osassa Rajoite: puhdistetun jäteveden alkaliteetti tulee olla annetuissa rajoissa (ala- ja yläraja)

8 2. Toiminta-asetusten optimointi Kokonaistavoite on minimoida typen määrä puhdistetussa jätevedessä ja minimoida käyttökustannukset Käyttökustannukset koostuvat 4 eri objektifunktiosta minimoi ilmastuksen tarve aktiivilieteprosessissa minimoi ylimääräisen hiilen lähteen käyttö denitrifikaatiossa minimoi ylimääräisen lietteen tuotto maksimoi biokaasun tuotto yhteensä 5 objektifunktiota

9 2. Toiminta-asetusten optimointi Viisi ristiriitaista objektifunktiota Neljä päätösmuuttujaa fermentointiin menevän lietteen pumppaus ylimääräisen lietteen pumppaus O 2 -konsentraatio valitussa reaktorin osassa lisä hiilenlähteen käyttö (metanoli) Rajoitteita (ala- ja ylärajat) puhdistetun veden ammonium pitoisuudelle biomassan konsentraatiolle kokonaistypenpoistolle (%)

10 Soveltuvan optimointiohjelmiston valinta Mitä tehtävän luonteesta tiedetään? Onko gradientteja saatavilla? Onko tehtävä mahdollisesti epäkonveksi? Onko funktioiden arvojen laskeminen (=tehtävän simulointi) aikaa vievää? Useita tavoitteita, onko päätöksentekijä käytettävissä?

11 Projektissa käytetyt työkalut Käytettiin interaktiivista lähestymistapaa Prosessi mallinnettiin käyttäen GPS-X prosessisimulaattoria GPS-X kytkettiin IND-NIMBUS optimointiohjelmistoon yksitavoitteisessa optimoinnissa käytettiin globaalin optimoinnin menetelmiä Päätöksentekijä oli asiantuntija puhdistamojen suunnittelussa

12 Optimointiohjelmiston ja mallinnustyökalun kytkeminen Mitä ohjelmistoja on saatavilla? optimointimenetelmien eri toteutukset Mitä tietoa ohjelmistojen välillä pitää kulkea? Mitkä ovat rajapinnat? rajapintojen muokkausmahdollisuus auttaa kaupallisten mallinnustyökalujen kytkeminen usein hankalaa, ei mahdollista vaikuttaa rajapintaan Kokonaisuuden testaaminen kytkemisen jälkeen ennen optimointia esim. yksinkertaisilla tehtävillä

13 Kytkeminen projektissa Käytössä kaupallinen simulaattori (GPS-X) ja JY:ssä kehitetty optimointityökalu (IND- NIMBUS) Mahdollisuus vaikuttaa ainoastaan optimointiohjelmiston rajapintaan Simulaattorin rajapinnasta ja sen käytöstä tietoa tekniseltä tuelta

14 Kytkeminen projektissa Simulaattori tekee mallista suoritettavan tiedoston (.exe) Input simulaattorille komentojonotiedosto (.cmd), joka lukee muuttujien arvot tekstitiedostosta komentojonotiedostolle oma formaatti Output simulaattorille tekstitiedosto sisältäen simuloidut arvot

15 Kytkeminen projektissa Optimoija haluaa laskea funktioiden arvot (objektit ja rajoitteet) tietyillä muuttujien arvoilla muuttujien arvot kirjoitetaan tekstitiedostoon (values.in) simulointi käynnistetään suorittamalla simulointi systeemikutsuna simulaattori lukee muuttujien arvot ja suorittaa simuloinnin tulokset kirjoitetaan tekstitiedostoon (values.out) optimoija lukee simuloidut arvot tiedostosta

16 Optimointi ja saadun ratkaisun analysointi Sopivien parametrien määrittäminen (mallinnustyökalu, optimointiohjelmisto) Sovellusalan ammattilaisen hyödyntäminen (mm. päätöksentekijänä) Tehtävän käyttäytymisestä oppiminen Optimointia voidaan myös käyttää mallin testaamisessa Analysoi ja varmista saatujen tulosten järkevyys (yhdessä ammattilaisen kanssa)

17 Päätöksentekoprosessi Voidaan jakaa kahteen osaan oppimisvaihe päätösvaihe Interaktiivisessa monitavoiteoptimoinnissa oppimisvaiheessa tutustutaan tehtävän käyttäytymiseen antamalla eri preferenssejä ja arvioidaan näiden pohjalta tuotettuja ratkaisuja nähdään mitä voidaan saavuttaa, mitkä ovat kiinnostavia alueita PO joukossa päätösvaiheessa haetaan paras kompromissi kiinnostavalta alueelta tarkennetuilla preferensseillä

18 1. Aktiivilieteprosessi

19 1. Aktiivilieteprosessi Kaikkiaan laskettiin 11 PO ratkaisua Viisi näistä oli käytännössä relevanttia (eli nitrifiointi toimii) Pienimmän ammoniumnitraatti pitoisuuden ratkaisu käytti liian paljon energiaa ja kemikaaleja antamatta riittävää parannusta veden laatuun Jäljelle jäävät 4 ratkaisua olivat käytännössä yhtä hyviä energian ja kemikaalien kulutuksen suhteen (mikä tahansa voitaisiin valita) Näistä valittiin ratkaisu, jossa biomassan konsentraatio oli pienin parempi prosessin käytettävyys

20 1. Aktiivilieteprosessi Hakanen, J., Miettinen, K., Sahlstedt, K., Wastewater Treatment: New Insight Provided by Interactive Multiobjective Optimization, Decision Support Systems, To appear

21 2. Toiminta-asetusten optimointi

22 2. Toiminta-asetusten optimointi Alussa DM käytti insinööritietoon perustuvia arvoja tavoitteille ( alustava referenssipiste ) DM pystyi tutkimaan käyttökustannusten välisiä riippuvuuksia (4 eri objektifunktiota) Kaikkiaan laskettiin 10 PO ratkaisua Kokeiltiin IND-NIMBUkSen tarjoamia eri (globaaleja) yksitavoiteoptimoijia Paras kompromissi antoi selvästi paremmat arvot kolmelle objektifunktiolle (11, 15 and 45%) ja vain vähän huonommat arvot muille kahdelle (13 and 7%) verrattuna insinööritietoon Selkein parannus saatiin kemikaalien kulutuksessa

23 2. Toiminta-asetusten optimointi K. Sahlstedt, J. Hakanen & K. Miettinen, Interactive Multiobjective Optimization in Wastewater Treatment Plant Operation and Design, In Proceedings of ECWATECH 2010, IWA Specialist Conference: Water and Wastewater Treatment Plants in Towns and Communities of the XXI Century: Technologies, Design and Operation, Moscow, Russia

24 MO kirjallisuutta esim. V. Changkong & Y. Haimes, Multiobjective Decision Making: Theory and Methodology, 1983 Y. Sawaragi, H. Nakayama & T. Tanino, Theory of Multiobjective Optimization, 1985 R.E. Steuer, Multiple Criteria Optimization: Theory, Computation and Applications, 1986 K. Miettinen, Nonlinear Multiobjective Optimization, 1999 K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, 2001

25 MO kirjallisuutta esim. M. Ehrgott, Multicriteria Optimization, 2005 J. Branke, K. Deb, K. Miettinen & R. Slowinski (eds): Multiobjective Optimization: Interactive and Evolutionary Approaches, 2008 G.P. Rangaiah (editor), Multi-Objective Optimization: Techniques and Applications in Chemical Engineering, 2009 E. Talbi, Metaheuristics: from Design to Implementation, 2009

TIES483 Epälineaarinen optimointi

TIES483 Epälineaarinen optimointi TIES483 Epälineaarinen optimointi Käytännön optimointiongelmien ratkaiseminen jussi.hakanen@jyu.fi Syksy 2012 Käytännön optimointiongelmien ratkaiseminen Käytännössä tulee kiinnittää huomiota ainakin seuraaviin

Lisätiedot

TIES483 Epälineaarinen optimointi. Syksy 2012

TIES483 Epälineaarinen optimointi. Syksy 2012 TIES483 Epälineaarinen optimointi jussi.hakanen@jyu.fi Syksy 2012 Yleistä Tietotekniikan syventävä kurssi, 5 op Pakollinen laskennallisten tieteiden FMopinnoissa (ent. simulointi ja optimointi) https://korppi.jyu.fi/kotka/r.jsp?course=134562

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Käytännön optimointiongelmien ratkaiseminen Käytännön optimointiongelmien ratkaiseminen

Lisätiedot

TIES483 Epälineaarinen optimointi. Monitavoiteoptimointi Syksy 2012

TIES483 Epälineaarinen optimointi. Monitavoiteoptimointi Syksy 2012 TIES483 Epälineaarinen optimointi Monitavoiteoptimointi jussi.hakanen@jyu.fi Syksy 2012 Sisältö Johdanto monitavoiteoptimointiin Monitavoiteoptimoinnin käsitteitä Menetelmätyypit Käytännön sovellusesimerkkejä

Lisätiedot

TIES483 Epälineaarinen optimointi

TIES483 Epälineaarinen optimointi TIES483 Epälineaarinen optimointi Käytännön optimointiongelmien ratkaiseminen jussi.hakanen@jyu.fi Syksy 2012 Käytännön optimointiongelmien ratkaiseminen Käytännössä tulee kiinnittää huomiota ainakin seuraaviin

Lisätiedot

Monitavoiteoptimointi

Monitavoiteoptimointi Monitavoiteoptimointi Useita erilaisia tavoitteita, eli useita objektifunktioita Tavoitteet yleensä ristiriitaisia ja yhteismitattomia Optimaalisuus tarkoittaa yleensä eri asiaa kuin yksitavoitteisessa

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Optimaalisuus: objektiavaruus f 2 min Z = f(s) Parhaat arvot alhaalla ja vasemmalla

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Evoluutiopohjainen monitavoiteoptimointi MCDM ja EMO Monitavoiteoptimointi kuuluu

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Tasaväliset PO pisteet? Painokerroinmenetelmä: muutetaan painoja systemaattisesti

Lisätiedot

TIEA382 Lineaarinen ja diskreetti optimointi

TIEA382 Lineaarinen ja diskreetti optimointi TIEA382 Lineaarinen ja diskreetti optimointi Jussi Hakanen Tietotekniikan laitos jussi.hakanen@jyu.fi AgC 426.3 Yleiset tiedot Tietotekniikan kandidaattiopintojen valinnainen kurssi http://users.jyu.fi/~jhaka/ldo/

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Yleistä https://korppi.jyu.fi/kotka/r.jsp?course=96762 Sisältö Johdanto yksitavoitteiseen

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 PO pisteiden määräämismenetelmät Idea: tuotetaan erilaisia PO ratkaisuita, joista

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 NSGA-II Non-dominated Sorting Genetic Algorithm (NSGA) Ehkä tunnetuin EMO-menetelmä

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Monitavoiteoptimointi Mitä monitavoitteisuus tarkoittaa? Halutaan saavuttaa

Lisätiedot

OPTIMOINNIN JA PÄÄTÖKSENTEON MAISTERI- KOULUTUS (OPTI)

OPTIMOINNIN JA PÄÄTÖKSENTEON MAISTERI- KOULUTUS (OPTI) OPTIMOINNIN JA PÄÄTÖKSENTEON MAISTERI- KOULUTUS (OPTI) 24.10.2013 JYVÄSKYLÄN YLIOPISTO INFORMAATIOTEKNOLOGIAN TIEDEKUNTA 2013 1. AJANKOHTAISUUS Kilpailu kiristyy kaikilla elämänalueilla koko ajan asiat

Lisätiedot

Lineaaristen monitavoiteoptimointitehtävien

Lineaaristen monitavoiteoptimointitehtävien Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Jerri Nummenpalo 17.09.2012 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.

Lisätiedot

Harjoitus 4: Matlab - Optimization Toolbox

Harjoitus 4: Matlab - Optimization Toolbox Harjoitus 4: Matlab - Optimization Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen

Lisätiedot

Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla

Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla Juho Andelmin 21.01.2013 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Raimo P. Hämäläinen Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu (aihe-esittely)

Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu (aihe-esittely) Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu (aihe-esittely) Vilma Virasjoki 23.01.2012 Ohjaaja: Jouni Pousi Valvoja: Raimo P. Hämäläinen Työn saa tallentaa

Lisätiedot

Typenja fosforintalteenotto

Typenja fosforintalteenotto Typenja fosforintalteenotto jätevesistä - rejekti Surendra Pradhan Riku Vahala Anna Mikola Juho Kaljunen 29.03.2017 Sisällys Typen talteenoton tarpeellisuus NPHarvest-projekti lyhyesti Laboratoriotestien

Lisätiedot

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) vasemman puolen

Lisätiedot

Mat Optimointiopin seminaari kevät Monitavoiteoptimointi. Tavoitteet

Mat Optimointiopin seminaari kevät Monitavoiteoptimointi. Tavoitteet Mat-2.142 Optimointiopin seminaari kevät 2000 Monitavoiteoptimointi Optimointiopin seminaari - Kevät 2000 / 1 Tavoitteet Monitavoitteisten optimointitehtävien ratkaisukäsitteet ja soveltamismahdollisuudet

Lisätiedot

Optimointi. Etsitään parasta mahdollista ratkaisua annetuissa olosuhteissa. Ongelman mallintaminen. Mallin ratkaiseminen. Ratkaisun analysointi

Optimointi. Etsitään parasta mahdollista ratkaisua annetuissa olosuhteissa. Ongelman mallintaminen. Mallin ratkaiseminen. Ratkaisun analysointi Optimointi Etsitään parasta mahdollista ratkaisua annetuissa olosuhteissa Ongelman mallintaminen Mallin ratkaiseminen Ratkaisun analysointi 1 Peruskäsitteitä Muuttujat: Sallittu alue: x = (x 1, x 2,...,

Lisätiedot

monitavoitteisissa päätöspuissa (Valmiin työn esittely) Mio Parmi Ohjaaja: Prof. Kai Virtanen Valvoja: Prof.

monitavoitteisissa päätöspuissa (Valmiin työn esittely) Mio Parmi Ohjaaja: Prof. Kai Virtanen Valvoja: Prof. Epätäydellisen preferenssiinformaation hyödyntäminen monitavoitteisissa päätöspuissa (Valmiin työn esittely) Mio Parmi 15.1.2018 Ohjaaja: Prof. Kai Virtanen Valvoja: Prof. Kai Virtanen Tausta Päätöspuu

Lisätiedot

PROSESSIMALLINNUKSEN HYÖDYNTÄMINEN KAKOLANMÄEN JÄTEVEDENPUHDISTAMON PROSESSIAJOSSA

PROSESSIMALLINNUKSEN HYÖDYNTÄMINEN KAKOLANMÄEN JÄTEVEDENPUHDISTAMON PROSESSIAJOSSA PROSESSIMALLINNUKSEN HYÖDYNTÄMINEN KAKOLANMÄEN JÄTEVEDENPUHDISTAMON PROSESSIAJOSSA Vesihuoltopäivät 10.5.2017 KAKOLANMÄEN JÄTEVEDENPUHDISTAMO 14 kunnan omistama osakeyhtiö AVL 300 000 keskivirtaama noin

Lisätiedot

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) on voimassa

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

Lentotiedustelutietoon perustuva tykistön tulenkäytön optimointi (valmiin työn esittely)

Lentotiedustelutietoon perustuva tykistön tulenkäytön optimointi (valmiin työn esittely) Lentotiedustelutietoon perustuva tykistön tulenkäytön optimointi (valmiin työn esittely) Tuukka Stewen 1.9.2017 Ohjaaja: DI Juho Roponen Valvoja: prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla

Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla Juho Andelmin 21.1.213 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Raimo P. Hämäläinen Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

Aircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization

Aircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization Aircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization 7.5.2011 Ohjaaja: Ville Mattila Valvoja: Raimo Hämäläinen Tausta Ilmavoimilla tärkeä rooli maanpuolustuksessa Rauhan aikana

Lisätiedot

Projektiportfolion valinta

Projektiportfolion valinta Projektiportfolion valinta Mat-2.4142 Optimointiopin seminaari kevät 2011 Portfolion valinta Käytettävissä on rajallinen määrä resursseja, joten ne on allokoitava mahdollisimman hyvin eri projekteille

Lisätiedot

Parempaa äänenvaimennusta simuloinnilla ja optimoinnilla

Parempaa äänenvaimennusta simuloinnilla ja optimoinnilla Parempaa äänenvaimennusta simuloinnilla ja optimoinnilla Erkki Heikkola Numerola Oy, Jyväskylä Laskennallisten tieteiden päivä 29.9.2010, Itä-Suomen yliopisto, Kuopio Putkistojen äänenvaimentimien suunnittelu

Lisätiedot

Ilmastuksen energiankulutuksen ja typenpoiston optimointi Turun Kakolanmäen jätevedenpuhdistamolla

Ilmastuksen energiankulutuksen ja typenpoiston optimointi Turun Kakolanmäen jätevedenpuhdistamolla Ilmastuksen energiankulutuksen ja typenpoiston optimointi Turun Kakolanmäen jätevedenpuhdistamolla Envieno, Turun seudun puhdistamo Oy, Esa Malmikare Jouko Tuomi Vesihuolto 2015 KAKOLANMÄEN JÄTEVEDENPUHDISTAMO

Lisätiedot

MALLIT VESIJÄRJESTELMIEN TUTKIMUKSESSA

MALLIT VESIJÄRJESTELMIEN TUTKIMUKSESSA MALLIT VESIJÄRJESTELMIEN TUTKIMUKSESSA Hannu Poutiainen, FT PUHDAS VESI JA YMPÄRISTÖ TUTKIMUSAVAUKSIA MAMKISSA Mikpoli 8.12.2016 Mitä mallit ovat? Malli on arvioitu kuvaus todellisuudesta joka on rakennettu

Lisätiedot

Osakesalkun optimointi

Osakesalkun optimointi Osakesalkun optimointi Anni Halkola Epäsileä optimointi Turun yliopisto Huhtikuu 2016 Sisältö 1 Johdanto 1 2 Taustatietoja 2 3 Laskumetodit 3 3.1 Optimointiongelmat........................ 4 4 Epäsileän

Lisätiedot

KURSSIEN POISTOT JA MUUTOKSET LUKUVUODEKSI

KURSSIEN POISTOT JA MUUTOKSET LUKUVUODEKSI Liite 6.5/2/2016 Aalto-yliopisto Insinööritieteiden korkeakoulu KURSSIEN POISTOT JA MUUTOKSET LUKUVUODEKSI 2016-2017 RAKENNE- JA RAKENNUSTUOTANTOTEKNIIKAN KOULUTUSOHJELMA Valmistelija Seppo Hänninen (Päivi

Lisätiedot

TTY Porin laitoksen optimointipalvelut yrityksille

TTY Porin laitoksen optimointipalvelut yrityksille TTY Porin laitoksen optimointipalvelut yrityksille Timo Ranta, TkT Frank Cameron, TkT timo.ranta@tut.fi frank.cameron@tut.fi Automaation aamukahvit 28.8.2013 Optimointi Tarkoittaa parhaan ratkaisun valintaa

Lisätiedot

OPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAN JA FYSIIKAN LAITOS/ LUKUVUOSI

OPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAN JA FYSIIKAN LAITOS/ LUKUVUOSI OPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAN JA FYSIIKAN LAITOS/ LUKUVUOSI 2008-2009 Muutokset on hyväksytty teknillisen tiedekunnan tiedekuntaneuvostossa 13.2.2008 ja 19.3.2008. POISTUVAT OPINTOJAKSOT:

Lisätiedot

Kohti energiaomavaraista jätevesilaitosta. Vesi ja vihreä talous - seminaari

Kohti energiaomavaraista jätevesilaitosta. Vesi ja vihreä talous - seminaari Kohti energiaomavaraista jätevesilaitosta Vesi ja vihreä talous - seminaari 11.9. 2013 1 Konsernirakenne 2013 Econet-konserni Econet Oy Econet Consulting Oy 100 % Oy Slamex Ab 100 % Dewaco Oy 100 % Econet

Lisätiedot

Kon Konepajojen tuotannonohjaus: ILOG CPLEX Studion käyttö

Kon Konepajojen tuotannonohjaus: ILOG CPLEX Studion käyttö Kon-15.4199 Konepajojen tuotannonohjaus: ILOG CPLEX Studion käyttö 22.1.2016 Harjoituksessa 1. Varmistetaan että kaikilla on pari! Ilmoittautukaa oodissa etukäteen! 2. Tutustutaan ensimmäiseen tehtävään

Lisätiedot

Talousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla

Talousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Talousmatematiikan perusteet: Luento 12 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

Kandidaatintyön esittely: Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu

Kandidaatintyön esittely: Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu Kandidaatintyön esittely: Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu Vilma Virasjoki 19.11.2012 Ohjaaja: DI Jouni Pousi Valvoja: Professori Raimo P.

Lisätiedot

SIMO-seminaari. 23.3.2007 Helsinki

SIMO-seminaari. 23.3.2007 Helsinki SIMO-seminaari 23.3.2007 Helsinki Ohjelma Tässä ollaan nyt: SIMO-demo Kahvi Jotain erilaistakin: Tapion Suokanta Jatkokuviot SIMO-demo Datana Metsähallituksen H_alueelta 240, T_piiristä 5, osastosta 181

Lisätiedot

Jätevesiprosessien monitoroinnin ja ohjauksen tulevaisuus

Jätevesiprosessien monitoroinnin ja ohjauksen tulevaisuus Jätevesiprosessien monitoroinnin ja ohjauksen tulevaisuus Kolme havaintoesimerkkiä Henri Haimi Sisältö Case 1: Viikinmäen jälkisuodatusprosessin nitraattipitoisuuksien estimointi n malliprediktiivinen

Lisätiedot

RUKAN UUDEN JÄTEVEDENPUHDISTAMON KÄYNNISTYS- JA KÄYTTÖKOKEMUKSIA Kristian Sahlstedt, osastopäällikkö Pöyry Finland Oy

RUKAN UUDEN JÄTEVEDENPUHDISTAMON KÄYNNISTYS- JA KÄYTTÖKOKEMUKSIA Kristian Sahlstedt, osastopäällikkö Pöyry Finland Oy RUKAN UUDEN JÄTEVEDENPUHDISTAMON KÄYNNISTYS- JA KÄYTTÖKOKEMUKSIA Kristian Sahlstedt, osastopäällikkö Pöyry Finland Oy Vesihuolto 2017 10.5.2015 JOHDANTO Rukan alueen jätevedenpuhdistuksen uudistamista

Lisätiedot

Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla

Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Talousmatematiikan perusteet: Luento 11 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

Joonas Haapala Ohjaaja: DI Heikki Puustinen Valvoja: Prof. Kai Virtanen

Joonas Haapala Ohjaaja: DI Heikki Puustinen Valvoja: Prof. Kai Virtanen Hävittäjälentokoneen reitin suunnittelussa käytettävän dynaamisen ja monitavoitteisen verkko-optimointitehtävän ratkaiseminen A*-algoritmilla (valmiin työn esittely) Joonas Haapala 8.6.2015 Ohjaaja: DI

Lisätiedot

4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä

4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä JYVÄSKYLÄN YLIOPISTO 4. Luennon sisältö Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä kevät 2012 TIEA382 Lineaarinen ja diskreetti optimointi Lineaarinen optimointitehtävä Minimointitehtävä

Lisätiedot

Monitavoiteoptimoinnin ja erityisesti NIMBUS-menetelmän hyödyntäminen monitavoitteisessa päätöksenteossa.

Monitavoiteoptimoinnin ja erityisesti NIMBUS-menetelmän hyödyntäminen monitavoitteisessa päätöksenteossa. Monitavoiteoptimoinnin ja erityisesti NIMBUS-menetelmän hyödyntäminen monitavoitteisessa päätöksenteossa. Ellemari Teinilä Pro gradu -tutkielma Heinäkuu 2019 MATEMATIIKAN JA TILASTOTIETEEN LAITOS TURUN

Lisätiedot

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

1 Kertaus. Lineaarinen optimointitehtävä on muotoa: 1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n

Lisätiedot

KEHÄ. Tutkimusongelmia ja pilotteja. Harri Mattila,

KEHÄ. Tutkimusongelmia ja pilotteja. Harri Mattila, KEHÄ Tutkimusongelmia ja pilotteja Harri Mattila, 3.5.2017 Energia, ravinteet, digitaalisuus, tulevaisuus Energian tuotanto ja kulutus on sidoksissa ilmastonmuutokseen Fosfori on ehtyvä ja strategisesti

Lisätiedot

Harjoitus 8: Excel - Optimointi

Harjoitus 8: Excel - Optimointi Harjoitus 8: Excel - Optimointi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Lineaarisen optimointimallin muodostaminen

Lisätiedot

OPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAn JA FYSIIKAN LAITOS LUKUVUOSI

OPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAn JA FYSIIKAN LAITOS LUKUVUOSI OPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAn JA FYSIIKAN LAITOS LUKUVUOSI 007-008 POISTUVAT OPINTOJAKSOT: Ti41010 Matematiikka EnA1 op Ti41010 Matematiikka KeA1 op Ti410170 Matematiikka SäA1 op Ti410140

Lisätiedot

Kimppu-suodatus-menetelmä

Kimppu-suodatus-menetelmä Kimppu-suodatus-menetelmä 2. toukokuuta 2016 Kimppu-suodatus-menetelmä on kehitetty epäsileiden optimointitehtävien ratkaisemista varten. Menetelmässä approksimoidaan epäsileitä funktioita aligradienttikimpulla.

Lisätiedot

Online-oppiva ilmavalvontajärjestelmän suorituskykymalli

Online-oppiva ilmavalvontajärjestelmän suorituskykymalli Online-oppiva ilmavalvontajärjestelmän suorituskykymalli MATINE:n tutkimusseminaari 16.11.2017 Juha Jylhä ja Marja Ruotsalainen Tampereen teknillinen yliopisto Signaalinkäsittelyn laboratorio Hankkeelle

Lisätiedot

Malliratkaisut Demo 4

Malliratkaisut Demo 4 Malliratkaisut Demo 4 1. tehtävä a) () = 2+1. Funktio on lineaarinen, joten se on unimodaalinen sekä maksimoinnin että minimoinnin suhteen. Funktio on konveksi ja konkaavi. b) () = (suurin kokonaisluku

Lisätiedot

Matemaattinen optimointi I, demo

Matemaattinen optimointi I, demo Matemaattinen optimointi I, demo 3 29.1.2015 Demo 3 järjestetään Quantumin mikroluokassa normaaleina demoaikoina. Tavoitteena on harjoitella kurssilla tarvittavien optimointiohjelmistojen käyttöä. Demopisteet

Lisätiedot

RAVITA TM. Fosforin ja Typen talteenottoa jätevesistä

RAVITA TM. Fosforin ja Typen talteenottoa jätevesistä RAVITA TM Fosforin ja Typen talteenottoa jätevesistä 1 Mikä on RAVITA TM? Fosforin ja typen talteenottoon perustuva prosessikokonaisuus jätevedenpuhdistamolle Fosfori erotetaan jälkisaostamalla Typpi erotetaan

Lisätiedot

6. Luennon sisältö. Lineaarisen optimoinnin duaaliteoriaa

6. Luennon sisältö. Lineaarisen optimoinnin duaaliteoriaa JYVÄSKYLÄN YLIOPISTO 6. Luennon sisältö Lineaarisen optimoinnin duaaliteoriaa työkalu ratkaisun analysointiin Jälki- ja herkkyysanalyysiä mitä tapahtuu optimiratkaisulle, jos tehtävän vakiot hieman muuttuvat

Lisätiedot

Harjoitus 9: Optimointi I (Matlab)

Harjoitus 9: Optimointi I (Matlab) Harjoitus 9: Optimointi I (Matlab) SCI-C0200 Fysiikan ja matematiikan menetelmien studio SCI-C0200 Fysiikan ja matematiikan menetelmien studio 1 Harjoituksen aiheita Optimointimallin muodostaminen Optimointitehtävien

Lisätiedot

Projektiportfolion valinta

Projektiportfolion valinta Projektiportfolion valinta Mat-2.4142 Optimointiopin seminaari kevät 2011 Kotitehtävän 1 ratkaisu Kotitehtävä Kirkwood, G. W., 1997. Strategic Decision Making: Multiobjective Decision Analysis with Spreadsheets,

Lisätiedot

1 Johdanto LP tehtävän luonteen tarkastelua Johdanto herkkyysanalyysiin Optimiarvon funktio ja marginaalihinta

1 Johdanto LP tehtävän luonteen tarkastelua Johdanto herkkyysanalyysiin Optimiarvon funktio ja marginaalihinta Sisältö Johdanto 2 LP tehtävän luonteen tarkastelua 3 Johdanto herkkyysanalyysiin 5 2 Optimiarvon funktio ja marginaalihinta 5 3 Johdanto duaaliteoriaan 6 2 LP-tehtävän standardimuoto 9 Johdanto Optimoinnista

Lisätiedot

Panosprosessien integroitu hallinta

Panosprosessien integroitu hallinta Panosprosessien integroitu hallinta Jari Hämäläinen VTT Tuotteet ja tuotanto jari.hamalainen@vtt.fi Panosprosessien integroitu hallinta - PINHA 1.10.1999-31.1.2003 Kehitettiin uusia simulointiin ja optimointiin

Lisätiedot

Optimaalisuusehdot. Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0

Optimaalisuusehdot. Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0 Optimaalisuusehdot Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0 i = 1,..., m j = 1,..., l missä f : R n R, g i : R n R kaikilla i = 1,..., m, ja h j : R n R kaikilla j = 1,..., l

Lisätiedot

RAKENNUSTEN ENERGIANKÄYTÖN OPTIMOINTI. Kai Sirén Aalto yliopisto

RAKENNUSTEN ENERGIANKÄYTÖN OPTIMOINTI. Kai Sirén Aalto yliopisto RAKENNUSTEN ENERGIANKÄYTÖN OPTIMOINTI Kai Sirén Aalto yliopisto LVI-tekniikan tutkimusryhmä Henkilökunta Laitteistot 2 Professoria 3 post-doc tutkijaa 1 vieraileva post-doc (Japan) 5 tohtoriopiskelijaa

Lisätiedot

Miksi kompromissi on parempi kuin optimi? Uusia monitavoiteoptimoinnin menetelmiä päätöksentekoon

Miksi kompromissi on parempi kuin optimi? Uusia monitavoiteoptimoinnin menetelmiä päätöksentekoon Miksi kompromissi on parempi kuin optimi? Uusia monitavoiteoptimoinnin menetelmiä päätöksentekoon Kaisa Miettinen Johdantoa optimointiin Optimointi tarkoittaa systemaattisia tapoja taata parhaan mahdollisen

Lisätiedot

Ei ole olemassa jätteitä, on vain helposti ja hieman hankalammin uudelleen käytettäviä materiaaleja

Ei ole olemassa jätteitä, on vain helposti ja hieman hankalammin uudelleen käytettäviä materiaaleja Jätehuolto Ei ole olemassa jätteitä, on vain helposti ja hieman hankalammin uudelleen käytettäviä materiaaleja Jätteiden käyttötapoja: Kierrätettävät materiaalit (pullot, paperi ja metalli kiertävät jo

Lisätiedot

Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen

Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Jos sallittuja kokonaislukuratkaisuja ei ole kovin paljon, ne voidaan käydä kaikki läpi yksitellen Käytännössä tämä ei kuitenkaan ole yleensä mahdollista

Lisätiedot

ENON JÄTEVEDENPUHDISTAMON VELVOITETARKKAILUJEN YHTEENVETO 2018

ENON JÄTEVEDENPUHDISTAMON VELVOITETARKKAILUJEN YHTEENVETO 2018 ENON JÄTEVEDENPUHDISTAMON VELVOITETARKKAILUJEN YHTEENVETO 218 1 JOENSUUN VESI Enon jätevedenpuhdistamo VELVOITETARKKAILUJEN YHTEENVETO 218 1. YLEISTÄ Enon taajaman jätevedenpuhdistamo on tyypiltään biologis-kemiallinen

Lisätiedot

Lineaarisen ohjelman määritelmä. Joonas Vanninen

Lineaarisen ohjelman määritelmä. Joonas Vanninen Lineaarisen ohjelman määritelmä Joonas Vanninen Sisältö Yleinen optimointitehtävä Kombinatorinen tehtävä Optimointiongelman tapaus Naapurusto Paikallinen ja globaali optimi Konveksi optimointitehtävä Lineaarinen

Lisätiedot

Kuvioton metsäsuunnittelu Paikkatietomarkkinat, Helsinki Tero Heinonen

Kuvioton metsäsuunnittelu Paikkatietomarkkinat, Helsinki Tero Heinonen Paikkatietomarkkinat, Helsinki 3.11.2009 Tero Heinonen Sisältö Kuvioton metsäsuunnittelu Optimointi leimikon suunnittelumenetelmänä Verrataan optimointi lähestymistapaa diffuusiomenetelmään Muuttuvat käsittely-yksiköt

Lisätiedot

Tuotannon simulointi. Teknologiademot on the road -hanke

Tuotannon simulointi. Teknologiademot on the road -hanke Tuotannon simulointi Teknologiademot on the road -hanke Simulointi Seamkissa Tuotannon simulointia on tarjottu palvelutoimintana yrityksille 90-luvun puolivälistä lähtien. Toteutettuja yritysprojekteja

Lisätiedot

WP3 Decision Support Technologies

WP3 Decision Support Technologies WP3 Decision Support Technologies 1 WP3 Decision Support Technologies WP Leader: Jarmo Laitinen Proposed budget: 185 000, VTT 100 000, TUT 85 000. WP3 focuses in utilizing decision support technologies

Lisätiedot

Rinnakkaissaostuksesta biologiseen fosforinpoistoon

Rinnakkaissaostuksesta biologiseen fosforinpoistoon Rinnakkaissaostuksesta biologiseen fosforinpoistoon Sakari Pitkäjärvi Huittisten puhdistamo oy 1 1 Perinteinen rinnakkaissaostus Fosfori saostetaan jätevedestä kemiallisesti Esimerkiksi ferrisulfaattia

Lisätiedot

INFORS 1 / 2010. Suomen Operaatiotutkimusseuran jäsenlehti. FORS, Suomen Operaatiotutkimusseura ry. Finnish Operations Research Society

INFORS 1 / 2010. Suomen Operaatiotutkimusseuran jäsenlehti. FORS, Suomen Operaatiotutkimusseura ry. Finnish Operations Research Society INFORS Suomen Operaatiotutkimusseuran jäsenlehti 1 / 2010 FORS, Suomen Operaatiotutkimusseura ry Finnish Operations Research Society www.operaatiotutkimus.fi Suomen Operaatiotutkimusseura ry:n jäsenlehti

Lisätiedot

Osaamiskeskus pk-yrityksen yhteistyökumppanina

Osaamiskeskus pk-yrityksen yhteistyökumppanina Osaamiskeskus pk-yrityksen yhteistyökumppanina Watrec Oy Watrec Ltd, Wahreninkatu 11, 30100 Forssa. Tapionkatu 4 A 11, 40100 Jyväskylä, Finland Tel. +358 3 422 2444 Fax +358 3 422 2445 www.watrec.com 1

Lisätiedot

EUREFin vaikutukset organisaatioiden tietojärjestelmiin

EUREFin vaikutukset organisaatioiden tietojärjestelmiin EUREFin vaikutukset organisaatioiden tietojärjestelmiin EUREF-päivä 4.9.2012 ALEKSI LESKINEN Sisältö Tietojärjestelmät ja EUREF Keskeiset haasteet EUREF-muunnoksissa EUREF-muunnosprosessin vaiheet Yhteenveto

Lisätiedot

Tyyppiluokat II konstruktoriluokat, funktionaaliset riippuvuudet. TIES341 Funktio-ohjelmointi 2 Kevät 2006

Tyyppiluokat II konstruktoriluokat, funktionaaliset riippuvuudet. TIES341 Funktio-ohjelmointi 2 Kevät 2006 Tyyppiluokat II konstruktoriluokat, funktionaaliset riippuvuudet TIES341 Funktio-ohjelmointi 2 Kevät 2006 Alkuperäislähteitä Philip Wadler & Stephen Blott: How to make ad-hoc polymorphism less ad-hoc,

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Montavoteoptmont ja teollsten prosessen hallnta Ylassstentt Juss Hakanen juss.hakanen@jyu.f syksy 2010 Interaktvset menetelmät Idea: päätöksentekjää hyödynnetään aktvsest ratkasuprosessn akana

Lisätiedot

Piiri K 1 K 2 K 3 K 4 R R

Piiri K 1 K 2 K 3 K 4 R R Lineaarinen optimointi vastaus, harj 1, Syksy 2016. 1. Teollisuuslaitos valmistaa piirejä R 1 ja R 2, joissa on neljää eri komponenttia seuraavat määrät: Piiri K 1 K 2 K 3 K 4 R 1 3 1 2 2 R 2 4 2 3 0 Päivittäistä

Lisätiedot

1. Lineaarinen optimointi

1. Lineaarinen optimointi 0 1. Lineaarinen optimointi 1. Lineaarinen optimointi 1.1 Johdatteleva esimerkki Esimerkki 1.1.1 Giapetto s Woodcarving inc. valmistaa kahdenlaisia puuleluja: sotilaita ja junia. Sotilaan myyntihinta on

Lisätiedot

Teollinen optimointi: avain yritysten kilpailukykyyn

Teollinen optimointi: avain yritysten kilpailukykyyn Teollinen optimointi: avain yritysten kilpailukykyyn Professori Kaisa Miettinen, JY, virkaanastujaisesitelmä 14.5.2008 Johdattelu optimointiin Teollinen optimointi viittaa optimoinnin soveltamiseen erityisesti

Lisätiedot

8h 30min PUHDISTUSPROSESSIN TOIMINNAT:

8h 30min PUHDISTUSPROSESSIN TOIMINNAT: PUHDISTUSPROSESSIN TOIMINNAT: 5 ) Lietteenkäsittely Puhdistusprosessi tuottaa ylijäämälietettä. Lietettä poistetaan lietepumpulla (SP) prosessin loppuvaiheessa (8 h 25 min). Lietettä kerätään lietekoriin,

Lisätiedot

ENERGIATEHOKAS AKTIIVILIETEPROSESSI Energiatehokas vesihuoltolaitos 1/2018

ENERGIATEHOKAS AKTIIVILIETEPROSESSI Energiatehokas vesihuoltolaitos 1/2018 ENERGIATEHOKAS AKTIIVILIETEPROSESSI Energiatehokas vesihuoltolaitos 1/2018 ENERGIATEHOKAS AKTIIVILIETEPROSESSI Suodatus Muu 6 % Aktiivilieteprosessin energiankulutusta voi tehostaa oikealla laitemitoituksella

Lisätiedot

Harjoitus 9: Optimointi I (Matlab)

Harjoitus 9: Optimointi I (Matlab) Harjoitus 9: Optimointi I (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen Optimointitehtävien

Lisätiedot

UUSIUTUVA ENERGIA HELSINGIN ENERGIAN KEHITYSTYÖSSÄ. 4.11.2014 Atte Kallio Projektinjohtaja Helsingin Energia

UUSIUTUVA ENERGIA HELSINGIN ENERGIAN KEHITYSTYÖSSÄ. 4.11.2014 Atte Kallio Projektinjohtaja Helsingin Energia UUSIUTUVA ENERGIA HELSINGIN ENERGIAN KEHITYSTYÖSSÄ 4.11.2014 Projektinjohtaja Helsingin Energia ESITYKSEN SISÄLTÖ Johdanto Smart City Kalasatamassa Aurinkovoimalan teknisiä näkökulmia Aurinkovoimalan tuotanto

Lisätiedot

Malliratkaisut Demo 4

Malliratkaisut Demo 4 Malliratkaisut Demo 4 1. tehtävä a) f(x) = 2x + 21. Funktio on lineaarinen, joten se on unimodaalinen sekä maksimoinnin että imoinnin suhteen. Funktio on konveksi ja konkaavi. b) f(x) = x (pienin kokonaisluku

Lisätiedot

Luento 6: Monitavoitteinen optimointi

Luento 6: Monitavoitteinen optimointi Luento 6: Monitavoitteinen optimointi Monitavoitteisessa optimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f,,f m Esimerkki ortfolion eli arvopaperijoukon optimoinnissa: f

Lisätiedot

Optimal Harvesting of Forest Stands

Optimal Harvesting of Forest Stands Optimal Harvesting of Forest Stands (Presentation of the topic) 24 January 2010 Instructor: Janne Kettunen Supervisor: Ahti Salo Tausta Ass. Prof. Janne Kettunen käsitteli osana väitöskirjatyötään stokastisen

Lisätiedot

ÄÄNENVAIMENTIMIEN MALLINNUSPOHJAINEN MONITAVOITTEINEN MUODONOPTIMOINTI 1 JOHDANTO. Tuomas Airaksinen 1, Erkki Heikkola 2

ÄÄNENVAIMENTIMIEN MALLINNUSPOHJAINEN MONITAVOITTEINEN MUODONOPTIMOINTI 1 JOHDANTO. Tuomas Airaksinen 1, Erkki Heikkola 2 ÄÄNENVAIMENTIMIEN MALLINNUSPOHJAINEN MONITAVOITTEINEN MUODONOPTIMOINTI Tuomas Airaksinen 1, Erkki Heikkola 2 1 Jyväskylän yliopisto PL 35 (Agora), 40014 Jyväskylän yliopisto tuomas.a.airaksinen@jyu.fi

Lisätiedot

Paretoratkaisujen visualisointi. Optimointiopin seminaari / Kevät 2000 Esitelmä 11 Petteri Kekäläinen 45305L

Paretoratkaisujen visualisointi. Optimointiopin seminaari / Kevät 2000 Esitelmä 11 Petteri Kekäläinen 45305L Paretoratkaisujen visualisointi Optimointiopin seminaari / Kevät 2000 Esitelmä 11 Petteri Kekäläinen 45305L 1. Johdanto Monitavoiteoptimointitehtävät ovat usein laajuutensa takia vaikeasti hahmotettavia

Lisätiedot

Poistuvat kurssit ja korvaavuudet (RRT ja YYT)

Poistuvat kurssit ja korvaavuudet (RRT ja YYT) Poistuvat kurssit ja korvaavuudet 2016-2017 (RRT ja YYT) Rakenne- ja rakennustuotantotekniikka Rak-43.3001 Rakennuksen rungon suunnittelu I CIV-E1030 Fundamentals of Structural Design Rak-43.3111 Prestressed

Lisätiedot

TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op. FT Ari Viinikainen

TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op. FT Ari Viinikainen TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op FT Ari Viinikainen Tietokoneen rakenne Keskusyksikkö, CPU Keskusmuisti Aritmeettislooginen yksikkö I/O-laitteet Kontrolliyksikkö Tyypillinen Von Neumann

Lisätiedot

Tilastolliset ohjelmistot 805340A. Pinja Pikkuhookana

Tilastolliset ohjelmistot 805340A. Pinja Pikkuhookana Tilastolliset ohjelmistot 805340A Pinja Pikkuhookana Sisältö 1 SPSS 1.1 Yleistä 1.2 Aineiston syöttäminen 1.3 Aineistoon tutustuminen 1.4 Kuvien piirtäminen 1.5 Kuvien muokkaaminen 1.6 Aineistojen muokkaaminen

Lisätiedot

Konesalin jäähdytysjärjestelmän mallinnus, simulointi ja optimointi. To 4.6.2015 Merja Keski-Pere

Konesalin jäähdytysjärjestelmän mallinnus, simulointi ja optimointi. To 4.6.2015 Merja Keski-Pere Konesalin jäähdytysjärjestelmän mallinnus, simulointi ja optimointi To 4.6.2015 Merja Keski-Pere Konesaleista Digitalisaation lisääntyminen palvelinkapasiteettia lisää Eurooppaan arviolta jopa 60 uutta

Lisätiedot

Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta

Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Talousmatematiikan perusteet: Luento 14 Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Viime luennolla Tarkastelimme usean muuttujan funktioiden

Lisätiedot

Jälki- ja herkkyysanalyysi. Tutkitaan eri kertoimien ja vakioiden arvoissa tapahtuvien muutosten vaikutusta optimiratkaisuun

Jälki- ja herkkyysanalyysi. Tutkitaan eri kertoimien ja vakioiden arvoissa tapahtuvien muutosten vaikutusta optimiratkaisuun Jälki- ja herkkyysanalyysi Tutkitaan eri kertoimien ja vakioiden arvoissa tapahtuvien muutosten vaikutusta optimiratkaisuun 1 Hinnat ja varjohinnat Objektifunktio c T x = Kerroin c j ilmoittaa, paljonko

Lisätiedot

Solidity älysopimus ohjelmointi. Sopimus suuntautunut ohjelmointi

Solidity älysopimus ohjelmointi. Sopimus suuntautunut ohjelmointi Solidity älysopimus ohjelmointi Sopimus suuntautunut ohjelmointi Merkle puu Kertausta eiliseltä Solidity on korkean tason älysopimus ohjelmointikieli Muistuttaa olio-ohjelmointia Javalla Sopimuskoodi on

Lisätiedot

Typen ja fosforin alhainen kierrätysaste Suomessa

Typen ja fosforin alhainen kierrätysaste Suomessa Typen ja fosforin alhainen kierrätysaste Suomessa Biolaitosyhdistys ry:n seminaari 16.11.2010 Riina Antikainen Suomen ympäristökeskus Kulutuksen ja tuotannon keskus Sisältö Miksi ravinteet tärkeitä? Miksi

Lisätiedot